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Abstrzct 

When a new system, concept, or tool is proposed in the 
aviation domain, one concern is the impact that this will have 
on operator workload. As an experience, workload is difficult 
to measure in a way that will allow comparison of proposed 
systems with those already in existence. Chatterji and Sridhar 
(200 1) suggested a method by which airspace parameters can 
be translated into workload ratings, using a neural network. 
This approach was employed, and modified to accept input 
from a non-real time airspace simulation model. The 
following sections describe the preparations and testing work 
that will enable comparison of a future airspace concept with 
a current day baseline in terms of workload levels. 

Measuring Workload 
Workload is notoriously hard to measure. In air traffic 
control (ATC), workload is related to the number of aircraft 
in the airspace but other static and dynamic factors influence 
the workload too, e.g., the complexity of the airspace and 
the controller’s own preferences. 

Traditionally workload has been measured subjectively - 
asking controllers to rate their experienced level of 
workload during or after a session. There are a number of 
workload measures designed specifically for ATC 
measurement including CARS, an adaptation of the Cooper- 
Harper Scale, which was described by Lee, Kerns, Bone, & 
Nickelson (200 1). Other measures designed for the aviation 
domain are also used, e.g., the NASA TLX (Hart & 
Staveland, 1988). 

Although subjective rating measures yield workload 
information, they are not concretely related to any 
parameters that could be predictably changed to modify a 
system’s workload levels. With the prediction that the 
number of aviation operations will continue to increase (and 
possibly double by 2020), one aim of current research in the 
’aviation domain is to increase the capacity of the national 
airspace - i.e., the number of aircraft that can be in service 
at any one time. This will increase sector loads for 

individual controllers, but the goal is to offset the increase in 
workload by developing new technologicallautomation tools 
for the controller and flight deck. A greater understanding 
of the link between ATC variables and workload is essential 
to the research and deveiopment of such tools operaring in 
the aviation environment. 

A field of research has grown over the last few years to 
determine measurable factors that, when combined, 
correlate with rated workload levels. These algorithms aim 
to determine the complexity of an airspace sector. Using 
static and dynamic variables from the sector, including 
traffic counts, combinations of variables are tested against 
controllers’ subjective workload ratings. 

In one study (Kopardekar & Magyarits, 2002), the authors 
tested four complexity algorithms against controllers and 
supervisors’ subjective ratings of complexity from four en 
route center airspaces. Correlations between the complexity 
algorithms and subjective ratings were highest when the 
authors combined all the variables from all four algorithms. 

One complexity algorithm that performed reasonably well 
alone was the metric devised by Chatterji and Sridhar 
(2001). It correlated highly with the complexity ratings 
from one en route airspace (Denver) and moderately with all 
the others. Chatterji and Sridhars’ algorithm is comprised 
of 16 variables, all of which are dynamic. These can be 
grouped into three categories of variables - traffic count 
measures, aircraft separation measures, and conflict 
detection and resolution measures. The variables are listed 
in table 1. 
Chatterji and Sridhar have taken the link between subjective 
workload and complexity calculations one step further by 
devising a neural network that will translate complexity 
calculations into a workload rating. The neural network has 
three layers and is illustrated in Figure 1 (Chatterji & 
Sridhar, 1999). The sixteen complexity variables are the 
inputs (on the left side of the figure), although the number 
of inputs can be varied. There are 30 nodes in the hidden 
layer at the heart of the neural net, so each input is assigned 
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Table 1 : Complexity variabIes identified by Chatterji and 
Sridhar (200 1). 

Traffic count 
measures r- 

cruising aircraft 

N u m b e r  o f  

Separation 
measures 

Mean horizontal 
separation 
Separat ion in 
altitude band 

Minimum 
horizontal 
separation 

Mean vertical 
separation 

Separat ion in 
altitude band 
Minimum vertical 
separation 

Conflict 
detection and 

resolution 
measures 

Variance of speed 

Ratio of standard 
devia t ion  of 
speed to average 
speed 
Conflict 
resolution 
difficulty based 
on crossing angle 
Time to go to 
conflict 1 

Time to go to 
conflict 2 
Time to go to 
conflict 3 

30 weights (480 weights in total in this case) by the network 
to connect it to the hidden layer, and 30 biases are generated 

also. There are three nodes in the output from the network, f , -  

which indicate a low, medium or high workload rating. ( 
Ninety weights and three biases, through addition and 
integration, connect the hidden layer to the output layer. 
When Chatterji and Sridhar first formed the network, all 
weights and biases were initialized with random values 
between -1 and +1 using a uniform random number 
generator. These values were improved iteratively by 
training the network using a standard gradient-based back- 
propagation algorithm. All software modules, which 
collectively generate the workload and neural network 
output measures, were originally developed to run on a 
Unix-based Sun Solaris Computer, and were coded using 
the C programming language. 

Chattterji and Sridhar (2001) collected the data for 
training the neural network by having two controllers watch 
nine hours of recorded traffic from sector 48 in ZFW (Fort 
Worth Center airspace, which covers Texas and parts of the 
surrounding states in the US) and give workload ratings 
every two minutes. Both controllers were familiar with the 
traffic activity, and were qualified air traffic controllers of 
this sector. A tenth hour-Iong session was a repeat of one of 
the nine recorded hours to provide a rating consistency 
check. Controllers did not perform these ratings all at once 
but worked ten one-hour ‘shifts’ to rate the sector’s 
workload levels. 

Figure 1: A three-Iayer neural network. 



host of specialized modules, all written in open source 
languages, such as C, awk, and csh scripts. It runs on a 
Sun Solaris Ultra 60 computer using a 450 Mhz 
UltraSPARC-I1 processor with 1Gb of memory, but is 
generic enough to be used on a number of different 
computer configurations, as long as certain key elements 
are available (e.g., system libraries linked to the 
application). 

In a very general sense, the overall data flow and 
method is as follows: 

Initially, train the neural networks using the 
sector 48 data collected by Chatterji and Sridhar 
(2001)(this step needs to be completed only 
once). 

2) Extract the necessary variableddata from the 
ACES output using the MySQL interface. 

3) Apply the workload measures algorithms to the 
data generated from step #2 

4) Apply the neural networks algorithms to the data 
generated from step #3 

5 )  Select, concatenate, and analyze the time- 
stamped neural networks complexity ratings 
generated from step $4. 

This application implements a variety of algorithms 
with complexity ratings generated as the final output. 
These algorithms address issues such as system 
compatibility of the input data sets, generating new input 
variables based on the activity of existing variables, 
s o r t i n g l n e s t i n g  p r o c e s s e d  d a t a  s e t s ,  
separatinglprocessinglanalyzing data within each 
individual sector, automatically writing and running a 
specialized analysis program based on the data content 
read by the application, and automatically keeping track 
of each set of analysis data as they are formatted and then 
processed with the original “core” algorithms associated 
with the workload measures and the neural networks. All 
software modules are linked to each other in one 
integrated driver program, which runs all processes 
automatically. In this way, data can be analyzed on a 
sector by sector basis with minimum user intervention - 
i.e., hundreds of separate analysis output files (one for 
each sector) are typically (and automatically) generated 
from one ACES data collection set by typing one simple 
executable file name and one command line argument at 
the UNIX command line prompt. Likewise, it is also 
possible to run the automated software in a similar 
manner, while specifying the analysis of a subset of 
sectors or even only one sector. 

1) 

Initial Progress 
Initially, data for sector 48 only will be processed through 
this newly developed application, since data from this 
sector was used as the basis for training the neural 
networks. Also, initially, only a one-hour traffic segment 
will be selected - 1200-1300 local time (est). The 
complexity metric will be applied to the data and the 
neural network output will be evaluated for its 
consistency and correspondence with Chatterji and 
Sridhars’ (200 1) workload ratings. 

After examining the results of this one-hour one-sector 
analysis, two-houl- t h e  segmeiits will be analyzed for two 
separate ACES runs where baseline parameters, such as 
the level of traffic and weather, have been manipulated. 
The workload calculations will be compared between 
these runs with the hypotheses that higher traffic and less 
than ideal weather lead to higher workload for the 
controller. Based on the findings from this analysis, 
comparisons couid then be made with results from other 
sectors. 

At the time of writing this paper, step one in the process 
outlined above is complete. The neural network took two 
hours to train with the original sector 48 data. The 
software has been tested for robustness using data 
generated from older versions of ACES. Since then, the 
most recent version of ACES was released, and study runs 
from this version, using the baseline inputs set up to test 
and compare various aspects of the concept, are currently 
being prepared. The raw data sets from these model runs 
are expected to become available prior to the end of the 
2005 calendar year, and will then be analyzed using the 
comprehensive workload measures and neural networks 
application described in this paper, to test and compare 
various aspects of the concept. 

Summary and Discussion 
A method and accompanying software application has 
been developed that addresses Air Traffic Controller 
work!oad by usiEg data collectior, oxtpat from a fast time 
model of the airspace (ACES). Within this application, a 
previously validated set of objective workload measures 
and a trained neural network are two of the essential 
cornerstones that are employed to generate final workload 
ratings. Algorithms are consistent with a subset of current 
VAMS blending metrics, FAA plans, and Joint Project 
Development Office priorities. 

To this point, obtaining data from ACES and deriving 
required complexity variables from these data seems to be 
a viable approach for estimating workload in a sector. 
For the most part, the process of calculating workload 
ratings from the model data will just require exercising 
the process, since the vast majority of the involved sub- 
processes have been directly linked together, and have 
also been fully automated. 

The software application described in this paper has 
been verified for robustness using test data from earlier 
versions of the ACES simulationlmodeling system. Study 
data from the recently released version of ACES is in 
preparation, and once generated, will be processed and 
fully analyzed using this software application. 

Having shown that the data from a fast time modeling 
tool can be used to determine a complexity metric and 
then drive a neural network to estimate workload for a 
sector, the next step will be to try to estimate future 
workloads for a sector when new equipment or 
boundaries have been set. The hardest part of this work 
will be to devise a method for training the neural network 
for a future state that cannot be directly observed, and 
which is likely to entail more automation and new tools. 



Eighty percent of the ratings collected were used to 
train the neural network. Chattterji and Sridhar (2001) 
used the remaining fifth of the data to assess the trained 
neural network’s performance. After training, the 
network was able to classify 92.7% of the low workload 
ratings, 98% of the medium ratings and 86.7% of the high 
workload ratings. For the validation test, when all 16 
variables were used, the network correctly classified 
80.9% of the low workload samples, 38.1% of the 
medium workload samples, and 100% of the high 
workload samples. The network’s inability to adequately 
classify the medium workload sample was attributed to 
the low number of medium and high ratings in the 
samples’. 

An earlier version of Chatterji and Sridhars’ complexity 
algorithm (Chatterji & Sridhar, 1997), was compared to 
data from a human-in-the-loop (HITL) simulation by 
Baart (2001). The HITL simulation was focused on two 
sectors in the Memphis Center airspace and collected 
subjective workload ratings from both Radar and Data 
controllers. In general, calculations from Chatterji and 
Sridhars’ 1997 algorithm followed the trend of the mean 
subjective workload ratings by R-side and D-side 
controllers, although it tended to over predict the level of 
workload. This study demonstrates not only that a 
method using simulated data is possible, but also shows 
that a similar complexity algorithm is sensitive to changes 
in demand and task levels that are reported by controller 
participaits. 

In summary, Chatterji and Sridhar have a method by 
which to estimate controller subjective workload from 
objective data related to an airspace sector, via a 
compiexity rating and a trained neurai network. 

Static variables 
Aircraft identification 

Goals of the Modeling Systems Work 
As noted above, when exploring future ATC systems and 
tool development, it is important to look at how the 
suggested developments will impact controller workload. 
One NASA project that is looking at future ATC systems 
is the Virtual Airspace & Modeling Systems project 
(VAMS). VAMS is defining and investigating a national 
airspace system concept for the time frame of 2025 that, 
among other developments, will redefine airspace sectors 
and will increase the automation available to assist the 
controller. Both of these developments will impact 
controller workload, and one of the project research 
questions is the degree of this impact. 

A non-real time airspace simulation/ modeling system, 
ACES, was described by Meyn, Romer, Roth, Bjarke, & 
Hinton (2004). ACES has been developed to test the 
future VAMS concept against today’s baseline in terms of 
traffic flows, which will give a view of delays, 
efficiencies and system capacity. While agents represent 

’ Chatterji & Sridhar (2001) note that out of 2065 training 
samples, 1714 were low-workload, 306 were medium-workload, 
and only 45 were high-workload ratings. 

Dynamic variables 
Aircraft’s latitudinal 

all of the ATC functions, this model does not contain a 
direct one-to-one mapping of controller-to-agent positions 
and tasks. Thus, a measure of workload cannot be 
calculated directly from the ACES data output. 

However, ACES does output a large amount of data 
concerning each airspace sector, and the events within 
these, at frequent time-points during a run. The question 
the current research effort set out to answer was whether 
these data from ACES could be used to derive firstly a 
complexity rating for sectors and, secondly, an estimate of 
workload for these sectors using Chatterji and Sridhars’ 
(2001) neural network. If successhl, the next step will be 
to devise a method for retraining the neural network for 
the workload levels of the same sector in the future 
(approximately 2025) and estimate the workload incurred 
by that hture sector. 

’ number 
Sector name (initially 

Development of a Method fcr Moving from 
ACES Data to Workload Ratings 

The first step for the current research question was to 
determine whether ACES outputs the data required to 
calculate Chatterji and Sridhars’ (200 1) complexity 
variables. This was confirmed -the complexity variables 
require 14 types of data to be calculated from ten 
variables, which can all be derived from eight variables 
(six of which are dynamic) directly generated from the 
ACES system, these are listed in table 2. For the initial 
development, and to define the method by which to take 
data f o m  the ACES model and convert these to input for 
the neural network, only data from ZFW sector 48 were 
used. 

Tabie 2: Variables generated by the ACES system. 

position 
Aircraft’s longitudinal 

I 

ZFW 48) I position 
I Aircraft altitude 

Aircraft heading 
Aircraft gzundspee:! 
Simulation time 

ACES outputs raw data according to a complex 
structure unique to its own system, that is written to files 
using an XML format. Initial post-run processing and data 
analyses of ACES output are effected through a MySQL 
interface, which can then be linked, directly or indirectly, 
to a myriad of additional software packages, 
programming languages, and/or other interfaces. 

A software application was developed for the current 
investigation, which takes the workload measures and 
neural networks aIgorithms developed by Chatterji and 
Sridhar (2001) and customizes them so they can be used 
with ACES data as input. This appIication consists of a 



Tentative plans are to set up a simulation of a future 
,zirspace ttsing =they tools avai!ab!e at hTASA Ames 
Research Center and have controllers rate the level of 
workload. Through Ames' simulators, generated traffic 
can be made to look identical to live recorded traffic and 
so controller rathgs would be made and collected under 
the same conditions that the initial ratings were collected 
by Chatterji and Sridhar (2001). 

Acknowledgments 
The authors would like to thank Gano Chatterji for his 
assistance in resurrecting his neural network and his 
support of our work. 

Tiis research was compieted through funding from the 
VAMS project at NASA Ames Research Center. 

References 
Baart, D. (2001). Evaluation of Dynamic Densiiy (DO) 

Metrics using RAMS. DOT/FAA/CT-TN, Atlantic City, 
NJ: FAA William J. Hughes Technical Center, ACT-540. 

Chatterji, G. & Sridhar, B. (1997). Measures of 
Airspace Complexiiy, Preliminary Draji. Unpublished 
work, NASA Ames Research Center, Moffett Field, CA. 

Chatterji, G. & Syidhar, B. (1999). Neural network 
based Air Traffic Controller workload prediction. In the 

proceedings of the American Control Conference (pp. 
2629-26241, S z L  Diego, California: M C C ,  h i e  1999. 
Chatterji, G. & Sridhar, B. (2001). Measures for Air 

Traffic Controller workload prediction. Proceedings of 
the First AIAA Aircraft Technology, Integration, and 
Operations Forum, Los Angeles, CA. 

Hart, S. & Staveland, L. (1988). Development of the 
NASA-TLX (task load index): Results of empirical and 
theoretical research. in P. A. Hancock & N. Meshkati 
(Eds.), Human Mental Workload (pp. 239-250). 
Amsterdam: North Holland Press. 

Dynamic 
density: Measuring and predicting sector complexity. 
Proceedings of the 21'' Digital Avionics Systems 
Conference (pp 2.C.4-1 - 2.C.4-9). 

Lee, K., Kerns, K., Bone, R., & Nickelson, M. (2001). 
Development and validation of the controller 
acceptance rating scale (CARS): Results of empirical 
research. In the Proceedings of the 41h USMEurope Air 
Trafic Management R&D Seminar, Santa Fe, NM, 
December 3-7. 

Meyn, L. A., Romer, T. F., Roth, K., Bjarke, L. J., & 
Hinton, S. E. (2004). Preliminary assessment of future 
operational concepts using the Airspace Concept 
Evaluation System. 4th AIAA Modeling and Simulation 
Conference and Exhibit. ANA-2004-6508, Chicago, 
T l  

Kopardekar, P. and Magyarits, S. (2002). 




