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ABSTRACT 

Condensing heat exchangers are used in many space 
applications in the thermal and humidity control systems.  
In the International Space Station (ISS), humidity control 
is achieved by using a water cooled fin surface over 
which the moist air condenses, followed by “slurper 
bars” that take  in  both the condensate and air into a 
rotary separator and separates the water from air.   The 
use of a cooled porous substrate as the condensing 
surface provides an attractive alternative that combines 
both heat removal as well as liquid/gas separation into a 
single unit.  By selecting the pore sizes of the porous 
substrate a gravity independent operation may also be 
possible with this concept.  Condensation of vapor into 
and on the porous surface from the flowing air and the 
removal of condensate from the porous substrate are 
the critical processes involved in the proposed concept.  
This paper describes some preliminary results of the 
proposed condensate withdrawal process and discusses 
the on-going design and development work of a porous 
media based condensing heat exchanger at the NASA 
Glenn Research Center in collaboration with NASA 
Johnson Space Center.     

 
INTRODUCTION 

Condensing heat exchangers (CHX) have been used for 
thermal and humidity control in every manned space 
flight system launched by the United States [1]. The 
control of temperature and humidity within a spacecraft 
requires removal of both sensible heat generated by 
power consuming equipment and humans, and water 
vapor primarily generated by evaporation from humans.  
A CHX is designed to accomplish both of these 
functions. The current system for control and humidity 
removal for the space shuttle and International Space 

Station (ISS) utilizes a two- stage process. First, 
moisture is condensed onto the fins of a plate-fin heat 
exchanger which is then forced through the "slurper 
bars" by the air flow. The slurper bars take in a two-
phase mixture of air and water that is then separated by 
a rotary separator. A drawing of the key components of 
the ISS condensing heat exchanger is shown in Figure 1 
[2].  A brief description of this system can also be found 
in Ref. [3]. 

 

Figure 1. Illustration of the ISS Condensing Heat 
Exchanger. 

A more efficient design of a CHX would condense and 
remove the water directly from the air stream without the 
need for an additional water separator downstream. In 
this paper we describe one such design that utilizes 
capillary forces to collect and remove water and is 
capable of operating in varying gravitational conditions 
including microgravity, Lunar and Martian gravity.   The 
concept involves the use of a porous substrate with high 
thermal conductivity as the cold surface over which 
condensation occurs and liquid collects.  The condensed 
water is then removed by an embedded porous media 
connected to a suction device.  The thermal properties, 
the porosity and the wetting characteristics of the porous 
materials are judiciously chosen so that efficient 
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condensation is promoted and at the same time air 
penetration into the suction lines is avoided.     

Before this heat exchanger concept can be used to 
design a humidity/thermal control system in an actual 
space mission several critical issues concerning the 
physical processes need to be resolved.  The physical 
processes include heat and mass transfer rates, flow 
characteristics through unsaturated porous media in 
varying gravitational fields, and operational procedures 
including shut-down and start-up transients. A test bed 
that is capable of providing a conditioned moist air 
stream over a wide range of conditions anticipated in 
future space missions is being built at NASA Glenn 
Research Center. In this facility the test section along 
with the CHX can be rotated with respect to the gravity 
vector to simulate in a simple way the effects of varying 
gravity on the performance of the system.  The CHX and 
the test-bed are instrumented to acquire the relevant 
information during the experiments.   The data from 
these experiments are used to develop empirical 
correlations for heat and mass transfer and to validate 
theoretical and numerical modeling studies currently 
underway.  Space-based flight experiments are also 
planned for the future to evaluate the performance of the 
condensing heat exchanger in a long duration 
microgravity environment. 

 

It is anticipated that the porous media based condensing 
heat exchanger will provide a robust, lightweight passive 
condenser and liquid separator and it will be 
operationally simple. It applies to ISS and all advanced 
manned missions, a lunar habitat, Mars habitat and 
Mars transit vehicle for temperature and humidity control 
as well as separation of water from a mixture of water 
vapor and gases in in-situ resource utilization (ISRU) 
applications. 

CONDENSING HEAT EXCHANGER CONCEPT 

A schematic illustration of a specific design concept is 
shown in Figure 2.   The system consists of a porous 
substrate with embedded porous tubes placed at regular 
intervals and connected to a suction device via a header 
assembly.  The porous substrate also contains cooling 
copper tubes through which chilled water is circulated.   

Figure 2. Composite porous media condensing heat 
exchanger concept. 

Condensation of moist air occurs inside and over the 
porous substrate when it is cooled below the dew point. 

The porous plate absorbs the condensate by capillary 
action and the accumulated water within the porous 
plate is selectively removed by the embedded porous 
tubes.  Air penetration into the porous tubes is avoided 
by selecting tubes with a higher bubble pressure relative 
to the porous substrate.  The porous tubes must be 
operated under a suction-head below its bubble 
pressure.  However, care should be exercised to avoid 
bubble evolution from dissolved gases due to excessive 
lowering of pressure.  This concept is illustrated in Fig. 
3. 

  

Figure 3.  Porous substrate and condensate removal 
tubes with different pore sizes (not to scale). 

PHYSICAL PROCESSES 

The heat and mass transport phenomena of moisture 
condensation over cooled substrates and the 
hydrodynamics of air/water flow in porous media are 
reasonably well understood [4].  However, the unique 
geometrical configuration of the heat exchanger and the 
need for it to operate in varying gravity field including 
microgravity pose new challenges.  In the following we 
examine some of the key physical processes mainly to 
prove the feasibility of the proposed concept. 

CONDENSATION HEAT TRANSFER - The rate of 
condensation of vapor into and over the surface of the 
chilled porous substrate from the flowing moist air 
depends on the temperature gradient inside the porous 
media, flow through the saturated or unsaturated porous 
substrate, and the velocity, temperature and the dew 
point of the air stream. The rate of heat removal capacity 
per unit area, Q, of the porous plate for steady state 
condition may be estimated by 
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=                           (1) 

Where, Td and Tc are the dew point temperature and the 
centerline temperature of the plate, respectively. It is 
assumed that a thin condensate (water) film of 
thickness, δw is formed on the surface.  The thickness of 
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the porous plate is δ and ke and kw are the thermal 
conductivities of the substrate and the condensate.  The 
temperature profiles in the liquid film and in the porous 
substrate of thickness, δ are approximately linear. The 
heat flux, Q includes both the sensible heat and the heat 
of condensation.  Theoretical solutions of the conjugate 
heat and mass transfer with condensation including 
porous substrate are being performed and will be 
reported elsewhere [5].  This analysis shows that  
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where Peδw is the Peclet number based on δw and the 
velocity in the porous substrate, ω is the humidity ratio, 
and Jag and Jaw are the Jacob numbers in the air stream 
and the water film.  We postulate that if the porous plate 
remains unsaturated to a certain degree the formation of 
the liquid film may be avoided or its thickness can be 
greatly reduced due to imbibition of condensate into the 
porous plate.  This enhances the heat removal capacity 
and eliminates or reduces the liquid carry-over with the 
flowing air stream. 

 
CONDENSATE RETENTION IN THE POROUS 
SUBSTRATE – The capillary pores of a porous media, 
when hydrophilic, develops capillary suction pressure Pc 
given by  

θσ cos2
r

Pc =                                  (3) 

where,  σ   is the surface tension of the liquid to air and θ   
is the contact angle of water with the porous solid.  The 
contact angle depends on the hydrophilic characteristics 
of the pore.  A hydrophilic porous plate can effectively 
absorb and retain any liquid that comes in contact with 
its surface by its capillary pressure. The process would 
be equally effective in terrestrial and microgravity 
conditions.  However, the capillary pressure of the pores 
diminishes with increasing degree of saturation. 
Therefore, the porous substrate would lose its liquid 
trapping capacity with increasing degree of saturation. 

Once the saturation of the porous substrates reaches a 
certain level, water may be selectively extracted through 
the porous tubes by applying suction.  This would 
reduce the degree of saturation of the porous substrate 
and restore the capillary suction. 

SELECTIVE WATER REMOVAL BY SATURATED 
POROUS TUBES- For hydrophilic pores filled with water 
(wetting phase), a pressure equal to Pc is required to 
displace the water from the pores with air (non-wetting 
phase).  This pressure corresponds to the ‘bubble 
pressure’.  As long as the external pressure is below the 
bubble pressure, air cannot migrate through the pores 

while water is transmitted freely.  Consequently, the 
porous media demonstrates selective permeability to the 
wetting phase.  It is therefore possible to design a 
system for phase separation using a hydrophilic porous 
media. Because capillary pressure is not gravity 
dependent, a system so designed would be equally 
effective in terrestrial and microgravity conditions.  
Design of selective liquid separation by the embedded 
porous media is based on this concept. 

WATER EXTRACTION FROM UNSATURATED 
POROUS MEDIA-The flow in an unsaturated porous 
media may be given by the Richard equation: 
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where, w is the volumetric water content, hc is the 
suction potential, and K(w) is the unsaturated hydraulic 
conductivity which depends on, among other things, the 
saturation of the pores and capillary suction 
corresponding to the degree of saturation.  No universal 
law is available for correlating the unsaturated hydraulic 
conductivity with the volumetric water content and 
capillary suction.  However, several empirical 
correlations and models exist for natural stones and 
granular materials. As an example, a simple empirical 
correlation suggested by Brooks and Corey [6] is 
considered: 

( ) d
sat SKwK =                                   (5) 

Ksat is the effective hydraulic conductivity at fully 
saturated condition, S is the effective degree of 
saturation and d  is a constant dependent on the pore 
size distribution and typically varies in the range of 3 to 
4.  Brooks and Corey [6] suggested d=4 for rocks.  
Equation (5) shows that the unsaturated hydraulic 
conductivity reduces sharply as the degree of saturation 
reduces.  This trend is expected during the water 
removal process from the external porous media (plate).  
Furthermore, the microgravity effects on the variation of 
hydraulic conductivity in unsaturated porous media are 
not well understood [7].  The implication of this behavior 
is that the water removal flow-rate will fluctuate 
significantly with the saturation state of the plate.   

GROUND-BASED EXPERIMENTS 

A successful demonstration of selective liquid extraction 
by a composite porous system is critical to the proposed 
concept.  The following sections give an account of   
fabrication of a full-scale test module and some 
preliminary results of a bench scale setup. 

FULL-SCALE MODULE- We have fabricated flat-plate 
heat exchangers using sintered porous bronze and 
graphite as the substrate materials.  We have also 
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chosen porous ceramic tubes for the condensate 
withdrawal system. The graphite substrate (PG-45 
National Electrical Carbon Products) had a porosity of 
48% and an average pore size of 0.0023 inch.  This 
particular graphite is chosen to obtain a “bubble 
pressure” of around 1 psia.  The porous ceramic tubes 
had an average pore size of 6.7x10-5 inch to give a 
“bubble pressure” of approximately 14.7 psia.  A simple 
flat-plate configuration was chosen for the condensing 
substrate geometry so that experimental results can be 
compared against analytical models of the problem.   
Full-scale tests using these condensing heat exchangers 
are currently underway in a test-bed at the NASA GRC.  
A drawing of the heat exchanger assembled inside the 
test-section of the test-bed is shown in Figure 4. 

 

 

Figure 4.  Flat-plate graphite condensing heat exchanger 
shown installed in the test-section.  

BENCH SCALE TESTS-Besides the full-scale tests we 
have carried out a number of bench-top tests to verify 
the feasibility of the proposed heat exchanger concept.  
The results from these tests are described below.  An 
experimental setup was constructed with a graphite 
block as the external porous substrate and ceramic 
porous tubes as the internal water-retrieving unit.  The 
graphite block was 15 x 20 x 4.6 cm in dimension with 
three 1.08 cm diameter, 7.6 cm deep holes to 
accommodate the 1 cm diameter porous tubes (see, 
Fig.5).  The graphite bloc bubble pressure was about 0.7 
psi (assuming theta=0 deg), and the bubble pressure of 
the ceramic tubes was about 14.7 psi.  The low bubble 
pressure of the graphite block was chosen to minimize 
resistance of water flow under unsaturated conditions.  
The graphite block had very high hydraulic conductivity 
of 1.47 x10-2 cm/s compared to that of the porous tubes 
(7.56x10-7 cm/s).   

A schematic diagram of this experimental setup is 
shown in Figure 5. The range of suction pressure, ∆P 
was chosen between 3.5 and 7 psi.  The upper limit of 
∆P was selected to minimize the evolution of dissolved 
gases from the liquid phase.  The pressure was 

controlled by a proportional solenoid valve (Clippard 
Minimatics) and measured by a differential pressure 
transducer (Sensotec Model FDW Range 15psid).  The 
extraction of the liquid from the graphite block was 
initiated at a known degree of saturation.  The porous 
tubes primed to complete saturation were inserted into 
the graphite block and subjected to a desired suction 
pressure ∆P.  The suction pressure was applied with a 
Drummund vacuum pump.  Pressure and water outflow 
were recorded at different time intervals.   

 

 

 

 

 

 

 

Figure 5. Schematic illustration of the bench-top test 
apparatus. 

CERAMIC TUBE CHARACTERIZATION-The ceramic 
tubes are selectively permeable to water only under fully 
saturated conditions.  In practice, however, complete 
saturation is difficult to attain. It was therefore necessary 
to evaluate if the porous tubes could function as a 
selectively permeable medium under moderate 
saturation, which involved immersion in water and 
pumping under a small suction pressure (about 3 psi).   

The results of this experiment are shown in Figure 6. 
The test involves flow rate investigation in a ceramic 
tube at different submergence levels.  The ceramic tube 
was first saturated by immersion in water and suction 
(3.5 psi) for about 10 minutes.  It was then subjected to 
∆P=3.5 psi suction while the submergence in water was 
gradually reduced from 90% to 0%.  The tube selectively 
extracted water even though a part was exposed to air. 
No significant gas bubbles were observed at any time 
during the experiment.  The results indicate that the 
porous tube could be saturated to a satisfactory level 
with very little effort.  The calculated flow rate in the tube 
is also shown for comparison. 

It should be kept in mind that as the pressure is reduced 
from the liquid-gas interface, the partial pressure of the 
dissolved gases in the water reduces. This would 
release dissolved gases from the aqueous phase 
producing bubbles. Henry’s Law gives the equilibrium 
between the concentration of a gas Ca in the aqueous 
phase and its partial pressure Pg in the gas phase:  

gHa PkC =                                     (6) 

moist air flow 
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Where kH is the Henry’s constant.  The values of kH  for 
predominant gases in air, oxygen and nitrogen, are 
1.3E-3 M/atm and  6.5E-4 M/atm respectively.  If the 
pressure is reduced from 14.7 psi to 11.2 psi (∆P=3.5 
psi), about 24% of the gases will come out of the 
solution according to equation (6).  Assuming the 
volume of a gas as 22.4 L/mole at STP, the total volume 
of expelled gas would be about 5.5 cc per liter of water.  
In the experimental setup, the volume of water subjected 
to the 11.2 psi pressure was about 100 cc.  This 
translates into about 0.55 cc of degassing during the 
suction. 
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Figure 6. Selective removal of water by a ceramic tube 
submerged in water. 

POROUS PLATE CHARACTERIZATION-The extraction 
of water from a porous media under unsaturated 
condition is dependent on the pore-size distribution, pore 
tortuosity, and the capillary pressure of the pores at 
various saturation conditions. The pressure-saturation 
curve of the graphite block material is shown in Figure 7. 
The experimental bubble entry point is about 0.6 psi, 
which is in good agreement with the theoretical value. 
As the pressure is increased, more and more pores are 
emptied and the degree of saturation reduces.  This 
correlation has an important significance in choosing the 
operating suction pressure for the condensate 
withdrawal unit.  For example, if the liquid withdrawal 
pressure is 2 psi, the saturation of the plate cannot be 
reduced below about 58%. Therefore, the suction should 
be discontinued at that point because no yield will occur.  
This type of plot could allow the designers to predict the 
volume of water that could be extracted from the 
condensing porous substrate. 

 

SELECTIVE WATER EXTRACTION VERIFICATION-
Experimental results of water extraction from the 
unsaturated graphite block under 3.5 and 7 psi suction 
pressures are shown in Figure 8.  There was no influx of 
water in the graphite during the experiment.  The initial 
saturation was about 90%.  As water was removed, the 
saturation reduced and this resulted in a drastic 
reduction in the flow rate.  For the 7 psi suction 

pressure, the flow rate reduced from 3 ml/min to about 1 
ml/min for a saturation reduction of about 5%.  When the 
experiment was conducted at 3.5 psi, the flow rate 
reduced from 1.5 ml/min to 0.5 ml/min for the same 
reduction in saturation.  No bubbles were observed at 
3.5 psi, while some very tiny bubbles were observed in 
the suction tubes at 7.5 psi. However, this was not 
unexpected because, according to equation (6),   
pressure reduction by 7.5 psi would remove a 
considerable amount of the dissolved gases from the 
aqueous phase.  
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Figure 7. Pressure-saturation curve PG-45 graphite. 

For a condensation rate of 1 lb/day, the required 
removal rate would be about 0.31 ml/min, which is less 
than the reduced flow rate at ∆P=3.5 psi, horizontal. It 
appears that the proposed system could be designed to 
selectively remove water at a higher rate than the rate of 
moisture condensation on the porous substrate. 

Flow rates at two different graphite block orientations 
with respect to gravity are also shown in Figure 8.  
Comparison of the vertical and horizontal flow rates at 
3.5 psi shows reduced flow in the graphite block for the 
vertical orientation.  The fluid extraction in the vertical 
direction was against the gravity.  This result gives some 
indication about the possible effect of gravity on the 
performance of the proposed CHX.  The variation of flow 
rates between these two orientations is likely dependant 
on the system geometry and is currently under 
investigation.  The extent of dewatering of the graphite 
block that can be attained under a given suction head is 
also under study. 

 
OPERATIONAL PROCEDURE - Based on the above 
discussions an operational procedure for the heat 
exchanger can be developed.  The operation can start 
with the condensing substrate fully saturated or dry, but 
the condensate withdrawal tube must be primed to 
saturation. Assuming a porosity value of n and a 
substrate volume V, the amount of liquid the substrate 
can retain is nV. For a volume condensation rate of C, 
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the time for saturation will be nV/C when starting from an 
initially dry state.  For example, the time required for an 
8 in X 10 in plate with 1 in thickness and 40 % porosity 
to reach 85% saturation will be about 24 hours for a 
condensation rate of 1 lb/day. At some high degree of 
saturation, the porous tubes will start extracting the 
water from the plate whose flow-rate will be a function of 
the saturation. Assuming that the hydraulic conductivity 
expressed as a function of the saturation can account for 
the diminishing flow-rate at reduced saturation, the 
system will come to a steady-state condition when the 
flow-rate corresponds to the rate of condensation.  At 
this point the pump may be stopped to saturate the plate 
since the flow-rate becomes more efficient at higher 
saturation as seen from Fig.8. 
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Figure 8. Selective extraction of water from an 
unsaturated graphite block at horizontal and vertical 
orientations. 

FUTURE WORK 

There are still a number of issues that need to be 
resolved before the CHX can be considered fully 
operational.  One of the important unresolved issues is 
the ultimate geometrical configuration of the heat 
transfer surface.  The current flat-plate geometry, though 
convenient for testing and interpretation of the test 
results using simplified theoretical models, may not be 
optimal in terms of efficient heat transfer.  Other major 
issues are the performance of the CHX in a microgravity 
environment, the control of microbial growth, and long 
term maintainability of porous surface wettability. 

CONCLUSION 

A concept for the design of a condensing heat 
exchanger that is capable of operating under varying 
gravitational environments including microgravity has 
been proposed.  The concept uses a composite porous 
media with two different average pore sizes and 
consequently two different bubble pressures.  The 
surface over which condensation occurs has a larger 
pore size and collects the condensate using capillarity, 
and the tubes inserted into the substrate has a smaller 
pore size and selectively withdraws the condensate.  
Preliminary bench-top experiments have demonstrated 
the feasibility of this concept.  Further work is currently 
underway to optimize the geometrical design of the 
condensing surface as well as demonstrating the 
function of this heat exchanger in a long duration 
microgravity environment. 

REFERENCES 

1. P. Eckart, “Spaceflight Life Support and 
Biospherics,” Kulwer/Microcosm, 1996. 

2. T. A. Ozbolt, “US Lab Architecture Control 
Document, Volume 7: Temperature and Humidity 
Control, Revision New, D683-14719-1-7,” Boeing 
Defense and Space Group, Missile & Space 
Division, Huntsville, Alabama, December 20, 1996. 

3. E. K. Ungar and F. A. Ouellette, “Design of a Shuttle 
Air and Water Prefilter for Reduced Gravity 
Operation,” 22nd ICES, Seattle, WA, July 13-16, 
1992, SAE 921161. 

4. M. Kaviany, Principles of Heat Transfer in Porous 
Media, Springer-Verlag, 1991. 

5. R. Balasubramaiam, V. Nayagam, L. Khan, and M. 
M. Hasan, “Analysis of heat and mass transfer 
during condensation over a porous substrate,” 
(submitted) Interdisciplinary Transport Phenomena 
in Microgravity and Space Sciences IV Conference, 
Tomar, Portugal, August 2005. 

6. R. H. Brooks and A. T. Corey, “Properties of porous 
media affecting fluid flow,” J. Irrig. Drain. Div., Am. 
Soc. Civil Eng., Vol. 92, 1966, pp. 61-88. 

7. S. B. Jones, and D. Or, “Microgravity effects on 
water flow and distribution in unsaturated porous 
media: Analyses of flight experiment,” Water 
Resources Research, Vol. 35, No. 4, 1999, pp. 929-
942. 

 

 

NASA/TM—2006-214130 6



This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

Available electronically at http://gltrs.grc.nasa.gov

May 2006

NASA TM—2006-214130

E–15464

WBS–22–101–13–50

12

Conceptual Design of a Condensing Heat Exchanger for Space Systems Using
Porous Media

Mohammad M. Hasan, Lutful I. Khan, Vedha Nayagam,
and Ramaswamy Balasubramaniam

Condensing heat exchangers; Porous materials; Capillary flow

Unclassified -Unlimited
Subject Category: 29

Prepared for the 35th International Conference on Environmental Systems (ICES) cosponsored by SAE, AIAA, AIChE,
ASME, and the International ICES Committee, Rome, Italy, July 11–14, 2005. Mohammad M. Hasan, NASA Glenn
Research Center, Lutful I. Khan, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115; Vedha Nayagam
and Ramaswamy Baulasubramaniam, National Center for Space Exploration Research, 21000 Brookpark Road,
Cleveland, Ohio 44135. Responsible person Mohammad M. Hasan, organization code RUF, 216–433–7494.

Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the
International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist
air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the
water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that
combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous
substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the
porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes
involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal
process and discusses the on-going design and development work of a porous media based condensing heat exchanger at
the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




