
Source of Acquisition
NASA Ames Research Center

A Structural Characterization of Temporal
Dynamic Controllability

Paul Morris

NASA Ames Research Center
Moffett Field, CA 94035, U.S.A.
pmorris@email.arc.nasa.gov

Abstract. An important issue for temporal planners is the ability to
handle temporal uncertainty. Recent papers have addressed the question
of how to tell whether a temporal network is Dynamically Controllable,
Le., whether the temporal requirements are feasible in the light of uncer-
tain durations of some processes. Previous work has presented an O (N 5)
algorithm for testing this property. Here, we introduce a new analysis of
temporal'cycles that leads to an O (N 4) algorithm.

1 Introduction

Many Constraint-Based Planning systems (e.g. [l]) use Simple Temporal Net-
work's (STNs) to test the consistency of partial plans encountered during the
search process. These systems produce flexible plans where every solution to the
final Simple Temporal Network provides an acceptable schedule. The flexibility
is useful because it provides scope to respond to unanticipated contingencies
during execution, for example, where some activity takes longer than expected.
However, since the uncertainty is not modelled, there is no guarantee that the
flexibility will be sufficient to manage a particular contingency.

Many applications, however, involve a specific type of temporal uncertainty
where the duration of certain processes or the timing of exogenous events is not
under the control of the agent using the plan. In these cases, the values for the
variables that are under the agent's control may need to be chosen so that they do
not constrain uncontrollable events whose outcomes are still in the future. This
is the controllability problem. By formalizing this notion of temporal uncertainty,
it is possible to provide guarantees about the sufficiency of the flexibility.

In [2], several notions of controllability are defined, including Dynamic Con-
trollability (DC). Roughly speaking, a network is dynamically controllable if
there is a strategy for satisfjmg the constraints that depends only on knowing
the outcomes of past uncontrollable events,

In [3] an algorithm is presented that determines DC and runs in polyno-
mial time under the assumption that the maximum size of links in the STN is
bounded. Thus, the algorithm is pseudo-polynomial like arc-consistency, rather
than being a strongly polynomial algorithm such as, for example, the Bellman-
Ford algorithm /4] for determining consistency of a distance graph. What makes

https://ntrs.nasa.gov/search.jsp?R=20060021467 2019-08-29T21:59:24+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10517581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the latter algorithm strongly polynomial is the Bellman-Ford cutofl, which re-
stricts the number of iterations based on the number of nodes in the network.
The first strongly polynomial algorithm for DC is presented in [5]. This intro-
duces an algorithm with an O(N3) inner-loop and an outer loop with an O(y2)
cutoff. Thus, the entire algorithm runs in O (N 5) time. The paper also simplifies
the mathematical formulation of the reduction rules.

In this paper, we further simplify the mathematical formulation and intro-
duce a structural characterization of DC in terms of the absence of a particular
type of negative cycle. This is analogous to the result characterizing consistency
of ordinary STNs in terms of the absence of negative cycles in the distance graph.
This leads to a reformulated algorithm for DC with an O (N 3) inner-loop and an
O(N) cutoff for the outer loop. Thus, the entire algorithm runs in O (N 4) time.

2 Background

This background section defines the types of controllability, and outlines the
previous DC algorithms, essentially following [3,5].

A Simple Temporal Network (STN) [6] is a graph in which the edges are
annotated with upper and lower numerical bounds. The nodes in the graph rep-
resent temporal events or timepoints, while the edges correspond to constraints
on the durations between the events. Each STN is associated with a distance
graph derived from the upper and lou7er bound constraints. An STN is consis-
tent if and only if the distance graph does not contain a negative cycle. This
can be determined by a single-source shortest path propagation such as in the
Bellman-Ford algorithm [4] (faster than Floyd-Warshall for sparse graphs, which
are common in practical problems). To avoid coinfusion with edges in the distance
graph, we will refer to edges in the STN as links.

A Simple Temporal Network With Uncertainty (STNU) is similar to an STN
except the links are divided into two classes, requirement links and contingent
links. Requirement links are temporal constraints that the agent must satisfy,
like the links in an ordinary STN. Contingent links may be thought of as repre-
senting causal processes of uncertain duration, or periods from a reference time
to exogenous events; their finish timepoints, called contingent timepoints, are
controlled by Nature, subject to the limits imposed by the bounds on the con-
tingent links. All other timepoints, called executable timepoints, are controlled
by the agent, whose goal is to satisfjr the bounds on the requirement links. We
assume the durations of contingent links vary independently, so a control proce-
dure must consider every combination of such durations. Each contingent link is
required to have positive (finite) upper and lower bounds, with the lower bound
strictly less than the upper. Without loss of generality, we assume contingent
links do not share finish points. (If desired, they can be constrained to simul-
taneity by [0, 01 requirement links. It is also known that networks with coiiicident
contingent finishing points cannot be DC.)

Choosing one of the allowed durations for each contingent link may be
thought of as reducing the STNU to an ordinary STN. Thus, an STNU deter-

mines a family of STNs corresponding to the different allowed durations; these
are called projections of the STNU.

Given an STNU with N as the set of nodes, a schedule T is a mapping

T : N + %

where T (x) is called the t ime of timepoint J;. A schedule is consistent if it satisfies
all the link constraints. The prehistory of a timepoint x with respect to a schedule
T , denoted by T{< x } , specifies the durations of all contingent links that finish
prior to x. _ _ _ _ _ _

An execution strategy S is a mapping

S : P + T

where P is the set of projections and 7 is the set of schedules. An execution
strategy S is viable if S (p) , henceforth written Sp, is consistent with p for each
projection p .

We are now ready to define the various types of controllability, following [7].
An STNU is Weakly Controllable if there is a viable execution strategy. This

An STNU is Strongly Controllable if there is a viable execution strategy S
is equivalent to saying that every projection is consistent.

such that
Spl(X> = S p 2 (.I

for each executable timepoint x and projections p l and p2. In Strong Controlla-
bility, a “conformant” strategy (i.e., a fixed assignment of times to the executable
timepoints) works for all the projections.

An STNU is Dynamically Controllable if there is a viable execution strategy
S such that

S p l (4 x } = SP2{< x} =+ Sp&) = Sp2(.)

for each executable timepoint x and projections p l and p2. Thus, a Dynamic
execution strategy assigns a time to each executable timepoint that may depend
on the outcomes of contingent links in the past, but not on those in the fu-
ture (or present). This corresponds to requiring that only information available
from observation may be used in determining the schedule. We will use dynamic
strategy in the following for a (viable) Dynamic execution strategy.

It is easy to see from the definitions that Strong Controllability implies Dy-
namic Controllability, which in turn implies Weak Controllability. In this paper,
we are primarily concerned with Dynamic Controllability.

2.1 Previous Algorithms

It was shown in [3] that determining Dynamic ControIIability is tractable, and
an algorithm was presented that ran in pseudo-polynomial time. We will refer
to this as the classic algorithm.

The classic algorithm involves repeated checking of a special consistency
property called pseudo-controllability. An STNU is pseudo-controllable if it is

consistent in the STN sense and none of the contingent links are squeezed, where
a contingent link is squeezed if the other constraints imply a strictly tighter lower
bound or upper bound for the link. The pseudo-controllability property is tested
by computing the AllPairs Shortest Path graph using Johnson's Algorithm [4].
If the network passes the test, the algorithm then analyzes triangles of links and
possibly tightens some constraints in a way that has been shown not to change
the status of the network as DC or non-DC, but makes explicit all limitations
to the execution strategies due to the presence of contingent links.

Some of the tightenings involved a novel temporal constraint called a wait.
Given a contingent link AB and another link AC, the <B,t> annotation cm
AC indicates that execution of the timepoint C is not allowed to proceed until
after either B has occurred or t units of time have elapsed since A occurred.
Thus, a wait is a ternary constraint involving A, B, and C. It may be viewed as
a lower bound o f t on AC that is interruptible by B. Note that the annotation
resembles a binary constraint on AC.

In order to describe the tightenings, the notation A 3 B (or B @ A)
indicates a contingent link with bounds [x,y] between A and B. We use the

similar notation of A --L B (or B
We can summarize the tightenings, called reductions, used in the classic al-

gorithm as follows.

[x Yl A) for ordinary links.

(Precedes Reduction) If u 2 0, y' = y - v , x' = x - u,

A + B - C adds - c k>YI b,Vl A [Y',X'I

(Unordered Reduction) If u < 0, v 2 0, y' = y - v,
A r . , d B p C adds A <By>

(Simple Regression) If y' = y - v,
<B, y'> adds A - D A C e D

(Contingent Regression) If y 2 0, B # C,

A C e D adds A D <B Y> Iu ,4 <B,Y- U>

("Unconditional" Reduction) If u 5 x,
B-A Ix>Y1 <B&u> C adds A [XI C

(General Reduction) If u > x,
B-A [x,Yl <B&u> c ad& A [=I C

The tightenings involve new links that are added when the given pattern is
satisfied unless tighter links already exist. The extensive motivation for these
in [3] cannot be repeated here due to lack of space. However, some examples
may help to give the basic idea.

11JI P 11 Examplel: A ===+ B 4- C. Here we must schedule C exactly one time
unit before B without knowing when B will occur. This requirement cannot be
achieved in practical terms, although the network is initially consistent in the
STN sense. The Precedes Reduction makes the inconsistency explicit. Contrast
this with A ==3 B --L C, where B can be observed before executing C, so no
addition is needed.

Example2: A * B - C. Note that the CB constraint implies C precedes
B. This means the agent must decide on a timing for C before information about
the timing of B is available, and must do it in a way that the CB constraint
is satisfied no matter when B occurs. The only way to accomplish this given
our ignorance of B is to constrain C relative to A in such a way that the CB
constraint becomes redundant. The Precedes Reduction does this by constraining
C to happen simultaneously with A.

Example3: A ==+ B - C. Here we cannot safely execute C before B
until time 2 after A (otherwise if B occurs at 3, the 1-1,1] constraint would be
violated). After that we can execute C prior to B if we wish, because we know
B will finish within one more time unit. Thus, we place a <B,2> constraint
on AC.

11 21 I1 11

PA P 21

~ , 3 1 [-I 11

2.2 Labelled Distance Graph and Cutoff Algorithm

We now review the developments in [5], which re-expresses the reductions in a
more mathematically concise form.

An ordinary STN has an alternative representation as a distance graph, in
which a link A [x,yl B is replaced by two edges A A B and A B, where the
y and -x annotations are called weights. Edges with a weight of 00 are omitted.
The distance graph may be viewed as an STN in which there are only upper
bounds. This allows shortest path methods to be used to determine consistency,
since an STN is consistent if and onIy if the distance graph does not contain a
cycle with negative total distance 161.

Similarly, there is an analogous alternative representation for an STNU called
the labelled dzstance graph [5]. This is actually a multigraph (which allows multi-
ple edges between two nodes), but we refer to it as a graph for simplicity. In the
labelled distance graph, each requirement link A B is replaced by two edges
A 5 B and A B, just as in an STN. For a contingent link A 3 B, we
have the same two edges A 4 B and A 2 B, but we also have two additional
edges of the form A % B and A ’Ly B. These are called labelled edges because
of the additional “b:” and “B:” annotations indicating the contingent timepoint
B with which they are associated. Note especially the reversal in the roles of x
and y in the labelled edges. We refer to A B ? y B and A 3 B as upper-case and
lower-case edges, respectively. Observe that the upper-case Iabelled weight B:-y
gives the value the edge would have in a projection where the contingent link

takes on its maximum value, whereas the lower-case labelled weight corresponds
to the contingent link minimum value.

C wait constraint in the labelled
distance graph. This corresponds to a single edge A 'Ct C. Note the analogy to
a lower bound. This weight is consistent with the lower bound that would occur
in a projection where the contingent link has its maximum value.

1% can now represent the tightenings in terms of the labelled distance graph.
The first four categories of tightening from the classic algorithm are replaced by
what is essentially a single reduction with -different flavors. These are:

<B, t> There is also a representation for a A -

(UPPER-CASE REDUCTION)
B:(xfy) A . B : " C a D adds A - D

(LOWER-CASE REDUCTION) If 2 I O ,
A & C Z D adds A"+YD

(CROSS-CASE REDUCTION) If z 5 0, B # C,
A E C Z D adds A c D B:(x+y)

(NO-CASE REDUCTION)
A L C ' Y D adds A ' + Y D

In place of the Unconditional and General Reductions, we will have a single
reduction:

(LABEL REMOVAL REDUCTION) If z L -2,
B , b : x A e C adds A."C

It is shown in 151 that the new reductions are sanctioned by the old ones. For
example, UPPER- CASE REDUCTION follows from a combination of Unordered
Reduction and Simple Regression.

1Ve emphasize that the CROSS-CASE REDUCTION does not apply when the
upper and lower labels come from the same contingent link. (This ease violates
the B # C precondition.) This restriction is crucial; otherwise, the upper-case
and lower-case edges of any contingent link could self-interact, immediately pro-
ducing an inconsistency.

With this reformulation, the "Case" (first four) reductions can all be seen
as forms of composition of edges, with the labels being used to modulate when
those compositions are allowed to occur. In light of this, the reduced distance of a
path in the labelled distance graph is defined to be the sum of edge weights in the
path, ignoring any labels. Thus, the reductions preserve the reduced distance.

The approach in [5] also modifies the test that is applied before each iter-
ation. Instead of testing for the complex property of pseudo-controllability, it
checks for ordinary consistency of the AllMax projection, which is defined to
be the projection where all the contingent links take on their maximum values.

(Similarly, the AllMin projection is where all the contingent links take on their
minimum values.) Observe that the distance graph of the AllMax projection can
be obtained from the labelled distance graph by (1) deleting all lower-case edges,
and (2) removing the labels from all upper-case edges.

Suppose we now take the classic algorithm for Dynamic Controllability, and
modify it by replacing the old reductions/regressions with the new, and replacing
the pseudo-controllability test with the AllMax consistency test. This modified
algorithm correctly determines DC, and furthermore, if the network is DC, qui-
escence is reached after at most O(N2) iterations of the outer loop 151. Thus,
the-algorithm can be-halted at this clitoff bound. W e will refer to this as the
Quadratic-Cutoff algorithm.

The algorithm can be summarized as follows.

Boolean procedure determineDC0
loop from I to Cutoff Bound do
if AllMax projection inconsistent

Perform applicable Reduct ions ;
if no reductions were applicable

return false ;

return true;
end loop;

return false;
end procedure

The overall algorithm runs in O (N 5) time. (A more precise O(N3K2) bound
is given [5] in terms of K, the number of contingent links. Note that K 5 N
since the end-points of contingent links are restricted to be distinct.)

2.3 Implicit Precondition

We point out that the Precedes reduction should have an additional precondition,
B # C, but this is not explicitly stated in (51. (It should be noted that the results
there axe not affected by this issue.) The original derivation [3] of the Precedes
reduction is in terms of a triangular network, which assumes three distinct nodes.
We further point out that this B # C precondition is essentiaI. It can easily be
seen, for example, that the network A + B --h B has a dynamic strategy (just
execute A at time 0), and hence is DC. However, without the precondition, an
application of the Precedes reduction would produce an inconsistency. Similarly,
in the LOWER-CASE reduction (which is derived from the Precedes reduction),
there should be an additional A # C precondition.

Instead of adding this precondition explicitly, we will make a different mod-
ification to the Dynamic Controllability formulation that makes it unnecessary.
Recall that a dynamic strategy may depend on the past, but' not on the future
or present. We change this so that it may depend on the past or present. This
essentially assumes that observations can be acted upon instantaneously instead
of requiring an infinitesimal amount of time. This change is NOT essential to

12 41 [o 01

the results in this paper; they could be derived without it. However, the math-
ematics works out more cleanly with the change. It is also more consistent with
the approach used in the dispatchability [8] work.

The effect of this change is that the LOWER-CASE and CROSS-CASE reduc-
tions must be modified to read as follows (note the x 5 0 is changed to x < 0):

(LOWER-CASE REDUCTION) If x < 0,
A."C.c'YD adds AX'YD

(GROSS-CASE REDUCTIOH) If x < 0, B # C,
E%: (.CY) A E C Z D adds A c- D

We will assume in the remainder of this paper that the LOWER-CASE and
CROSS-CASE reductions have been modified in this way. The UPPER-CASE and
NO-CASE reductions do not require modification.

3 Structural Cbaracterizat ion

We now proceed to introduce a new analysis of Dynamic Controllability that
leads to a faster algorithm.

3.1 Normal Form STNU

In this subsection, we introduce a new way of simplifying the STNU formulation.
First, we recall that in the definition of an STNU [3], the bounds on a contingent
link A w B are required to satisfy 0 < x < y < 00. An analysis of the proof of
correctness in [3] shows that the strict 0 < x inequality was only needed because
of a weakness of the pseudo-controllability test in detecting a deadlock involving
a cycle of waits, and the resulting use of the General Reduction for this purpose.
In [5], the pseudo-controllability test is replaced by a test of the consistency of
the AllMax projection. This can detect a cycle of waits even when contingent
links are allowed to have lower bounds of zero. Thus, we can relax the contingent
link bound requirement to 0 _< x < y < 03.

This provides an opportunity to recognize that we can restrict our attention
to a simpler subclass of STNUs without loss of generality. We will say an STNU is
in normal form if the lower bound of every contingent link is zero. Now consider
a general STNU r and any contingent link A["'ylB in r where x > 0. Suppose
we create a new STNU r' where the A u B contingent link is replaced by
A C B, where C is a new controllable timepoint. It is not difficult
to see that any dynamic strategy for r can be easily mapped into a dynamic
strategy for r' (just execute C at 2 units after A) and vice versa (just drop C).
Thus, r is DC if and only if r' is DC. The replacement process can be repeated
until every contingent link with a noli-zero lower-bound has been eliminated.
Thus, for any STNU, there is a normal form STNU that is equivalent in terms

lo Y-XI

of the existence of a dynamic strategy. We will assume in our subsequent analysis
that the STNUs are in normal form.

Note that the LABEL REMOVAL reduction assumes a simpler form in a normal
form STNU as follows. (This facilitates our subsequent proofs.)

(LABEL REMOVAL) If z 2 0,
A* C adds A * C

It is also worth commenting that with the normal form assumption, the c:z
notation could be - "recycled7' to mean a c:O edge followed by a path of ordi-
nary edges of length 2. This would allow the LOWER-CASE and CROSS-CASE
reductions to be rewritten as follows.

(LOWER-CASE COMPOSITION)
A . " C Z D adds A c D c:(x+y)

(LOWER LABEL REMOVAL) If z < 0,
A C adds A."C

(CROSS-CASE COMPOSITION) If B # C,
B:(x+y) A c Dif (z+y) < O

A c:(x+y) c D if (x+y) 2 0 -4.B:" C z D adds

We will not pursue this notation change here, but noting the underlying
symmetry between lower-case and upper-case labels (modulo a sign change) will
be helpful for understanding the section on execution later in the paper.

3.2 Path Transformations

An ordinary STN is consistent if and only if its distance graph does not contain
a negative cycle. I t is tempting to suppose that Dynamic Controllability might
be characterized by the absence of cycles of negative reduced distance in the
labelled distance graph. However, this is not true in general. For example, the
STNU consisting of the single contingent link A A B is DC, but its distance
graph contains the cycle A 3 B A, which has negative reduced distance.
Nevertheless, as we will see, there is indeed a characterization of DG in terms
of negative cycles, but it involves a subclass of such cycles. In order to describe
this, we require additional concepts involving a notion of path transformation.

Consider a path P that contains a subpath Q between two points A and
B and suppose Q matches the left side of a reduction. Note that applying the
reduction to Q yields a new edge e between A to B. Now consider the path P'
obtained from P by replacing Q by e. For convenience, we will abuse language
slightly and say P is transformed into P' by the reduction. (The original path
P is of course still in the network.) Note that P' has the same reduced distance
as P since the reductions preserve reduced distance.

lo 4

Armed with this linguistic device, we can define some useful concepts of
reducibility of paths. First, a path is reducible if it can be transformed into a
single edge by a sequence of reductions.

However, a slightly weaker property is more useful for characterizing Dynamic
Controllability. Recall that tests of the consistency of the AllMax projection are
used to filter noli-DC networks in the Quadratic Cutoff algorithm. Note also
that the AllMax projection includes edge weights derived from both ordinary
edges and upper-case edges, but not from lower-case edges. We may view the
reductions as gradually tightening the network by transforming reduced distance
ill- the- labelled distance graph into ordinary distance in the AllMax projection;
The significant events in this process are the transformations of paths with lower-
case edges into paths without lower-case edges. This leads us to define a path
as being semi-reducible if it can be transformed into a path without lower-case
edges by a sequence of reductions. This gives rise to the following theorem. (To
simplify its statement, we will informally say an STNU has a negative cycle if its
labelled distance graph contains a cyclic path with negative reduced distance.)

Theorem 1. An STNU is Dynamically Controllable if and only af it does not
have a semi-reducible negative cycle.

Proof If an STNU is not DC, then there is some sequence of reductions that
produces a negative cycle in the AllMax projection, i.e., a lower-case-free neg-
ative cycle in the labelled distance graph. If we now unwind that sequence of
reductions (applying the reverse transformations to the negative cycle), we arrive
at a preimage or precursor cycle in the original labelled distance graph. Since
the reductions preserve reduced distance, this is also negative, and cIearIy it is
semi-reducible.

Conversely, if there is a semi-reducible negative cycle, then clearly there is a
sequence of reductions that produces an inconsistency in the AllMax projection.
Thus, the STNU is not DC. 0

Observe that the cycle A 2 B B:-4 A in our earlier example is not semi-
reducible since no reductions are applicable. (The CROSS-CASE reduction does
not apply since the b and B labels are from the same contingent link.)

We now look for ways of identifying semi-reducible paths. The following
notation will be useful. Consider a specific path P in the labelled distance
graph of an STNU. We will write e < e' in P if e is an earlier edge than e' in
P . If A and B are nodes in the path, we will write Dp(A,B) for the reduced
distance from A to B in P . We denote the start and end nodes of an edge e by
start(e) and end(e), respectiveIy.

Now suppose e is a lower-case edge in P . Let e' be some other edge such that
e < e' in P . We will say'e' is a drop edge for e in P if Dp(end(e), end(e')) < 0.
We further say e' is a moat edge for e in P if it is a drop edge and there is no
other drop edge e'' such that e" < e' in P). (Thus, a moat edge is a closest drop
edge. The metaphor is of a moat in front of a castle.) Note that a lower-case edge
can never be a moat edge since it is non-negative. We will also call the subpath
of P from end(e) to end(e') the extension of e in P .

The extension subpath turns out to have a very useful property. We will say
a path P has the pre.fix/postfix property if every nonempty proper prefix of P
has non-negative reduced distance and every nonempty proper postfix of P has
negative reduced distance. We will also refer to such a path as a pre.fix/postjix
path. Observe that the extension subpath of a lower-case edge always has the
prefix/postfix property. (Otherwise there would be a closer drop edge than the
moat edge.) The following lemma will be useful.

Lemma 1 (Nesting Lemma). If two prefix/postfix paths have a non-empty
intersection, -then one of the paths is contained in the-other. ..

Proof. The intersection subpath is a postfix of one path and a prefix of the other.
It cannot be proper in both cases; otherwise it would be both non-negative and
negative, which is a contradiction. Thus, it must be equal to one of the paths,

0
The significance of an extension subpath, as we will see, is that it can even-

tuaIly be used to “reduce away” the lower-case edge from the path. However,
there is an exceptional case where we will show this cannot occur. Suppose e is
a lower-case edge in a path and e’ is a moat edge for e. We will say e‘ is unusable
if e’ and e come from the same contingent link. This prepares the way for the
following fundamental theorem.

Theorem 2. A path P is semi-reducible if and only if every lower-case edge
in P has a usable moat edge in Q .

Proof. First, suppose P is semi-reducible. Let e be any lower-case edge in P .
Then there must be some sequence of transformations on P that eliminates e,
i.e., e must eventually participate in a lower-case or cross-case reduction with
some negative edge e’ that is derived by a sequence of transformations on P .
If we unwind this sequence, we can identify a precursor subpath .& of P
that will eventually be transformed to e‘. Let e” be the final edge of Q . Since
the reductions preserve reduced distance, it follows that Dp(end(e) , end(e”)) =
DF(end(e),end(e’)) < 0. Thus, e” is a drop edge for e and hence e must have a
moat edge e”’.

Next, suppose the moat edge is not usable, i.e., e’” is the upper-case edge
that comes from the same contingent link as e. Note that every postfix of the
extension (proper or non-proper) of e is negative. It is not hard to see that this
rules out any “clearing” of the upper-case label from Q via the label removal
reduction. This implies e’ will also have that label. But this prevents application
of the cross-case reduction to eliminate e, which is a contradiction. It follows
that every lower-case edge in P has a usable moat edge.

Conversely, suppose that every lower-case edge in P has a usable moat edge
in P . Consider the extension subpaths corresponding to all the lower-case edges
in P . By the Nesting Lemma, these are either nested or disjoint, i.e., they fall
into nested groups. We will say an extension is innermost if it is not contained in
another extension. It is enough to show that we can transform P to eIiminate
the lower-case edges of the innermost extensions; the result will then follow by

which must then be a subpath of the other.

induction since the other extensions will become innermost after the lower-case
edges of the extensions nested within them have been eliminated.

Now consider any innermost extension Q of a lower-case edge e. Since all
the proper prefures of Q are non-negative, it follows that any upper-case labels
in the interior of Q can be “cleared” by applying no-case, upper-case and label
removaI reductions in a left-to-right manner. The only possible upper-case edge
remaining will be the moat edge e’. Since this is usable, either e‘ is an ordinary
edge, or e‘ is an upper-case edge from a different contingent link than e. Thus, Q
will eventually reduce to an e“ that is either an ordinary edge or an upper-case
edge from a- different contingent link than-e. Since &- has negative reduced-

0
We can make two important observations from the converse part of the proof

of theorem 2. First, by the nesting lemma, the lower-case edge and moat edge
pairs, which fall into nested groups, form a layering of a semi-reducible path.
Since the lower-case edges and moat edges behave like left and right parentheses,
we call this the parenthesization of the path. The second observation is that there
is a standard way of performing the transformations, using the parenthesization,
that is guaranteed to eliminate the lower-case edges from a semi-reducible path.
We call this the canonical elimination.

distance, the e’’ can participate in a reduction that eliminates e.

3.3 Complexity of Negative Cycles

Our next task is to analyze the complexity of semi-reducible negative cycles. In
the case of an ordinary STN, if it has any negative cycle, then it must have a
simple (without any repetitions) negative cycle. This allows the Bellman-Ford
algorithm to limit the extent of its propagation. Unfortunately, a similar result
does not hold for semi-reducible negative cycles in an STNU. The problem is
that (if it is non-simple) there is no guarantee that one of its component cycles
will also be both negative and semi-reducible, as seen in the following example.
The compound cycle

which is semi-reducible and negative, can be broken into h-o component cycles
B B 2 s A - % B - D 1 0:-3 ------f c % D - - + B a n d B B < 2 A % B 2 E - % B . 3

However, the first is negative but not semi-reducible, while the second is semi-
reducible but not negative. (Note that the CD edge in the first cycle has its moat
edge BE in the second cycle.)

The good news is that there are nevertheless some simplifications that we
can apply to a semi-reducible negative cycle, and they do lead to a faster DC
checking algorithm. We require some additional concepts. First, given a lower-
case edge e in a semi-reducible path, we will say e has a breach if its extension
contains the upper-case edge from the same contingent link as e. Second, suppose
a lower-case edge e repeats in a semi-reducible path. By the nesting lemma, the
extensions from the two occurrences of e must be either nested or disjoint. We

will say a repetition is flat if the two extensions are disjoint. (In the example,
the repetition of BA is flat.) We have the following result.

Theorem 3. If an STNU has any semi-reducible negative cycle, then it has a
breach-free semi-reducible negative cycle in which all the repetitions are $at.

Proof. First, we will show that breaches can be eliminated. Consider any outer-
most extension & associated with a lower-case edge e and its moat edge e’ and
suppose it has a breach edge e“. Then e‘‘ # e‘. (Otherwise the moat edge would
not be usable.) Thus, D,(end(e),end(e”)) 2 0 by the prefix/postfix property,
and so Dp(start(e3, end(e’’)r 5 0. SihEe e and-e” Ge th’e Iow&--caGZidupper-
case edges of the same contingent link, start(e)=end(e”). Now observe that if we
tighten the cycle by deleting the portion between start(e) and end(e”), we will
not affect the moat edges of any remaining lower-case edges. (Since E does not
lie inside any other extension.)

Now suppose by induction that we have eliminated breaches in all extensions
that contain a given extension Q . We can apply the same breach elimination
process as before. This may tighten some extension E containing Q such
that the former moat edge for E is no longer the closest drop edge. However,
since E has no breaches, the new moat edge will still be usable. Thus, we can
eliminate the breach from Q , while preserving the property that every lower-
case edge has a usable moat edge. By induction, we can eliminate all breaches
while preserving this property. This leads to a new tighter (thus, still negative)
cycle,in which every lower-case edge still has a usable moat edge. Thus, it is still
semi-reducible by theorem 2.

Next suppose we have a breach-free semi-reducible negative cycle P , and
consider a repetition that is not flat, i.e., we have occurrences of lower-case edges
el and e2 with associated extensions El and E2, respectively, such that El contains
€2, and el = e2. By the prefkq’postfix property, Dp(start(el),start(ez)) 2 0. In
this case, we can tighten the cycle by deleting the subpath between start(e1)
and start(e2). Since the cycle is breach-free, every lower-case edge will still have
a usable moat edge (by a similar argument as previously). Thus, the cycle will
still be semi-reducible. 0

The significance of theorem 3 is that if the repetitions are all flat, then the
depth of nesting of the extensions cannot be greater than K , where K is the
number of contingent links. We now fashion a DC checking algorithm that takes
advantage of this. The idea is that each iteration of a propagation phase will
decrement the depth of nesting by eliminating the innermost extensions. Thus,
at most K iterations will be required to detect some semi-reducible negative cycle
if an STNU is not DC. The propagation phase essentially simulates the canonical
eIimination mentioned earlier: we propagate forward from each lower-case edge
over breach-free and lower-case-free paths looking for moat edges. For each one
we find, we add a new edge corresponding to the reduction of the extension to
a single edge.

The algorithm can be summarized as follows.

Boolean procedure fastDCcheck0

loop from I t o K do
i f AllMax project ion inconsistent

loop f o r each lower-case edge e do
re turn f a l s e ;

Propagate forward f r o m end(e) over allowed paths
loop f o r each moat edge e’ found do

end loop;
add reduced edge from start(e) t o end(e’)

end loop;
end- loop;
re turn t rue ;

end procedure

We now estimate the complexity of this algorithm. For this, we let N be the
number of nodes, E be the number of edges, and K be the number of contingent
links. First, we observe that we need only propagate over the shortest paths
among the allowed paths. (The only consequence will be possible earlier discovery
of tighter reduced edges.) Second, a Bellman-Ford propagation that determines
consistency of the AllMax projection can be used to provide a potential function
as in Johnson’s algorithm [4]. Thus, the shortest path propagations from the
lower-case edges can use the O(N log N) Dijkstra algorithm. The overaIl cost
of the algorithm is then O(K(EN + K(N1ogN))) = O(KEN + K’NlogN).
At most K N edges are added during the course of the algorithm. Thus, E is
bounded by EO + N K , where EO is the original number of edges. This gives an
overall estimate of O(IIEoN$K2N2+112NlogN) = O(KEoN+K2N2). Using
K 5 N and EO 5 N 2 , we can simplify that to O (N 4) , which compares favorably
with the previous O (N 5) algorithm.

4 Execution

It should be pointed out that fastDCcheck merely determines the status of an
STNU. It does not provide a network suitable for the execution algorithm de-
scribed in 131. However, once DC has been confirmed, it is an easier matter to
prepare the network for execution. Due to space limitations, we can only outline
the approach without providing detailed proofs.

Successful execution requires that no contingent link bounds are squeezed due
to propagation when a timepoint is executed or a contingent link finishes. To
ensure that contingent link upper-bounds are not squeezed, we see from [3] that
the key requirement is that waits need to be regressed along both ordinary and
lower-case edges as far as they will go. This means that a regresswaits algorithm
analogous to fastDCcheck that works backwards from upper-case edges (instead
of forwards from lower-case edges) using Upper and Cross Case reductions, adds
new edges via Label Removal (instead of Lower or Cross Case reductions), and
uses an AllMin (instead of AllMax) propagation to construct the potential func-
tion, can be used to regress the waits. An argument that is symmetrically similar

to the drop/moat edge analysis can be used to show that quiescence is reached
within K iterations.

Once the waits have been regressed, we need to ensure that contingent link
lower-bounds are also not squeezed. For this, we observe that propagations dur-
ing execution are only along ordinary edges. (The waits merely introduce delays.)
Thus, we need to ensure that paths that begin with lower-case edges and con-
tinue with ordinary edges ?e transformed to bypass the lower-case edges via the
Lower Case reduction. This can be achieved by applying a modified fastDCcheck
algorithm where the “allowed” paths are restricted to ordinary edges. With that
restriction, the proof methods of this paper can be adapted to show that quies-
cence is reached within K iterations. It can also be shown that the edges added
in this step will not disturb the quiescence of the wait regression.

Both of these post-processing steps run in similar time to fastDCcheck. Thus,
the combined algorithm is still O(N4)).

5 Conchision

We have reformulated Dynamic Controllability testing in a way that provides
mathematically simpler operations, and used that to obtain a O(N4) algorithm
with a linear cutoff. Previously, only an 0 (N 5) was known.

Acknowledgement We thank Nicola Muscettola for discussions that con-
tributed to these results.

References

1. Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote agent: to boldly go where

2. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from

3. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal

4. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT press,

5. Morris, P., Muscettola, N.: Dynamic controllability revisited. In: Proc. of AAAI-OS.

6. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence
49 (1991) 61-95

7. Vidal, T.: Controllability characterization and checking in contingent temporal
constraint networks. In: Proc. of Seventh Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2000). (2000)

8. Tsamardinos, I., Muscettola, N., Morris, P.: Fast transformation of temporal plans
for efficient execution. In: Proc. of Fifteenth Nat. Conf. on Artificial Intelligence
(AAAI-98). (1998)

no AI system has gone before. Artificial Intelligence 103(1-2) (1998) 5-48

consistency to controllabilities. JETAI 11 (1999) 23-45

uncertainty. In: Proc. of IJCAT-01. (2001)

Cambridge, MA (1990)

(2005)

