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Two gradient-based adaptation methodologies have been implemented into the Fun3d–

refine–GridEx infrastructure. A spring-analogy adaptation which provides for nodal move-

ment to cluster mesh nodes in the vicinity of strong shocks has been extended for general

use within Fun3d, and is demonstrated for a 70◦ sphere cone at Mach 2. A more general

feature-based adaptation metric has been developed for use with the adaptation mechanics

available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The

basic functionality of general adaptation is explored through a case of flow over the fore-

body of a 70◦ sphere cone at Mach 6. A practical application of Mach 10 flow over an

Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive

mesh refinement with uniform mesh refinement. The examples of the paper demonstrate

that the gradient-based adaptation capability as implemented can give an improvement in

solution quality.

Nomenclature

C Coarsening factor for adaptation
CN Normal force coefficient
Fn

e Spring force for edge e at node n

h Isotropic mesh size
Î Local error adaptation intensity
Je Jump condition across edge, for

gradient-based adaptation
Jt Jump tolerance
l Edge length

ltarg Target length based on a target cell
Reynolds number

M Mach number
N Number of mesh nodes
Re Reynolds Number
T Temperature

Symbols

ω Adaptation relaxation factor
ρ Density

I. Introduction

NASA spaceflight programs are beginning to rely on Computational Fluid Dynamic (CFD) methodologies
to provide both global aerodynamic characteristics and localized flow physics details such as local

heating and reaction control system (RCS) jet interactions. As CFD methodologies become more integral to
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the design process for complex flight vehicles, there is an increased demand for more automatic methods of
generating flow solutions and quantifying numerical uncertainties in the flow solution. Such a methodology
must provide a better answer for the same amount of work, provide an equivalent answer for less effort, or
both. Work in this context includes both computer time and human time. Better in this context can mean
improved flowfield resolution for flowfield diagnostics, a solution with lower numerical uncertainty in desired
quantities (CL, CD, Cm, for example,) or both.

Some form of mesh adaptation is required for hypersonic problems, where clustering of mesh points in
the direction normal to the bow shock has been shown to be of critical importance.1–3 It is only possible to
accomplish this clustering when the shock location is known after computing a flow solution. The manual
creation of grids that adequately capture the strong bow shocks of re-entry vehicles requires tedious ma-
nipulation of meshing parameters to place points between the bow-shock and the body. Utilizing a manual
approach for a large number of calculations, such as the large set of cases required for an entire aerodynamic
database, becomes prohibitive because of the human time required to adjust the initial mesh for each case.

Numerous solution adaptive grid methodologies have been developed and applied in an attempt to reduce
the dependence on the manual iteration of CFD processes and the required expertise of the practitioner to
obtain accurate results.4,5 The aim is to increase grid resolution where local discretization error estimates
are large with the goal of diminishing and equally distributing these estimated errors. A direct method is to
target local errors in the solution due to equation residuals, solution derivatives, or entropy generation.4–17

This local error estimate solution adaptive process tends to focus on strong features in the flow solution (e.g.,
shocks, boundary layers). Different formulations of the local error estimate target different features in the
flowfield. An experienced practitioner using extensive validation (e.g., grid convergence studies, comparison
to experiment and other computations) is necessary to consistently produce quality solutions for a variety
of simulations.

An alternative method is to estimate the error in the calculation of a specified engineering output func-
tional. Output error indicators utilize the dual or adjoint solution to account for the linearized impact of
local error as well as the transport of these local errors throughout the problem domain. This output-based
approach has been applied to finite element discretizations18–25 and extended to other discretizations.26–30

The output-based approach provides a natural termination criteria that is based on a user-specified functional
error tolerance. The 2D adjoint computation and output error specification methods of Venditti and Dar-
mofal,29,30 have been extended to 3D within the fully unstructured Navier-Stokes three-dimensional2,3, 31–33

(Fun3d) flow solver suite and applied to inviscid, laminar, and turbulent flow problems.34–36 The method-
ology shows much promise in enabling the estimation of uncertainties in complex flow simulations and
automatically adapting the discretization to reduce these uncertainties. The current method of obtaining
the adjoint solution involves a tedious process of differentiating the flow solution process by hand. An alter-
native method of obtaining the solution derivatives utilizing a complex variable approach has been applied
to the generic gas formulation in Fun3d, but some issues remain.37

While output-based approach is preferred over gradient-based adaptation, its applicability to high energy
flows is currently limited because some numerical difficulties still remain in solving the adjoint equation for
these flow regimes. This robustness issue is being investigated. The development and use of gradient-based
adaptation techniques within Fun3d is necessary to both substitute for output-based methods where the
adjoint methodology is not yet robust and to develop experience with the automated adaptation processes
in advance of full implementation of the output-based approach.

The current paper seeks to reduce the manual interaction required to generate meshes with points clus-
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tered near strong bow-shocks by using local error estimation adaptation to iteratively create grids for pre-
diction the aerodynamics of re-entry vehicles. The local error estimates in this study are based on solution
derivatives. Two types of gradient-based adaptation have been implemented in the Fun3d suite. First, a
simple mesh movement algorithm based on a spring analogy, previously available in only the generic gas
formulation of the Fun3d solver,2,3 has been integrated into the standard compressible solver. The spring
forces are derived from the temperature gradient, and are especially effective in clustering the mesh points
in the direction normal to the shocks. Each mesh movement cycle produces a small perturbation in the
mesh, and is performed many times during the flow solution process. This methodology is demonstrated
with Mach 2 flow over a 70◦ sphere-cone.

The second adaptation algorithm provides a gradient-based adaptation metric to the mesh adaptation
mechanics developed and implemented in the Fun3d suite.34–36 An isotropic mesh density metric for the
improved mesh is provided by a scalar adaptation parameter based on the 1st derivative of density (estimated
by the jump in density across an edge). The anisotropic orientation and scaling is determined by the Mach
number Hessian (second derivative tensor). The adaptation mechanics provide for node insertion and deletion
to achieve desired mesh density, and edge swapping and node movement to improve element quality. While
this methodology has been implemented within the Fun3d suite, it is being structured to allow inputs from
other flow solvers.

The full adaptation algorithm is first demonstrated on the 70◦ sphere cone for Mach 6 flow. Improvement
in both the flowfield resolution and accuracy of the final aerodynamic quantities are shown with this example.
The methodology is next applied to a series of Mach 10 computations on the Apollo capsule geometry using
the inviscid, unstructured Felisa flow solver38,39 and compared to uniform mesh refinement. The flowfields
computed with the adapted meshes clearly resolve the flow, and particularly the bow shock, better than a
uniformly refined mesh with a similar number of nodes. Examination of integrated forces and moments as a
function of grid size shows that the adaptive methodology generally provides answers with lower numerical
uncertainties than achieved through uniform refinement alone.

II. Flow Solvers

The initial series of examples employs the Fun3d suite of codes. The Fun3d standard compressible flow
solver employs an unstructured finite-volume tetrahedral method with an implicit point-iterative method
or an implicit line relaxation scheme.40 This formulation is referred to as the standard compressible solver
throughout this paper. Fun3d solves Euler and Reynolds-averaged Navier-Stokes (RANS) flow equations.
A generic gas formulation, based on the standard compressible solver, is also available, and better ac-
commodates hypersonic flows.2,3 The present study employs the Euler equations with both the standard
compressible and generic gas formulations.

The Mach 10 Apollo capsule examples use the Felisa inviscid flow solver. The Felisa software package
consists of a set of computer codes for unstructured grid generation, and the simulation of three-dimensional
steady inviscid flows using unstructured tetrahedral meshes.38 Two flow solvers are available with Felisa–
one applicable for transonic flows, and the other for hypersonic flows.39 The hypersonic flow solver can use
numerous gas models, including perfect gas air, equilibrium air, CF4, and CO2 in equilibrium.
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III. Mesh Adaptation

A. Mesh Movement Gradient-Based Adaptation

A simple spring analogy mesh movement algorithm was introduced into the generic gas formulation of Fun3d

by Gnoffo2,3 and extended to the standard compressible formulation for the present work. The algorithm
seeks to move existing mesh points toward strong shocks, thereby reducing cell size to cluster high aspect
ratio tetrahedra to captured shocks to produce improved solutions across strong shocks. A tensile force on
each node due to edge e is defined as

Fn
e = 1 + kfn∆Te, (1)

where k = 0.3, fn = 1 for inviscid flows. For viscous flows,

fn = 1− e−φ/ltarg , (2)

where φ is the minimum of the radii of the spheres inscribed within each element surrounding node n and
ltarg is the target length for the edge at node n,

ltarg = Retargµ/ρa. (3)

The displacement at each node is then given by the sum of the tensile forces,

∆xn =
1
2


∑

e

Fn
e xe

∑
e

Fn
e

− xn

 , (4)

where xe is the coordinate of the node opposite node n along edge e. The displacement is limited by 1
2φ

to avoid negative volumes. Nodal position updates on planar boundary surface nodes are constrained to
move in that plane. This particular mesh movement algorithm does not interface with a CAD surface model.
Therefore, nodes on curved surfaces are prohibited from moving. This simple methodology produces small
movements and only requires the execution time of approximately two flow solver iterations. The adaptation
is typically applied every 20-50 flow solver iterations over the span of several thousand flow solver iterations.
This methodology has the advantage that is simple to apply within a flow simulation, but will draw points
away from other important areas behind the shock if there are not sufficient mesh points.

B. Full Gradient-Based Adaptation

The gradient-based adaptation scheme for Fun3d uses the same mesh modification mechanics as the adjoint-
based adaptation.36 These schemes communicate the desired resolution of the mesh to the mesh modification
modules via an anisotropic metric.6,35 Both the gradient-based and adjoint schemes use a Mach number
Hessian35 to determine the anisotropy. However, for the gradient-based scheme, the isotropic scaling of the
desired mesh adaptation is controlled by a gradient-based parameter instead of the adjoint error estimate.

Exact local (or global) error quantification is not possible because the exact solution is not available for
general problems. Gradient-based adaptation indicators are computable surrogates. Some of the weaknesses
of purely gradient based indicators is addressed by including a local element length scale. Undivided differ-
ences have been used by a number of researchers to estimate local error, see references 7 and 9. The jump,
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Je, in ρ over an edge is used for the isotropic scaling of mesh adaptation metric in the initial implementation
of the scheme,

Je = |∆ρ|. (5)

The local error adaptation intensity, Î, is then computed at each node as the largest Je of an incident edge
normalized by a user-specified edge jump tolerance, Jt,

Î = max
incident edges

(
Je

Jt

)
. (6)

A new requested characteristic isotropic mesh size, h1, is calculated from the current estimated characteristic
isotropic mesh size, h0, and the under-relaxed nodal intensity,

h1 = h0 min
(

C,

(
1
Î

)ω)
, (7)

where ω is the relaxation factor (typically 0.2) and C is the maximum allowed coarsening factor (typically
no larger than 115%) to prevent over-coarsening in smooth regions of the solution. The anisotropic metric
is then computed from h1 as in Reference 35. It is recognized that ∆ρ is not the only choice available for
the adaptive indicator. Gradients of other flow quantities (pressure, Mach, entropy, for example) have been
used by numerous other researchers, and the implementation of the methodology is such that this parameter
can be easily changed. However, the current study did not investigate alternate formulations of the isotropic
scaling parameter.

The basic adaptation mechanics are described by Park and others in several recent papers.34–36,41 The
adaptation modules use local mesh operators to remove edges by collapsing those that are too small as
compared to the specified anisotropic metric. Edges that are too long as compared to the specified anisotropic
metric are split. Grid element quality is improved by swapping edges to new configurations. Node locations
are also modified to improve the quality of the worst incident element. This smoothing is performed in the
interior and boundary of the domain. The new nodes that are inserted by an edge split on the boundary
are moved to their final position on a high fidelity boundary representation with a global linear elasticity
mesh movement scheme. The interface with high fidelity boundary representation is facilitated by the
GridEx42,43 framework, which links various mesh generation and adaptation strategies to geometry through
the Computational Analysis Programming Interface44–46 (CAPrI). With this methodology, surface nodes can
be moved and inserted on the native CAD geometry. Surface adaptation within the gradient-based adaptation
scheme is primarily limited to meshes generated by GridEx, so that boundary fidelity is maintained. The
exception is for surface geometries that can be defined analytically.

For inviscid applications, both anisotropic surface and field adaptation can be prescribed. The mechan-
ics to automatically adapt 3-D meshes with highly anisotropic regions near curved boundaries are under
development. In high Reynolds number viscous cases, the mesh can only be automatically adapted in the
field outside of the high aspect ratio cells near the surface. This is accomplished by freezing the boundary
layer points, as demonstrated in Reference 36. The viscous adaptation capability is not demonstrated in
the current paper, but is available with the gradient-based adaptation. The adaptation algorithm can addi-
tionally be controlled by setting the number of adaptation cycles to be used, setting the relaxation factor to
reduce the change to the grid for each iteration, and choosing to smooth the resulting mesh. Mesh size and
anisotropy are controlled by the choice of isotropic metric, Je (adapt feature type), specified jump toler-

5 of 21

American Institute of Aeronautics and Astronautics Paper 2006–3579



ance, Jt (adapt output error), and the maximum aspect ratio, edge length, and coarsening, C, allowed.
When the adaptation is coupled with a flow solver other than Fun3d, a translation must be made from the
mesh and flow solution data structures to Fun3d restart files. A translator for the Felisa software package
was completed for this study.

IV. Computational Results

Figure 1. 70◦ sphere cone

geometry with computa-

tional domain.

The gradient-based adaptation schemes are initially demonstrated with flow
over a 70◦ sphere cone computed with the Fun3d flow solver. The spring
adaptation is applied at Mach 2, and the full gradient-based scheme is applied
at Mach 6. The full gradient-based scheme is then compared with uniform
mesh refinement for a Mach 10 Apollo capsule case, computed with Felisa.

A. 70◦ Sphere Cone

The 70◦ sphere cone geometry is typical of planetary entry configurations such
as Pathfinder and the recent Mars entry vehicles. Only the forebody is consid-
ered here, to focus on resolving the bow shock adequately. The computational
domain cuts off the aft section of the vehicle, and is shown in Figure 1.

1. Mesh Movement via Spring Analogy, Mach 2

A spring adaptation cycle was performed on the initial mesh at Mach 2, zero
degree angle of attack (α) using the generic gas formulation. The flow solver
was run on the initial mesh until the integrated forces were converged (CN =
−0.00028). Then the spring adaptation was performed once every 50 flow
solver iterations over a period of 5,000 iterations, for a total of 100 adaptations.
Finally, the flow solver was allowed to run to iterative convergence without
further mesh adaptations.
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Figure 2. Iterative convergence of 70◦ sphere-cone

case at Mach 20 with spring adaptation.

Figure 2 shows the iterative convergence history
of the density residual and the normal force coeffi-
cient. The first 1,000 iteration are performed with
a first-order spatial operator, and a limited second-
order spatial operator is enabled after 1,000 itera-
tions. The spike in residual at 1,000 iterations is due
to the change in spatial operator. Once the speci-
fied adaptation cycle was completed, the CFL num-
ber was able to be increased, the residual dropped five
orders of magnitude, and the overall iterative conver-
gence was improved from the solution on the initial
mesh. More importantly, the adapted mesh solution
gives CN = −0.00008, which is much closer to the ex-
pected value of zero than the CN = −0.00028 given by
the initial mesh.
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The symmetry and exit plane meshes for the initial and adapted meshes are shown in Figure 3. The
clustering of points to the shock in the adapted mesh is very pronounced at the front of the bow shock on
the symmetry plane, and the mesh movement has not drawn an excessive number of points out of the region
between the shock and the body. There is less clustering where the bow shock as it crosses the exit plane,
due both the sparseness of the initial mesh and the weaker shock strength.

(a) Initial. (b) Adapted. (c) Initial. (d) Adapted.

Figure 3. Symmetry and exit plane meshes for Mach 2 flow solution with spring adaptation.

Mach number contours for the initial and adapted meshes are shown in Figure 4. The Mach number
contours in the symmetry plane are smoother and more symmetric for the adapted mesh and the resolution
normal to the bow shock is improved. The exit plane view of the contours shows the improved symmetry

(a) Initial. (b) Adapted. (c) Initial. (d) Adapted.

Figure 4. Symmetry and exit plane Mach number contours for Mach 2 flow solution with spring adaptation.

7 of 21

American Institute of Aeronautics and Astronautics Paper 2006–3579



of the contours in the stagnation region as well as some sharpening of the shock. Note that the shock is
still poorly resolved at the exit plane due to the coarseness of the mesh. Since the spring adaptation does
not add nodes to the mesh, the initial mesh must have sufficient mesh density in the vicinity of the shocks.
The improvement in the symmetry of the flow solution, the increased bow shock normal resolution, and the
reduced error in the normal force is dramatic with the spring adaptation. These improvements demonstrate
the importance of properly resolving the bow shock.

This demonstration case was repeated using the standard Fun3d compressible air formulation, and the
resulting mesh was similar. The flow solution on the spring-adapted mesh, however, was not as good as
the initial flow solution in terms of both convergence and CN . The poor performance of the standard
compressible solver is due to the difference in the flux formulation and limiting scheme between the generic
gas and standard compressible solvers. The STVD scheme in the generic gas flow solver is better able to
handle the discontinuity across the high aspect ratio cells produced by the spring adaptation. Thus, the
usefulness of a mesh movement scheme designed to cluster nodes along strong shocks, effectively providing
highly stretched cells with faces aligned to the shock, is limited by the solver algorithm’s ability to handle
discontinuities across such cells.

2. Full Gradient-Based Adaptation, Mach 6

The full gradient-based adaptation scheme is demonstrated for a Mach 6 case. The initial mesh was similar
to the initial mesh in the previous spring adaptation example. The initial solution was computed with
the flow solver using the standard compressible path. After each adaptation cycle, the solver was run for
1,500 iterations before the next adaptation. The time for the adaptation is comparable to the time for
a complete flow solution, so the full adaptation process is used sparingly and with relatively converged
solutions. This contrasts to the simpler mesh movement scheme that is repeatedly employed and gives much
smaller perturbations than the full adaptation process. The baseline adaptation parameters used for this
series of adaptations are given in Table 1, and the resulting mesh sizes are shown in Table 2.

Table 1. Adaptation parameters, 70◦ sphere cone.

Parameter Description Value

adapt feature type Definition of scalar adaptation metric, Je ∆ρ

adapt output error User specified jump tolerance Jt 0.1

adapt maxratio Maximum aspect ratio allowed for adapted
cells

5.0

adapt maxedge Maximum edge length allowed 15.0

adapt coarsen Used to compute C, 1.0 allows no mesh coars-
ening, 2.0 allows 115% coarsening

2.0

adapt smooth surface Smoothing of surface mesh after adaptation true

adapt cycles Number of adaptation steps taken for one
level of adaptation

6

Symmetry and exit plane meshes for each adaptation level are shown in Figure 5 and 6. The location of
the strongest part of the bow shock is obvious on the symmetry plane, and is less prominent downstream as
the shock weakens. There is significant refinement in the shoulder region of the vehicle, as seen in the exit
plane plot, Figure 6(d). There is an uneven clustering of nodes evident in several locations, indicating that
the adaptation parameter is not smooth. This is a problem typical of local error estimation methods.
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Table 2. Adapted mesh sizes, 70◦ sphere cone.

Mesh refinement level

Parameter Initial 02 03 04 05 06

Boundary faces 32k 26k 29k 32k 36k 43k

Volume nodes 105k 128k 153k 200k 312k 610k

Volume cells 599k 723k 862k 1.12M 1.75M 3.44M

(a) Initial mesh, Cycle 1 (b) Cycle 3 (c) Cycle 4 (d) Cycle 5

Figure 5. Symmetry plane meshes for multiple adaptation cycles using full adaptation process, Mach 6, α =0◦.

(a) Initial mesh, Cycle 1 (b) Cycle 3 (c) Cycle 4 (d) Cycle 5

Figure 6. Exit plane meshes for multiple adaptation cycles using full adaptation process, Mach 6, α =0◦.

9 of 21

American Institute of Aeronautics and Astronautics Paper 2006–3579



Iteration

Lo
g(

R
1)

N
or

m
al

F
or

ce
C

oe
ffi

ci
en

t,
C

N

0 5000 10000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

-4E-05

-2E-05

0

2E-05

4E-05

6E-05

8E-05

0.0001

0.00012

Normal Force,
CN = 0.0 for exact

01

02 03

05

density
residual

04

Figure 7. Iterative convergence of Mach 6 flow solution on initial

mesh and four adapted meshes.

Convergence of the residual and nor-
mal force coefficient is given in Figure 7.
The first 1,000 iterations are spatially
first-order and the remaining iterations
are second-order. The normal force his-
tory shows improvement with the mesh
refinement. The expected normal force is
zero for this symmetric non-lifting case.

Mach number contours for the con-
verged solution on each mesh are given
in Figures 8, 9, and 10. The adapted
meshes finely resolve the bow shock in its
normal direction. While the mesh adap-
tation has definitely improved the sym-
metry of the contours, the final mesh still
has mild asymmetry in the stagnation re-
gion, Figure 10(d).

(a) Initial mesh, Cycle 1 (b) Cycle 3 (c) Cycle 4 (d) Cycle 5

Figure 8. Symmetry plane Mach number contours and streamlines for multiple adaptation cycles using full
adaptation process, Mach 6, α =0◦.
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(a) Initial mesh, Cycle 1 (b) Cycle 3 (c) Cycle 4 (d) Cycle 5

Figure 9. Mach number contours and streamlines on the full body and exit plane for multiple adaptation
cycles using full adaptation process, Mach 6, α =0◦.

(a) Initial mesh, Cycle 1 (b) Cycle 3 (c) Cycle 4 (d) Cycle 5

Figure 10. Mach number contours and streamlines in the stagnation region for multiple adaptation cycles
using full adaptation process, Mach 6, α =0◦.
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B. Apollo Capsule, Mach 10

The aerodynamics for the Apollo capsule at Mach 10 and an angle of attack of 150◦ have been computed
using the Felisa flow solver coupled with the full gradient-based adaptive methodology demonstrated in the
previous section. The resulting flow solutions and aerodynamics are compared to a series of uniform mesh
refinements in order to establish the improvement in both process time and accuracy for the gradient-based
adaptation approach.

1. Problem Setup

The Apollo geometry is shown in Figure 11. The computational geometry was analytically developed based
on the dimensions as supplied by the CEV program.

An initial mesh for the baseline geometry was developed using GridEx. The spacings for the initial
mesh were then scaled to produce a family of meshes to be used in mesh refinement studies. Table 3 gives
the mesh sizes for the uniform refinement series meshes. The mesh labeled ab2na was the primary mesh,
used as a starting point for the adaptations. The coarsest, baseline, and finest meshes in the vicinity of the
body are shown in Figure 12.
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Figure 11. Apollo Capsule Geometry.

Table 3. Mesh sizes for uniform refine-

ment series meshes, Apollo.

Volume

Tag Boundary faces Nodes Cells

ab2nf 16k 220k 1.3M

ab2nb 21k 330k 1.9M

ab2na∗ 34k 630k 3.7M

ab2nc 45k 970k 5.7M

ab2nd 73k 2.0M 12M

ab2ne 150k 6.0M 36M

∗This mesh served as the baseline adaptation

mesh.

Flow solutions were computed using Felisa on the Apollo capsule at a Mach 10.14 equilibrium air
conditiona and an angle of attack of 150◦ on the baseline mesh using Felisa, and then adapted using the
full gradient-based methodology. The adaptation parameters used in this series of computations are given
in Table 4. Solutions on four adapted meshes and all six uniform-refinement meshes were computed. The
sizes of the adapted meshes are given in Table 5.

aThis corresponds to an AEDC Tunnel C condition used during Apollo testing:47 U∞ = 1614.8m/s, ρ∞ = 0.00656kg/m3,
and T∞ = 63.1.
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(a) Coarsest mesh, ab2nf. (b) Baseline mesh for adaptation,
ab2na.

(c) Finest uniformly-refined mesh,
ab2ne

Figure 12. Coarsest (ab2nf), baseline (ab2na), and finest (ab2ne) meshes in uniform refinement series.

Table 4. Gradient-based adaptation

parameters for Felisa Apollo capsule,

Mach 10 cases.

Parameter∗ Value

adapt output error 0.025

adapt maxratio 10.0

adapt maxedge 35.0

adapt coarsen 1.2

adapt smooth surface true

adapt cycles 3

adapt feature type ∆ρ

current spacing metric lmin

∗ See table 1 on page 8 for descriptions.

Table 5. Mesh sizes for gradient-based adaptation series,

Apollo capsule, Mach 10, α = 150◦.

Tag Boundary faces Volume nodes Volume cells

ab2na 34k 630k 3.7M

ab2naM01 40k 900k 5.2M

ab2naM02 50k 1.3M 7.6M

ab2naM03 67k 2.4M 13M

ab2naM04 94k 5.0M 28M

2. Adapted Meshes and Flowfields

Figure 13 shows each adapted mesh for the 150◦ angle of attack case. The symmetry plane mesh is colored
by Mach number and the body is colored by Cp. The mesh in the vicinity of the bow shock has been
significantly enriched, especially in the direction normal to the shock. There is also significant adaptation
downstream of the body, where flow does not appreciably affect the forces and moments on the body. There
is some mild coarsening in the wake region that is allowed because of the very low density, and thus small
∆ρ parameter. The adapted mesh is much finer in the shoulder region, in order to resolve the expansion
around the shoulder. The effect of the mild coarsening parameter is seen just aft of the expansion around
the shoulder.
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(a) Initial mesh, ab2na. (b) Second adapted mesh,
ab2naM02.

(c) Final adapted mesh, ab2naM04.

(d) Initial mesh, ab2na, shoulder re-
gion.

(e) Second adapted mesh,
ab2naM02, shoulder region.

(f) Final adapted mesh, ab2naM04,
shoulder region.

Figure 13. Symmetry plane meshes colored with Mach, body with Cp, Apollo capsule, adaptation series, Mach
10.1, α = 150◦.
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(a) Final adapted mesh, ab2naM04.

(b) Finest uniformly-refined mesh.

Figure 14. Comparison of adapted and

uniformly-refined meshes in the shoulder

region, Apollo capsule, adaptation series,

Mach 10.1, α = 150◦.

The final adapted mesh in the shoulder region is con-
trasted with the finest uniformly-refined mesh in Figure 14.
The adapted mesh has 1.0M fewer mesh points than the finest
uniformly-refined mesh, but clearly has much smaller cells in
regions with high gradients.

Figure 15 show flowfield Mach number and Cp contours
for the same set of adapted mesh solutions on the symmetry
plane and body. The sharpening of the shock due to the adap-
tation is clearly evident on the symmetry plane. The leeside
flow changes significantly with successive adaptation, partic-
ularly in the location of the ‘inviscid separation’ aft of the
shoulder. This region, however, is not important from an aero-
dynamic perspective because Cp is near zero throughout the
region. The stagnation point location shifts with the adapta-
tion (Figures 15(d)–15(f)), with the final adaptation showing
more circular contours around the stagnation point. There are
small but noticeable changes in the contours on the body in
the shoulder region, particularly in the beginning of the coni-
cal section of the capsule.

The marked improvement in feature resolution for the adap-
tation series is contrasted with the flowfield countours for the
uniform mesh refinement series in Figure 16. The final adapted
mesh contours are repeated from Figure 15 for clarity. The fi-
nal adapted refinement clearly resolves the flow features better
than the uniform refinement.

The Cp distribution along the vehicle centerline for several
of the uniformly refined meshes is shown in Figure 17(a), with
the capsule geometry for reference. Figure 17(b) shows the Cp

distribution in the stagnation region for the adapted meshes
(symbols) and all of the uniformly-refined meshes (lines). The
maximum Cp for the uniformly-refined meshes varies in both
maximum value (1.820 < Cp < 1.846) and axial location
(10.0 < xstag < 11.8), with no particular pattern. The Cp

distribution is similarly varied. The Cp distributions for the
adapted meshes show much less variation in shape and a tighter
clustering of the maximum Cp. Figure 17(c) shows the Cp dis-
tribution at the end of the expansion around the windward
shoulder. Here, the Cp distribution for the uniformly-refined mesh series is varying systematically, with the
(over-)expansion and subsequant recompression sharpening with successive refinement. The Cp distribution
for the adapted meshes are similar to the finer uniformly-meshes. The final adapted mesh has a sharper
minimum than the finest adapted mesh, and has a mesh spacing of approximately one-half, suggesting again
that the adapted meshes are providing better flow solutions than similarly sized uniformly refined meshes.
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(a) Initial mesh, Mach contours. (b) Second adapted mesh, Mach
contours.

(c) Final adapted mesh, Mach con-
tours.

(d) Initial mesh, Stagnation region,
Cp contours.

(e) Second adapted mesh, Stagna-
tion region, Cp contours.

(f) Final adapted mesh, Stagnation
region, Cp contours.

(g) Initial mesh, Cp contours. (h) Second adapted mesh, Cp con-
tours.

(i) Final adapted mesh, Cp con-
tours.

Figure 15. Flowfield contours, Apollo capsule, gradient-based adaptation series, Mach 10.1, α = 150◦.
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(a) Final adapted mesh, symmetry
plane, Mach contours.

(b) Final adapted mesh, stagnation
region, Cp contours.

(c) Final adapted mesh, shoulder
region Cp contours.

(d) Finest mesh (ab2ne), symmetry
plane, Mach contours.

(e) Finest mesh (ab2ne), stagna-
tion region, Cp contours.

(f) Finest mesh (ab2ne), shoulder
region, Cp contours

Figure 16. Flowfield contours for final adapted mesh and finest uniform mesh, Apollo, Mach 10.1, α = 150◦.
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Figure 17. Centerline Cp for uniformly-refined and adapted meshes, Apollo capsule, Mach 10.1, α = 150◦.
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3. Grid Convergence

The computed aerodynamics (CL, CD, Cm about apex) are shown in Figure 18, plotted against N−2/3,
where N is the number of nodes in the mesh. This assumes that the characteristic length of the mesh, h,
varies with the inverse of the cube root of the number of nodes, h ≈ N−1/3. The discretization scheme is
also assumed to be second order, so that computed outputs vary linearly with h2. The axis is such that the
finest meshes are on the left side. The dashed lines show the uniform mesh refinement series, and the solid
lines show the gradient-based refinement series. The Richardson extrapolation value is shown as a point at
N−2/3 = 0 The jump in the load coefficient between the initial mesh and the first adapted mesh results from
the dramatic change in the distribution of points between the initial and first adapted mesh. This jump
only occurred for this case in drag an lift, not pitching moment. Also note that the change in the coefficient
values between the baseline and finest meshes is not large in absolute terms.
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Figure 18. Grid convergence of lift, drag, and pitching moment, Apollo capsule, Mach 10.1, α = 150◦.

The last few meshes in the uniform mesh refinement series appear to be in the asymptotic convergence
region. However, the adapted meshes are also approaching an asymptotic value, which is different from
the uniform mesh extrapolation. Past studies have shown both that the adapted mesh value can be wrong
because a feature (such as the shock standoff distance) is refined early in the adaptation process when the
feature is far from its true location, and is thus ’forced’ into the incorrect location,7 or that the uniform
mesh series is actually not in the asymptotic range and that further refinement could shift the extrapolated
value significantly.36 The erratic Cp distribution in the stagnation region (Figure 17(b)) for the uniformly-
refined mesh series indicates that the mesh sequence is not in the asymptotic convergence region in terms
of stagnation point resolution, and suggests a rationale for accepting the adapted mesh results over the
uniformly refined mesh results.

V. Concluding Remarks and Future Work

Two gradient-based adaptation capabilities have been implemented in the Fun3d suite to give the user
an automated ability to improve a computational mesh for a particular application. The spring adaptation
capability, integrated into the Fun3d solver, is a simple tool that can provide clustering of points to a shock
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for a relatively well designed initial mesh. This study showed a benefit only when used with the STVD flux
formulation in the generic gas path of Fun3d. A gradient-based adaptation capability that allows for node
insertion and deletion, node movement, and edge swapping has been developed for Fun3d suite through
refine and GridEx. The capability has been extended for use with Felisa. Overall, the 70◦ sphere cone
and Apollo capsule results suggest that gradient-based adaptation gives a benefit in solution quality. The
mesh adaptation process clearly gives better resolution of flow features, and will be very useful for problems
where the general structure of the flow or a localized flow feature is important. For the examples shown
here, the aerodynamics (lift, drag, and pitching moment) improved with the adaptation, both in absolute
terms (CN , 70◦ sphere cone) and relative to uniform mesh refinement (Apollo capsule).

While the basic implementation of a gradient-based adaptive refinement capability has been developed,
there are two primary areas that should be addressed in order to have a fully-functional stand-alone capability.
First, to improve process time and reduce disk storage needs for cases that use flow solvers other than Fun3d,
the infrastructure to allow input and output of meshes and flow solutions from codes other than Fun3d should
be further developed. Secondly, an interface to allow user-configurable specification of the scalar adaptation
metric should be implemented to allow a wider range of formulations.

The gradient-based methodologies developed herein, like all gradient-based methodologies, have limita-
tions that must be understood in order to apply the methodology effectively. First, there is no ’stopping’
criteria. In the Apollo example, the adaptation was taken further than would have been done for a production
case. Most of the improvement in feature resolution and in aerodynamic loads has occurred by the second
adaptation, suggesting that the adaptation could have been stopped at this point. Second, the quality of the
results is dependent on the formulation of the adaptation parameter. For the Apollo case, there were regions
of the wake that were coarsened even though there were strong gradients in Mach number. Finally, there is
no firm quantification of the error in the final solution with respect to important integrated quantities such
as lift and drag. An adjoint-based adaptation process overcomes these limitations. Until an adjoint solver
that is robust for problems with strong shocks is developed, this gradient-based adaptation can be used.
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