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1 Introduction  
Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans 
to be executed are generated on board the spacecraft or on the ground. Plan execution 
frameworks vary greatly, due to both different capabilities of the execution systems, and 
relations to associated decision-making frameworks.  The latter dependency has made the 
reuse of execution and planning frameworks more difficult, and has all but precluded 
information sharing between different execution and decision-making systems. 
 
As a step in the direction of addressing some of these issues, a general plan execution 
language, called the Plan Execution Interchange Language (PLEXIL), is being developed. 
PLEXIL is capable of expressing concepts used by many high-level automated planners 
and hence provides an interface to multiple planners. PLEXIL includes a domain 
description that specifies command types, expansions, constraints, etc., as well as feedback 
to the higher-level decision-making capabilities. 

                                                
1 Names in alphabetical order. In addition Emmanuel Benazera, Rich Levinson, Rich Washington, and 
Howard Cannon provided invaluable insights. 
2 For an updated version of the document, email plexil@nx.arc.nasa.gov. We also expect to make this 
document available on our web page very soon,  http://ti.arc.nasa.gov/plexil. 
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This document describes the grammar and semantics of PLEXIL. It includes a graphical 
depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on 
implementing a universal execution system, based on PLEXIL, using state-of-the-art rover 
functional interfaces and planners as test cases. 
 
PLEXIL extends many execution control capabilities of other systems. The key 
characteristics of PLEXIL are that it is compact, semantically clear, and deterministic given 
the same sequence of measurements.  At the same time, the language is quite expressive 
and can represent simple branches, floating branches, loops, time- and event- driven 
activities, concurrent activities, sequences, and temporal constraints.  The core syntax of 
the language is simple and uniform, making plan interpretation simple and efficient, while 
enabling the application of validation and testing techniques. 
 
In conjunction with the PLEXIL language, a general execution system will be built.  The 
system builds on the Coupled Layer Architecture for Robotic Autonomy (CLARAty), a 
two-layer software architecture that was developed to enable both a plug-and-play 
capability and a tighter coupling of high-level decision-making planners and the interface 
to hardware. The CLARAty architecture has successfully enabled interoperability at the 
functional layer, which is the interface to the hardware. The development of the PLEXIL-
based execution system will provide a level of interchangeability for the decision layer. 
 
As test cases for the general PLEXIL execution engine, two different types of planners will 
be utilized for generating PLEXIL plans and re-planning based on feedback information.  
One is a constructive planner (called PICO) that generates long-term contingent plans, 
which are flexible.  The other is an iterative repair-based planner (called CASPER), which 
generates fixed plan instances but can easily re-plan in the face of changes.  
 

 
 
Figure 1: An instance of the architecture where PLEXIL is shown to interface with the CASPER and 
PICO planners 

 

On-board planner 
(CASPER planner) 

Off-board planner  
(PICO Contingent Planner) 

Universal Executive 

CLARAty Functional Layer 

Interface Interface 

Plan Execution  
Interchange  
Language (PLEXIL) 
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Figure 2: PLEXIL - Executive Interface 

 
The domain description is an external library that contains declarations of the names of 
states, arguments of commands, etc. for interfacing with the functional layer. The domain 
description defines the interface of the executive with the functional layer. In addition it 
can also contain declarations for general library functions that, for example, perform a 
complicated mathematical calculation. 
 
Consider the following stylized plan: 

• Drive rover 
– Until target in view, or 
– Until time-out at time 10 

• Take Navcam 
– After drive, if drive timed out 

• Take Pancam 
– After drive, if target in view 

• Heat up to 10C 
– Whenever temp below 0 
 

Figure 3 and Figure 4 show an example where alternate options in the same PLEXIL plan 
above are executed based on different sensed states of the world. In Figure 3 the drive 
times out and a Navcam image is taken based on the PLEXIL plan above. Execution in 
Figure 4  follows an alternate path since in this scenario the target is reached. A Pancam 
image is taken instead, based on the same PLEXIL plan above.  
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Figure 3: An example of execution where the drive times out. 

 
 

 
Figure 4: An example of execution where the target is reached. 

The domain specification given for this scenario contains the following mapping: 
 
Commands: void rover_drive(int speed); 
          void rover_stop(); 
          void take_navcam(); 
          void take_pancam(); 
          void turn_on_heater(); 
StateNames: temperature, target_in_view; 
 

Here, Commands are function calls provided by the low level interface to the rover 
(functional layer) and StateNames are sensed or derived values that can be accessed 
from the functional layer.  
 
Note that the actual code sent to the Universal Executive will be in XML, which is a fairly 
standard representation for information exchange, but is not easy to read.  
Example PLEXIL syntax for executing the above scenario is shown in Table 1. 
 
 

Drive Pancam 

Heat Heat 

Temp: 

Time: 0 5 10 

Target 

Drive Navcam 

Heat Heat 

Temp: 

Time: 0 5 10 

Target 
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2 PLEXIL Syntax  
2.1 Introduction 
The PLEXIL plan execution language is based on a hierarchical representation of execution 
nodes.  Execution nodes describe both initiation of real-world actions, and the control of 
their execution.  The nodes are arranged into hierarchical trees where leaf nodes are action 
nodes and internal nodes are control nodes.  The execution of each node is governed by a 
set of conditions, such as when the node gets activated and when it is done.  When action 

Node: { 
 NodeID: DriveToTarget; 
 Boolean drive_done, timeout; 
 
 NodeList: { 
 
  Command: rover_drive(10); 
 
  When   
  AbsoluteTimeWithin:{10, POSITIVE_INFINITY} 
   Sequence:{ 
    Command: rover_stop(); 
    Assign: timeout=true; 
  } 
 
  When  
  LookupWithFrequency{target_in_view,10}==true; 
   Sequence:{ 
     Command: rover_stop(); 
     Assign: drive_done=true; 
   } 
   
  When timeout==true 
   Command: take_navcam(); 
 
  When drive_done==true 
   Command: take_pancam(); 
 
  Node:{ 
 NodeID: Heater; 
 StartCondition: LookupOnChange{“temperature”}<0 
 EndCondition: LookupOnChange{“temperature”}>=10 
    RepeatUntilCondition: false; 
    Command: turn_on_heater(); 
  } 
 } 

} 

Table 1: Plexil syntax for the example shown in Figure 3 and Figure 4 
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nodes are executed, commands are sent to the rover, whereas when internal nodes are 
executed, they are expanded to the next level of nodes in the tree.   
For a simple example, consider the following PLEXIL plan, with PLEXIL syntax shown in 
bold and domain specific variables in normal font: 

Node:{  
 NodeId: DriveUntilStuck; 
 RepeatUntilCondition: LookupOnChange{“Rover:wheelStuck”}==false; 
 NodeList:{ 
  Node:{ DriveOneMeter 
   Command: Rover:Drive(1); 
  } 
 } 
} 

The plan has one action node, which drives the rover one meter, by calling the appropriate 
command in the functional layer.  The plan then has one control node, which simply keeps 
repeating the action node until the rover is stuck.  The question of whether the rover is 
stuck is answered by lookupOnChange, which requests information from the functional 
layer. 
In this section, we describe the core notions and elements of the PLEXIL syntax.  The full 
grammar is given in Appendix A. 

2.2 Node Description 
There are three types of nodes in PLEXIL.  The internal or NodeList nodes simply contain 
a list of child nodes.  The action node types can be split into two types - external action 
nodes, i.e., Command nodes, and internal action nodes, also known as Assignment nodes. 
Each node has the following elements, called NodeAttributes. 
 
NodeAttributes: 

Identifier (NodeID): A unique symbolic name 
StartCondition:  Boolean expression 
EndCondition:  Boolean expression 
PreCondition: Boolean expression 
PostCondition: Boolean expression 
InvariantCondition: Boolean expression 
RepeatUntilCondition: Boolean expression 
Priority: Integer 
Variables: List of local variable declarations 
Interface: List of variables “passed” to node 

 
The execution of a node is driven by the node conditions, which are Boolean expressions. 
Conditions capture internal and external information as well as temporal relationships. A 
NodeID is a unique identifier for a node. NodeIDs are locally scoped. Hence node A and 
node B may both have children called C. The child of node A is referenced as A.C, the 
child of node B as B.C, etc.  Two siblings in the node tree are not allowed to have the same 
name. 
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Nodes also have type-specific elements called the NodeBody.  For list nodes, the element is 
a list of nodes; for assignment nodes, it is an assignment statement where the left-hand side 
is a parameter variable for that node; and for command nodes it is a call to a functional 
layer function. 
 
NodeBody: 
 NodeList or Assignment or Command 

2.3 External and Internal Information 

2.3.1 External States 
To control execution, PLEXIL node elements may acquire information from world events 
and states. In PLEXIL we refer to world events and states as world state. The specific 
names used to look up world state are defined in a domain description.  
 
Access to events and states is via one-time lookups, notifications of change in value, or 
lookups at a given frequency.  The most common update is for temporal information, such 
as a temporal value, e.g., a comparison like: 

AbsoluteTimeWithin(“2005-10-09 14H06M12S UTC” , 
PLUS_INFINITY) 

In the example above an event will be triggered when the absolute time is in the interval 
[“2005-10-09 14H06M12S UTC”, PLUS_INFINITY] 
PLEXIL expects that all lookups, commands, and general function calls have no side 
effects. In other words, they only affect the state of execution through the value they return.  

2.3.2 Internal Variables 
In addition to the external states, a PLEXIL plan has access to the internal state of a node. 
There are a number of internal variables, such as the start and end times of each state of a 
node, the execution state of a node, etc. These are typically used to either track the state of 
PLEXIL execution, or to store information from external states.  These variables are global 
and are referenced with a structure member notation: 

node.state 

node.state.Timepoint 

node.outcome 

node.failureType 

Timepoints are integers that are bound to actual values at run time. The start and end 
Timepoint of each node state are stored.  

2.3.3 Declared Local Variables 
Other variables are defined as local variables in nodes.  Variable declarations are similar to 
corresponding declarations in programming languages. A counter, for example, could be 
defined in a node that leads to a looping structure: 

Integer i=0 
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Variables passed as parameters to lookups, commands, and functions are passed by value. 
Hence the value of these variables is not changed.  

2.3.4 Interfaces 
Finally, declared variables can appear in the interface of nodes. Interface variables that are 
read-only are specified with the keyword in and interface variables that are read-write are 
specified with the keyword inout. inout interface variables are passed by reference from a 
parent node to a child node.    
 
A child of a node only has access to the variables declared in the parent that are explicitly 
passed via the interface. If a node has a variable in its interface, this variable must be in the 
interface of all the ancestor nodes up to the node that declared it.  

2.4 Information Access and Update 

2.4.1 Lookups 
Lookups can appear in Assignments or Conditions. Lookups are of three types:  
 

1. LookupOnChange:  
LookupOnChange{“Rover battery level”, 1} 
 

2. LookupWithFrequency :  
LookupWithFrequency{“Rover battery level”, 10) 
 

3. LookupNow:  
LookupNow{“Rover battery level”} 

 
The value of world states can be accessed via lookups. Each external state is identified by a 
domain-specific name, e.g., “Rover battery level”.  A LookupNow which is a 
single (request-based) lookup simply specifies the name, e.g.: 

LookupNow{“Rover battery level”} 

and the value returned is the value of state “Rover battery level” when the 
lookupNow is done.   
 
A LookupWithFrequency which is a repeated lookup specifies a frequency for checking the 
state value, e.g.: 

LookupWithFrequency{“Rover battery level”, 10} 

meaning that the state value should be checked 10 times per second. 
 
A LookupOnChange is an event-based repeated lookup and returns the state value 
whenever it changes.  A tolerance parameter may be specified to restrict the value to be 
returned only when it changes by more than the specified tolerance, which is 1V here. 
 LookupOnChange {“Rover battery level”, 1} 

 
The return value of a lookup is of any of the types allowed in the domain description.  
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Note that an internal PLEXIL event may or may not be triggered when a value is returned 
or even when the value changes. An internal PLEXIL event is generated only when an 
expression in a condition evaluates to true.  
 

2.4.2 Assignment 
An Assignment is of the form: 
 
Variable = Expression 
 
where, the Expression can be a declared variable (including interface variable), an internal 
state variable (Node.state.Timepoint), a LookupOnce,  a constant,  or a numeric operation. 
The LHS (Left Hand Side) of the assignment (Variable) can only be a declared variable 
including interface variable.  

2.4.3 Command 
A Command is of the form: 
 
Variable_to_store_return_value  = Command_name list_of_arguments 
 
Commands are the interface to the functional layer, or library calls (e.g. functions to 
perform complex computation) specified in the domain description. The command name is 
specified in the domain description. The arguments to the command may be variables, 
declared or internal states, or constants. Although numeric operations and lookups are not 
allowed in the list of arguments, this is not a real limitation since assignments may be used 
to assign values to variables that may be used as parameters to commands.  
 
The Variable_to_store_return_value of a command is optional. It is a variable that must be 
previously declared in the node or passed through its interface from an ancestor. 

2.4.4 Conditions 
Conditions drive the execution of each node. Each condition is evaluated with a Boolean 
expression.  Boolean expressions are arbitrary logical formulas, without quantification, 
where each predicate is either a temporal relation or a data relation.  Relations are based on 
Boolean expressions or standard comparisons, such as equality, inequality, “less than or 
equal,” etc.  Relations can refer to either internal variables, external state and event 
information, or time.  We allow getting current time through a lookup. Temporal relations 
CurrentTimeWithin and AbsoluteTimeWithin are also provided as syntactic sugar. 
 
Based on the way conditions are checked, we have two types of conditions: gate conditions 
(monitored continuously) and check conditions (checked once): 
 
Gate conditions: 

• StartCondition 
• EndCondition 
• InvariantCondition 
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Check conditions: 

• PreCondition 
• PostCondition 
• RepeatUntilCondition 

 
All of the above conditions may be Data or Temporal conditions or Boolean combinations 
of them. Data conditions are constraints on internal or external variables, which are read 
via lookups (details in section 3.2). Temporal conditions specify absolute time constraints 
or time constraints relative to Timepoints in nodes. 
 
Some example conditions: 

CurrentTimeWithin{node1.FINISHED.START, +[20S,30S]}  

LookupOnChange{“Rover:batteryCharge”} > 120.0 

node3.state == FINISHED && node3.outcome == SUCCESS 

Here, node1.FINISHED.START represents the Timepoint at which node1 entered state 
FINISHED. The RelativeTimeWithin condition above may be understood by representing 
current time explicitly as T. Then CurrentTimeWithin{node1.FINISHED.start, [20S,30S]} 
is equivalent to: 
 

T ∈ [node1.state.FINISHED.START+20S, 
node1.FINISHED.START+30S]  

 

Lookups that appear in gate conditions must be of type event based or frequency based, and 
lookups that appear in check conditions must be request based. 

2.5 Domain Description Syntax 
The domain description syntax includes the following elements: 
 

• List of state variables that may be accessed through lookups: 
 

   StateVariables: ”StateVariables:{“ (Type StateVariableName 
“;” )* “}” 

 
• List of commands and general functions: 

 
   FunctionDeclaration: ”FunctionDeclaration: {”  (Type    

   FunctionName  ArgumentDeclaration* “;”)*  “}” 

   ArgumentDeclaration : Type ArgumentName “;” 

 
• Interrupt handlers (other function declarations) to be invoked when a call to the 

functional layer needs to be interrupted can also be specified: 
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FunctionInterrupt: “FunctionInterrupt: {“ FunctionName HandlerName 
ArgumentDeclaration* “}” 

 
In PLEXIL Functions, Commands, and Assignments have no side effects. In other words, 
they do not affect the state of executive in any way other than through return values. 

3 PLEXIL Execution Semantics  
3.1 Overview of Node Execution  
This section describes the execution of a single node.  
 
There are three main types of nodes. A node can be: 

1. A Command node 
2. An Assignment node 
3. A NodeList node 

 
The attributes listed below are internal to a node, hence they cannot be modified from 
within a plan, but are accessible. In other words they can be read, in StartCondition, 
assignments, etc: 

Timepoint: Time at start or end of any state 
state: Indicator of execution state 
failureType: Indicates the cause for node failure (e.g. 
INVARIANT_CONDITION_FAIL, PRECONDITION_FAIL, PARENT_FAIL 
etc.) 
failedExpression An integer that stores the number of the expression in the 
condition (from the LHS) that caused the failure. 
outcome: Indicates success or failure for a node, or whether the node was skipped 

We assume that for each node the executive has access to the Parent and child nodes of the 
node. 
 
Each node must be in one and only one of the following states at any given time: 

• Waiting 
• Executing 
• Finishing 
• Failing 
• Finished 
• Command_Failing (only for command nodes) 

 
The completion and outcome of a node are independent.  If the state of a node is Finished, 
all iterations of the node have completed. No node state transitions occur after this sink 
state.  The outcome of a node is a node attribute that provides additional information about 
the result of node execution. A node may have any one of the following outcomes: 

• SUCCESS 
• FAILURE 
• SKIPPED (node didn’t get to run) 
• INFINITE_LOOP (type of failure) 
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The outcome of a node is a NodeAttribute that is only valid when the node transitions out 
of state Executing or Failing or when it is in state Finished.  An outcome SKIPPED implies 
that the node did not get to execute, and the outcome INFINITE_LOOP implies that the 
node was poorly written and had an error that created an infinite loop.  
 
The semantics of node execution is given in terms of states and transitions between states 
that are triggered by condition changes. At each execution step, all condition changes that 
may result in node state changes are processed until quiescence (in other words until all 
nodes are waiting on a condition change affected by an external event, or have been 
determined to be infinite loops). Precedence order is used to resolve conflicts. The set of 
condition changes that cause node state transitions are as follows: 

• StartCondition True 
• InvariantCondition False 
• EndCondition True 
• Ancestor_InvariantCondition False 
• Ancestor_EndCondition True 
• All_children_Waiting_or_Finished True 

Additional details on conditions are provided in section 3.2. 
 
Figure 5 is a legend for  Figure 6 to Figure 12. The ovals represent node states. The yellow 
rectangles represent condition changes that cause a transition from a node state. The 
rectangles with bars represent the outcome of a node. The lilac diamonds represent checks. 
Transitions are represented by directed arrows. If there are multiple condition changes that 
may happen simultaneously, integers are used to represent the precedence order. A 
condition change with precedence order 1 gets priority over any other condition change. A 
condition change with precedence order 2 is processed if there is no condition change with 
priority 1 and so on. Some checks are a binary choice between True and False. Others are a 
choice between True, False, and Maybe (represented as T, F, and M respectively in the 
figures). 
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Figure 5: Legend for all state transition diagrams to follow 

 
Figure 6 captures all transitions from node state Waiting. 
 

 
Figure 6 : Diagram representing all state transitions from a node in state WAITING 
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Figure 7: Diagram representing all state transition from a NodeList node in state EXECUTING 

 

 
Figure 8: All state transitions from a Command node in state EXECUTING 
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Figure 9: All state transitions from an Assignment node in state EXECUTING 

 

 
Figure 10: All state transitions from a node in state FAILING 
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Figure 11: All state transitions from a Command node in state FAILING 

 

 
Figure 12: All state transitions from a node in state FINISHING 

 
A table with complete coverage of node state transitions is provided in Appendix D. 

3.2 Conditions 
Conditions come in two flavors: gate conditions (Start, End, and Invariant Conditions) and 
check conditions (Pre, Post, and RepeatUntil Conditions).  The gate conditions are checked 
repeatedly3 until they evaluate to true, while check conditions are instantaneous - the result 
determines what is done at that time. A gate condition is checked whenever any of the 
variables in the Boolean expression representing the gate condition alter.  
 

                                                
3 Of course, not all such conditions need to be implemented in that fashion – many, in 
particular temporal ones, can be done by signals or other event notification mechanisms. 
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In addition, the conditions are also classified in an alternate way. Start, End and 
RepeatUntil conditions drive the execution of a node. Pre, Post, and Invariant conditions 
monitor the execution of a node. Hence, these conditions are also called failure conditions. 
If any of these conditions fail to evaluate to true, the node execution is aborted with a 
failure indication. 
 
Whenever a condition is no longer needed by the current state or any of the states that this 
node may transition to in the current iteration, it is no longer checked.  Hence, when a node 
reaches state FINISHED, all the conditions associated with the node are no longer checked. 
The conditions of ancestors and children of a node may also affect node execution as 
described in section 3.1. Below we discuss only the affect of a conditions of a node on 
itself. 

3.2.1  StartCondition 
The most commonly used gate condition is the StartCondition for a node. It determines 
when a node is eligible for execution, and is thus a gate condition.  To specify that a node 
should start executing after a certain time, one can specify the following using an 
AbsoluteTimeWithin Temporal condition: 
 

StartCondition: AbsoluteTimeWithin{“2005-03-21 16H20M00S 
UTC”, PLUS-INFINITY} 

 

For example, a StartCondition could be: 
LookupOnChange{“Rover battery level”} > 10.0  
&& (powerTrackingNode.state == EXECUTING) 

 

The current time is implicit in PLEXIL, but the start condition above may be understood by 
making the current time explicit as T. The above start condition is then: 
 

T ∈ [“2005-03-21 16H20M00S UTC”, PLUS-INFINITY] 

 

When the StartCondition of a node becomes true, the PreCondition is checked.  If the 
PreCondition is true as well, the node state becomes EXECUTING, and all children of the 
node are created.  Assignment or command nodes are executed. The default StartCondition 
of a node is true. 

3.2.2  PreCondition 
A PreCondition is a check condition. When the StartCondition of a node becomes true, the 
PreCondition is checked.  If the PreCondition evaluate to false, then the node fails before 
its children are created.  The outcome of the node is set to FAILURE and the 
RepeatUntilCondition is checked to determine if the node will wait to run at a later time or 
terminate completely. Even though the node did not execute, since it passed its 
StartCondition it is considered to have undergone an iteration. The outcome will be 
FAILURE and the failureType will be PRECONDITION_FAIL. It is possible in the 
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implementation of the executive to save the variable bindings that made the PreCondition 
fail in some debugging file or core file. The default PreCondition of a node is true. 
 

3.2.3  InvariantCondition 
Invariant conditions are gate conditions. They are typically used to capture constraints that 
must be true for the entire duration of the execution of a node.  Should the 
InvariantCondition become false, the node fails and transitions to state FAILING. The 
outcome is set to FAILURE and the failureType is INVARIANT_CONDITION_FAIL.  
The default InvariantCondition of a node is true. 

3.2.4  EndCondition 
The EndCondition is a gate condition. It determines when the node goals have been 
achieved, and execution can be wrapped up.  
 
Intuitively a parent node finishes naturally when its children are FINISHED or when its 
EndCondition becomes true (in which case the children are signaled to wrap up). Note that 
the EndCondition does not lead to immediate end of node execution (one iteration), as child 
processes may need to complete and clean up. The children are considered to have 
“wrapped up” if all children are either in state WAITING or FINISHED, but no other 
intermediate state. 
 
When the EndCondition of a node becomes true, the node transitions to the state 
FINISHING.  The intent of state FINISHING is to wait for active children to  complete. An 
example of an EndCondition would be a confirmation from the functional layer that 
something has been successfully completed; for example: 
 

EndCondition: LookupOnChange{“E-box temperature”, 1} > 20.0 

 
The default EndConditions of a node are different depending on the type of node: The 
default EndCondition of a NodeList node is “All children finished”. The default 
EndCondition of a Command node is “Command call returned” and the default 
EndCondition of an Assignment node is “Assignment complete”.  The actual EndCondition 
of a Command and Assignment node is a conjunction of the explicitly specified expression 
for the EndCondition and the default condition. This is not the case for a NodeList node.  
When an explicit EndCondition  is specified for a NodeList node, it replaces the default. 

3.2.5 PostCondition 
PostConditions are check conditions. The PostConditions of a node are checked after each 
iteration of the node is completed. If the PostCondition is false, the node terminates with 
outcome FAILURE and the relevant failure information is saved (the specific conjunct is 
saved).  Note that since a node’s PostCondition is not checked until all children have 
completed, there is no need to halt running children.  PostConditions are typically 
redundant checks that ensure that the result of node execution was as desired.  
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3.2.6  RepeatUntilCondition 
RepeatUntilConditions are check conditions. Their purpose is to determine whether the 
node should be re-run, or whether it is fully done and should be transitioned to state 
FINISHED (no longer needed for the execution of the current plan).   When a node has 
completed an iteration of execution, its RepeatUntilCondition is checked.  If it is true, then 
the node is re-activated and put in state WAITING, and waits for its StartCondition to 
become true again.  Note that the node’s internal variables are all reset, just as if the node 
were running for the first time4. 
 
Once the node has ended the execution of the current iteration, i.e., its EndCondition is true 
and all remaining children have completed their execution, the RepeatUntilCondition is 
checked.  If it evaluates to true, the node is eligible for execution when its StartCondition 
becomes true.  Otherwise, the node is permanently removed from the execution process. 
An example of a RepeatUntilCondition is given in section 2.1, but an even more common 
use is that of a loop counter check shown below: 
 

Repeat-until-condition: counter < 10 

3.3 Node Termination 
There is a distinction between the completion of a single iteration of a node and the 
completion of all iterations of a node. The completion of all iterations of a node is 
represented by state FINISHED.  
 
After each iteration of a node, the RepeatUntil condition of the node is checked. The node 
resumes another iteration (goes back to state WAITING) until the RepeatUntil condition is 
satisfied. Note that there are no static variables in a node and values are not maintained 
between iterations. Variables such as counters are thus declared in the parent. All the 
conditions associated with a node that has FINISHED execution are no longer monitored.  
 
If a node’s own InvariantCondition fails, the instantiation used in the condition evaluation 
is saved. If its parent caused the termination, a link to the ancestor node is saved as an 
explanation. If the terminated node is a list node, all children are terminated. Terminating 
non-executing children implies that the StartConditions of these nodes will no longer be 
monitored.  
If the terminated node is a command node, then the ongoing call into the functional layer 
has to be interrupted.  The domain description provides one way to do this. The interface to 
the functional layer may also provide a more drastic way, such as killing a thread.  
 
In PLEXIL, node “success” and “failure” is separate from the temporal state of a node.  
The outcome field stores the “success” or “failure” of a node and the state field stores the 
temporal state of a node, which may have the values WAITING, EXECUTING, 
FINISHING, FAILING, and FINISHED. This is useful, for instance, when there is a 
sequence of nodes, with one node constrained to start after another node is done. Often one 

                                                
4 This is equivalent to saying that nodes do not have static local variables.  
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wants for subsequent nodes in a chain should to continue even if one of the nodes in that 
sequence has been terminated.   

3.4 Node Synchronization 
No two assignment nodes can execute in parallel if they write to the same variable. All 
events received by the executive are queued. 

3.5 Events 
An event is either: 

• A change in the state of the external world represented by declared variables or 
lookups 

• A change in the state of internal variables of the executive  

3.6 Condition Changes 
Events are queued. Each event is processed in the order in which it was received. All 
conditions affected by the event are evaluated and one or more condition changes may 
evaluate to true. Given only the previous state and any combination of the following 
condition changes, the next state of a node is determined: 

 
• StartCondition T 
• InvariantCondition F 
• EndCondition T 
• Ancestor_inv_condition F 
• Ancestor_end_condition T 
• All_children_waiting_or_finished T 

 

3.7 Expanded Semantics of Lookups and Conditions 
There are a number of parameters for lookups. The subsets of parameters parsed for a 
condition or assignment are different. For example, if a frequency is specified with a 
lookup in an assignment it is ignored since an assignment is considered to be atomic.  
An internal PLEXIL event is generated when the value returned by a lookup (either event 
based or frequency based) has changed (i.e, the previous value is different from the current 
value by more than the Tolerance, if specified). Note that a change in value is reported 
based only on the information from lookups. The true state of the world may change at a 
higher frequency. 
 
Example 1: Consider the example shown in  
Figure 13. There may be three classes of lookups: 

1) Lookup with Frequency  
 

StartCondition: LookupWithFrequency{x, 0.1;} 

 

2) Lookup triggered by change 
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StartCondition: LookupOnChage{x, 0.5} 

 

3) Lookup now 
These lookups appear in check conditions (such as the PreCondition below) or in 

Assignments. This lookup is evaluated only once at the time the condition is evaluated. 
 

StartCondition: LookupOnChange{y} == 4 
PreCondition: LookupNow{x}!=1 

 

 

   

Figure 13: Illustration of the difference between event-based lookups, frequency-based lookups, and 
one-time request-based lookups 

In this example, the first lookup (frequency based) returns the value of x at time T=10, T=20 and T=30 
before an internal event is triggered when the value of x changes at T=30. In  

Figure 13 a solid square represents that the value of the variable represented within the 
square was returned,  and a dashed square represents that in addition to the value being 
returned an event was also triggered. 
  
In the third case, the value of y is returned in an event-based manner from the functional 
layer when it changes. The lookup for the value of x is part of a PreCondition and is 
checked only once at the instance when the StartCondition is satisfied. The StartCondition 
in this example is satisfied at T=35 when y=4, hence the lookup for x is performed at T=35 
and the value of x is returned. In this example the PreCondition would evaluate to false 
 
Example 2: Consider another example: 
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StartCondition:{ LookupWithFrequency{x, 0.1} == 1 ^ 
LookupNow{y} == 3} 

 

As shown in Figure 14 , an event is triggered at time T=10 to initialize the value of x from 
UNKNOWN to 0. The StartCondition is checked, but the value of y at this point is still 
UNKNOWN, so the condition does not yet hold. When the value of y changes to 2 another 
event is triggered. This initializes the value of y to 2, and the StartCondition is checked 
once again. In this case, the StartCondition evaluates to false since the value of x is 0. The 
StartCondition is checked again at T=20, but since the value of x is still 0 the condition still 
evaluates to false. The same happens when the value of y changes to 3. At time T=30, a 
lookup of the value of x returns 1 and the StartCondition is checked again. This time it 
evaluates to true. 
 

 

 
Figure 14: Example of a condition that involved two lookups 

 
Lookups simply read state values. The domain declaration contains a list of state names 
that PLEXIL expects to look up “safely.” In other words, looking up these states should not 
change any states. Note that an implementation of the executive may choose to cache state 
values without violating this requirement. 
 
It is good form to ensure that anything specified as a lookup in the domain description is 
known to have a low latency return value, else it may delay the execution of a node in 
which it is used (for example, if it were used in a PreCondition).  
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Only LookupWithFrequency and LookupOnChange may be used in gate conditions (such 
as start conditions, invariant conditions, and end conditions). If the lookup has a frequency, 
the variables in these conditions are checked at the specified frequency. If a 
LookupOnChange is specified, the variable is checked asynchronously.  

 

StartCondition:{ LookupOnChange{“Rover battery level”} > 10.0 

&& LookupWithFrequency{“E-box temperature”, 1} > 20.0 

&& {powerTrackingNode.state == EXECUTING} 

&& AbsoluteTimeWithin{“2005-03-21 16H20M00S UTC”, PLUS-INFINITY}} 

 

In the example above, an asynchronous event is triggered whenever the rover battery level 
changes. The value of the E-box temperature is checked at a frequency of 1 Hz. If this 
value has changed since the last time it was checked, an internal event is triggered. The 
state of the powerTrackingNode is maintained internally and it triggers an event when it 
changes. Time too is maintained internally and events based on time are triggered 
internally by the executive. 
 
The start condition specified in the example above is checked whenever an event 
corresponding to the a change in the rover battery level or the E-box temperature is 
triggered or if the state of powerTrackingNode changes or if the current time enters the 
window [“2005-03-21 16H20M00S UTC”, PLUS-INFINITY].  
 
Only LookupNow may be used in a check condition (such as PreCondition, and 
PostCondition) or an Assignment.  

3.8 Commands 
Calls to commands do NOT block execution.  And command nodes do not finish until the 
command call completes (so they can have duration).  

3.9 Types 
There are two extra values for data (FAIL and UNKNOWN) and one extra value MAYBE 
for Boolean expressions. The domain of declared variables and values returned by lookups 
and commands (which may, or may not, be assigned to declared variables) is extended with 
two additional values – UNKNOWN and FAIL. UNKNOWN means uninitialized and 
FAIL means that the lookup or command failed. UNKNOWN or FAIL have non-standard 
interpretation in a Boolean expression. Below is an illustration of a non-standard truth 
value we call MAYBE.   
 
Assume we have an invariant condition: 
      LookupWithFrequency{"Temperature", 1} > 0 && LookupWithFrequency{"Battery", 
0.01} > 20 
At initialization the values are: 

Temperature = UNKNOWN 
and 



 24 

      Battery = UNKNOWN  
 
Whenever a variable that appears in a Boolean expression evaluates to UNKNOWN or 
FAIL the expression evaluates to MAYBE.  We extend the definition of logical operations 
AND (^), OR (|), and NOT(!) as follows: 
 
TRUE ^ MAYBE = MAYBE 
FALSE ^ MAYBE = FALSE 
TRUE | MAYBE = TRUE 
FALSE | MAYBE = MAYBE 
MAYBE ^ MAYBE = MAYBE 
MAYBE | MAYBE = MAYBE 
!MAYBE = MAYBE 
 
When a condition evaluates to MAYBE or FAIL the node execution proceeds as shown in 
Figure 6 to Figure 12. Also for example, MAYBE+3 would evaluate to MAYBE.  
In addition,  Node Timepoints that have not occurred are also UNKNOWN.  

4 Illustrative Examples 
4.1 Red Rock Scenario 
In this scenario the rover is required to drive until it sees a “red rock”.  The following 
sections present variations on this basic scenario to illustrate different aspects of PLEXIL. 

4.1.1 Drive to red rock with a continuous drive node 
This example demonstrates the modularity that PLEXIL facilitates. The goal of the 
example is to show how a general node, developed independent of the context that it may 
be used in, is extended for use in a specific context.  
 
In the example, the node ContDrive is a general node that issues a drive command to the 
rover as soon as it is instantiated (by calling a functional layer API Rover:drive) and stops 
the rover whenever the interface variable stop becomes true. 
 
To use the general node ContDrive (which knows nothing about red rocks) in a scenario 
where the rover is required to stop whenever it sees a red rock, we define two other nodes, 
SenseRR and SetRRFlag, as follows: 
 
Node:{  
  NodeId:DriveToRedRock1; 
     Boolean haveRR=false, stop=false; 
 

     NodeList:{  
 Node:{  

     NodeId: SenseRR; 
   Interface:{ inout: haveRR;} 
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   StartCondition: 
{ LookupWithFrequency:{“found RR”, 10}==true } 

   Assignment: haveRR=true; 
   } 

   Node:{  
NodeId:ContDrive 
Interface:{ in: stop; } 

     NodeList:{ 
    Node:{  

NodeId: StartDrive;      
 Command: "Rover:drive"; 

     } 
Node:{  

NodeId: StopDrive;  
    Interface:{ in stop;} 
    StartCondition: 

{ stop==true &&  
startDrive.state==FINISHED } 

    Command: "Rover:stop"; 
    } 
        } 

} 
   

   Node:{ 
NodeId: SetRRFlag 

  Interface:{ inout stop; in haveRR; } 
  StartCondition: haveRR == true; 
  Assignment: stop = true; 
  } 

} 
} 

4.1.2 Drive 10m or to red rock with continuous drive node  
In this example, the rover is required to drive until it either sees a red rock or has traveled a 
distance of 10m. The purpose of this example is to further emphasize the modularity of 
PLEXIL. This example uses the ContDrive and SenseRR nodes from section 4.1.1, but 
uses the SetRRorDistFlag node instead of the SetRRFlag node to stop the rover when it 
either sees a red rock or has traveled a distance of 10m. 
  
Node:{ DriveRRorDist 
   Boolean haveRR=false, stop=false; 
   NodeList:{  

Node:{  
   NodeId: SenseRR; 

  Interface:{ inout: haveRR;} 
  StartCondition: 

{ LookupWithFrequency:{“found RR”, 10}==true } 
   Assignment: haveRR = true; 
   } 
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     Node:{  
NodeId:ContDrive 
Interface:{ in: stop; } 

   NodeList:{ 
   Node:{  

NodeId: StartDrive;    
Command: "Rover:drive"; 

    } 
Node:{  

NodeId: StopDrive;  
  Interface:{ in stop;} 

    StartCondition: 
{ stop && startDrive.state==FINISHED } 

    Command: "Rover:stop"; 
    } 
        } 

} 
 Node:{ 
  NodeId: TrackDist; 

Interface:{ inout goalDist;} 
StartCondition: 
{ LookupOnChange:{ "Rover:distTravelled", 10}==10m } 

  Assignment: goalDist=true 
  } 
      Node:{ 
    NodeId: SetRRorDistFlag; 
  Interface:{ inout stop; in haveRR; in goalDist;} 
  StartCondition:{ haveRR==true | goalDist==true} 
  Assignment: stop=true; 
 } 
   } 
} 
 

4.1.3 Mars Rover Scenario 
 
Reference for this scenario: T. Estlin, F. Fisher, D. Gaines, C. Chouinard, S. Schaffer, 
and I. Nesnas. "Continuous Planning and Execution for an Autonomous 
Rover," Proceedings of the Third International NASA Workshop on 
Planning and Scheduling for Space, Houston, TX, Oct 2002. 
 
This example uses the same names for the various activities as the paper does so as to 
minimize confusion. Hence the PLEXIL plan does not have an image_1 activity etc 
because in the scenario CASPER was initially given an oversubscribed problem. The rover 
has to drive to various locations, take images, or spectra, or do digs. The plan ends with it 
communicating with Earth. 
 
Casper is an online planner and in the original scenario it re-planned every time there was a 
conflict. The PLEXIL plan represents the entire scenario as a contingent plan. The 
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contingencies that did not come up in the CASPER scenario are not currently modeled in 
the plan for simplicity. 
 
At first the rover is initialized.  Then the rover should go to location 1 and take a 
spectrometer reading, spec_1. After this the rover should go to location 2 and take an 
image, img_2. If an obstacle is encountered enroute the navigator must plan a new path to 
location 2. If the estimated time to reach location 2 ever exceeds the allowed window of 
time the rover should abort the drive. The rover should then go to location 3 and take an 
image, img_3. If the image data cannot be compressed as much as expected and the image 
takes up more memory than expected, not all science data will be able to be stored for this 
day.  Hence the low priority spectrometer 2 reading, spec_2, should be skipped. Then the 
rover should go to location 4 and do a dig, dig_2. If more energy is used than expected 
there will not be enough energy to complete all the activities and so a lower priority science 
goal,   dig_1 (that is scheduled later in the plan) must be skipped in   order to ensure that 
there will be enough energy to complete other   high priority science goals and the end of 
day communication   activity.  After this the rover should go to location 5 and take a   
spectrometer reading, spec_2.After this the rover should to to location 6 and take an image,    
img_4. Then it should go to location 7 and do a dig, dig_1. Then it should go to location 2 
and take an image, img_2. In the end it should communicate with earth. 
 
CASPER SCENARIO IN CORE PLEXIL SYNTAX: 
 
Node:{  
  NodeId: CasperScenario 
  Interface:{ inout: have_spec_1, have_spec_2,  
       have_img_2, have_img_3, have_img_4, 
       done_dig_1, done_dig_2, done_comm} 
  PostCondition: Comm.outcome==SUCCESS 
  InvariantCondition: InitRover.outcome==SUCCESS ^ 
InitRoverPos.outcome==SUCCESS 
  NodeList:{ 
    Node:{ 
      NodeId: InitRover 
      Command: "Rover:init" 
    } 
    Node:{ 
      NodeId: InitRoverPos 
      StartCondition: InitRover.state==FINISHED 
      Command: "Rover:setLocation(0,0,0)" 
    }    
    Node:{ 
      NodeId: Setup_Goto_1 
      StartCondition: InitRoverPos.state==FINISHED  
      Command: "Navigator:turn(loc_1)" 
    } 
    Node:{ 
      NodeId: Goto_1 
      StartCondition: Setup_Goto_1.state==FINISHED 
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InvariantCondition:LookupOnce("currentTime")+LookupOnChange:{"Navi
gator:estimatedTimeToGoal"} > end_time 
      Command: "Navigator:drive(loc_1)" 
    } 
    Node:{ 
      NodeId: Spec_1 
      StartCondition: Goto_1.state==FINISHED & 
Goto_1.outcome==SUCCESS 
      Command: "Rover:take_spectrometer_reading(spec_1.dat)" 
    } 
    Node:{ 
      NodeId: Set_spec1_flag 
      Interface:{ inout: Boolean have_spec_1} 
      StartCondition: Spec_1.state==FINISHED & 
Spec_1.outcome==SUCCESS 
      Assignment: have_spec=true 
    } 
    Node:{ 
      NodeId: Setup_Goto_2 
      StartCondition: Spec_1.state==FINISHED | 
Goto_1.outcome==FAIL  
      Command: "Navigator:turn(loc_2)" 
    } 
    Node:{ 
      NodeId: Goto_2 
      StartCondition: Setup_Goto_2.state==FINISHED 
      InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
      Command: "Navigator:drive(loc_2)" 
    } 
    Node:{ 
      NodeId: SafeguardRover 
      StartCondition: Goto_2.state==FINISHED & 
Goto_2.outcome==FAILURE & 
Goto_2.failType==InvariantCondition_failed 
      Command: "Navigator:stop" 
    } 
    Node:{ 
      NodeId: Image_2 
      Interface:{ inout: Real img_2_mem } 
      StartCondition: (Goto_2.state==FINISHED & 
Goto_2.outcome==SUCCESS) | (Goto_2b.state==FINISHED & 
Goto_2b.outcome==SUCCESS 
      NodeList: { 
        Node: { 
          NodeId: doImg 
          Command: img_2_mem="Rover:take_picture(img_2.dat)" 
 } 
        Node: { 
          StartCondition: doImg.state==FINISHED  
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          Assignment: img_2_mem=LookupOnce("Rover:ram_update"); 
 } 
      } 
      Node:{ 
 NodeId: Set_img2_flag 
        Interface:{ inout: Boolean have_img_2} 
 StartCondition: Image_2.state==FINISHED & 
Image_2.outcome==SUCCESS 
 Assignment: have_img_2=true 
      } 
      Node:{ 
 NodeId: Setup_Goto_3 
 StartCondition: Image_2.state==FINISHED | 
Goto_2.outcome==FAIL       
 Command: "Navigator:turn(loc_3)" 
      } 
      Node:{ 
 NodeId: Goto_3 
 StartCondition: Setup_Goto_3.state==FINISHED 
        InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
        Command: "Navigator:drive(loc_3)" 
      } 
      Node:{ 
 NodeId: Image_3 
        Interface:{ inout: Real img_3_mem } 
 StartCondition: Goto_3.state==FINISHED & 
Goto_3.outcome==SUCCESS 
 Command: img_3_mem = "Rover.take_picture(img_3.dat)" 
      } 
      Node:{ 
 NodeId: Set_img3_flag 
        Interface:{ inout: Boolean have_img_3} 
 StartCondition: Image_3.state==FINISHED & 
Image_3.outcome==SUCCESS 
 Assignment: have_img_3=true 
      } 
      Node:{ 
 NodeId: Setup_Goto_4 
 StartCondition: Image_3.state==FINISHED | 
Goto_3.outcome==FAIL  
 Command: "Navigator:turn(loc_4)" 
      } 
      Node:{ 
 NodeId: Goto_4 
 StartCondition: Setup_Goto_4.state==FINISHED 
        InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
        Command: "Navigator:drive(loc_4)" 
      } 
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      Node:{ 
 NodeId: Dig_2 
        Interface:{ inout: Real dig_2_energy } 
 StartCondition: Goto_4.state==FINISHED & 
Goto_4.outcome==SUCCESS 
        Command: dig_2_energy="Arm:dig(dig_2.dat)" 
      }    
      Node:{ 
 NodeId: Set_dig2_flag 
        Interface:{ inout: Boolean done_dig_2} 
 StartCondition: Dig_2.state==FINISHED & 
Dig_2.outcome==SUCCESS 
 Assignment: done_dig_2=true 
      } 
      Node:{ 
 NodeId: Setup_Goto_5 
 StartCondition: (Dig_2.state==FINISHED | 
Goto_4.outcome==FAILED) & img_3_mem < 10 
 Command: "Navigator:turn(loc_5)" 
      } 
      Node:{ 
 NodeId: Goto_5 
 Interface: {in: Real img_3_mem} 
 StartCondition: Setup_Goto_5.state==FINISHED 
        InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
        Command: "Navigator"drive(loc_5)" 
      } 
      Node:{ 
 NodeId: Spec_2 
 StartCondition: Goto_2.state==FINISHED & 
Goto_2.outcome==SUCCESS 
        Command: "Rover:take_spectrometer_reading(spec_2.dat)"      
       } 
       Node:{ 
  NodeId: Set_spec2_flag 
         Interface:{ inout: Boolean have_spec_2} 
  StartCondition: Spec_2.state==FINISHED & 
Spec_2.outcome==SUCCESS 
  Assignment: have_spec=true 
        } 
       Node:{ 
  NodeId: Setup_Goto_6 
  StartCondition: Spec_2.state==FINISHED | 
Goto_5.outcome==FAIL  
  Command: "Navigator:turn(loc_6)" 
       } 
       Node:{ 
  NodeId: Goto_6 
  StartCondition: Setup_Goto_6.state==FINISHED 
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         InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
         Command: "Navigator:drive(loc_6)" 
       } 
       Node:{ 
  NodeId: Image_4 
         Interface:{ inout: Real img_4_mem } 
  StartCondition: Goto_4.state==FINISHED & 
Goto_4.outcome==SUCCESS 
         Command: img_4_mem="Rover:take_picture(img_4.dat)" 
       } 
       Node:{ 
  NodeId: Set_img4_flag 
         Interface:{ inout: Boolean have_img_4} 
  StartCondition: Image_4.state==FINISHED & 
Image_4.outcome==SUCCESS 
  Assignment: have_img_4=true 
       } 
       Node:{ 
  NodeId: Setup_Goto_7 
  StartCondition: (Image_4.state==FINISHED | 
Goto_6.outcome==FAIL) & dig_1_energy < 1000 
  Command: "Navigator:turn(locl_7)" 
       } 
       Node:{ 
  NodeId: Goto_7 
         Interface: {in: dig_1_energy} 
  StartCondition: Setup_Goto_7.state==FINISHED 
         InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
         Command: "Navigator:drive(loc_7)" 
       } 
       Node:{ 
   NodeId: Dig_1 
          Interface:{ inout: Real dig_1_energy } 
   StartCondition: Goto_4.state==FINISHED & 
Goto_4.outcome==SUCCESS 
          Command: dig_1_energy="Arm:dig(dig1.dat)" 
       }    
       Node:{ 
  NodeId: Set_dig1_flag 
         Interface:{ inout: Boolean done_dig_1} 
  StartCondition: Dig_1.state==FINISHED & 
Dig_1.outcome==SUCCESS 
  Assignment: done_dig_1=true 
       } 
       Node:{ 
  NodeId: Setup_Goto_2b 
  StartCondition: Spec_1.state==FINISHED | 
Goto_1.outcome==FAIL  



 32 

         Command: "Navigator_turn(loc_2b)" 
       } 
       Node:{ 
   NodeId: Goto_2b 
   StartCondition: have_img_1==false & (Dig_1.state==FINISHED 
| Goto_7.outcome==FAIL) 
          InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
          Command: "Navigator:drive(loc_2b)" 
       } 
       Node:{ 
  NodeId: Setup_Comm 
  StartCondition: Image_2.state==FINISHED | 
(Goto_2.outcome==FAIL & (Spec_1.state==FINISHED | 
Goto_1.outcome==FAIL)) 
         Command: "Navigator:turn(loc_7)" 
       } 
       Node:{ 
  NodeId: Goto_7 
  StartCondition: Setup_Comm.state==FINISHED 
         Command: "Navigator:drive(loc_7)" 
       } 
       Node: { 
         NodeId: Comm 
         StartCondition: Goto_7.state==FINISHED 
  InvariantCondition: AbsoluteTimeWithin(1800, 2000, 10)  
  Command: "Rover:Comm" 
      }     
   } 
} 

 

5 Practical Issues 

5.1 Commonly Used Elements 
This section presents examples of commonly used execution control structures and 
describes how they can be implemented in PLEXIL. 

5.1.1 Time-stamped commands 
A time-stamped command is one that is to be executed at a specific time.  To execute 
command <cmd> at time <time> in PLEXIL: 

Node:{ 
 NodeId: doTimeStampedCommand; 
 Start-cond: AbsoluteTimeWithin{<time>,+inf}; 
 Command: <cmd>; 
} 
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5.1.2 Command sequences 
A sequence of commands, where one follows immediately after the completion of the 
previous, can be implemented as follows (where <cmdN> is the Nth command, 
<cmdNdone> is the indicator for the Nth command having successfully completed, and 
<freq> is the frequency with which we will check for command completion). 

Node:{ 
 NodeId: doSequence; 
 NodeList:{ 
  Node:{ 
   NodeId: doCommand1; 
   EndCondition: LookupWithFrequency{“<cmd1done>”, 
<freq>} 
   Command: <cmd1>; 
  } 
  Node:{ 
   NodeId: doCommand2; 
   StartCondition: doCommand1.state = FINISHED;  
   EndCondition: LookupWithFrequency{“<cmd2done>”, 
<freq>} 
   Command: <cmd2>; 
  } 
  ... 

 } 

} 

5.2 Syntax Extensions (Syntactic Sugar) 
The core PLEXIL plan description language is rather terse, having only the essential 
elements needed to describe instances of plans for execution.  To make it more accessible 
to users and programmers developing plans and plan-generation tools, the language is 
extended to include a number of convenient and commonly used syntax extensions 
(syntactic sugar).  

5.2.1 whenD construct 
Syntactic sugar :  

 When D do N 

 

where, 
N is a node or “syntactic sugar” for a node 
 
In general for any syntactic construct provided in this section, D can be omitted if it is 
always true. 

 

PLEXIL expansion : 
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Node:{ 
  Interface:{ in <in vars from N>, <vars from D>; inout: 
<inout vars from N>;} 
  StartCondition: D; 
  { Node list:  
           N 

   } 

} 

 

5.2.2 Sequence 
Syntactic sugar : 

sequence N1, N2,…,Nk  

 

PLEXIL expansion : 
 

Node:{ 
 NodeID: sequenceN1Nk; 
  Interface: 
   { in: <in vars from N1, N2, …, Nk>;  
   inout: <inout vars from N1, N2, …, Nk>;} 
  Node list:{  
      Node:{  
         NodeID: doN1; 
   Interface: 
     { in: <in vars from N1;  
     inout: <inout vars from N1>;} 
        Node list:{  
    N1 

    } 
  } 
  Node:{  
        NodeID: doN2;  

Interface: 
 { in <in vars from N2;  

 inout: <inout vars from N2>;} 

   StartCondition: doN1.state == FINISHED; 
   Node list:{  
    N2 

   } 
  } 
  ... 
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 } 
     } 

 

5.2.3 List 
Syntactic sugar : 

list N1, N2,…,Nk  

 

Equivalent to a sequence for the nodes in a NodeList 

PLEXIL expansion : 
  
   Node:{  
         NodeID: doN1; 
   Interface: 
     { in: <in vars from N1;  
     inout: <inout vars from N1>;} 
        Node list:{  
    N1 

    } 
  } 
  Node:{  
        NodeID: doN2;  

Interface: 
 { in <in vars from N2;  

 inout: <inout vars from N2>;} 

   StartCondition: doN1.state == FINISHED; 
   Node list:{  
    N2 

   } 
  } 
  ... 

 

5.2.4 If-then-else 
Syntactic sugar : 

if C then N1 else N2 

 

PLEXIL expansion : 
 
Node:{ 
 Interface: 
  { in: <in vars from N1, N2>,<vars from C>;  
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  in-out: <inout vars from N1, N2>;} 
 Boolean which; 
 NodeList:{ 
     Node:{  
           NodeID: setup;   

Interface: 
 { in-out: which, <vars from C>;} 

   Assignment: which = C; 
   }          

   Node:{ 
           NodeID: doIf;  
    StartCondition: setup.state==FINISHED 
    EndCondition:  
     isTrueNode.state==FINISHED ||  

     isFalseNode.state==FINISHED 

Interface: 
 { in: which, <in vars from  N1, N2>  
 inout: <inout vars from N1, N2>} 

    NodeList:{  
      Node:{  
              NodeID: isTrueNode;  
       Interface:{ in which, <in vars from N1>} 
       StartCondition: which=true; 
               Node list:{ 
            N1 

              } 

      } 

      Node:{ 
        NodeID: isFalseNode;  
       Interface:{ in which, <in vars from N2>} 
       StartCondition: which=false; 
              NodeList:{ 
          N2 

              } 
      } 
    } 
  } 
 } 

    } 
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5.2.5 Special case If-then 
Is equivalent to: if C then N1 else “nothing” 
 
Syntactic sugar : if C then N1 
 

PLEXIL expansion :  
 

Node:{ 
Interface: 

{ in: <in vars from N1>, <vars from C>;  
in-out: <inout vars from N1>;} 

Boolean which; 
Node list:{ 

     Node:{  
   NodeID: setup;  
   Interface:{ in-out: which;} 
   Assignment: which = C; 
           }   
  Node:{ 
                NodeID: doIf;  
   StartCondition: setup.state==FINISHED; 

 EndCondition: which==false |  
                    isTrueNode.state==FINISHED 

   Node list:{  
    Node:{  
                           NodeID: isTrueNode; 
     StartCondition: which=true; 
                           NodeList:{ 
          N1 
                          } 
    } 
   } 
  } 
    } 

 } 
 

5.2.6 While Loops 
Syntactic sugar : while C do N  
 

PLEXIL expansion :  
Node:{ 
 Interface: 
   { in <in vars from N>, <vars from C>,  
    inout: <inout vars from N>;} 
        Boolean which; 

  Node list:{ 
     Node:{  
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    NodeID: setup;  
    Interface:{ in-out: which;} 
    Assignment: which = C; 
             }   

Node:{ 
                NodeID: doWhile;  
      Interface: 
      { in <in vars from N>, <vars from C>;  
      inout: <inout vars from N>;} 

StartCondition: setup.state==FINISHED; 
    EndCondition: which==false |  
                      isTrueNode.state==FINISHED 
    Node list:{  
     Node:{  
                           NodeID: isTrueNode; 
         StartCondition: which==true; 
         Interface: 
         { in <in vars from N>, <vars from 

C>;  
         inout: <inout vars from N>;} 
         Repeat-until-condition: not C; 
         NodeList:{  
             N 

     } 

  } 

 } 

} 

5.2.7 For Loops 
Syntactic sugar : for(int counter = initValue(Z), C(counter,X) 
f(counter,Y)) N 
Where, the counter type could be int, float or any other type supported by PLEXIL  
 
PLEXIL expansion :  
 
Node:{ 
Interface: 

{ in: X,Y,Z <in vars from N>;   
inout: <inout vars from N>;} 

Interger counter; Boolean which; 
NodeList:{  

      Node:{  
             NodeID: setup;  
    Interface:{ in:Z;}  
   counter = initValue(Z);  
   } 
  Node:{  
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             NodeID: setup;  
    Interface:{ in:C, counter, X;  

inout: which}  
   which = C(counter, X);  
   } 
   Node:{   
    Interface: 

{ in: X,Y, <in vars from N>;   
inout: <inout vars from N>, which;} 

   StartCondition: setup.state == FINISHED; 
           EndCondition: which==false | 

   doLoop.state==FINISHED  
   NodeList:{ 
     Node:{ 
         NodeID: doLoop; 
       Interface: 

{ in: X,Y, <in vars from N>;   
inout: <inout vars from N>, which;} 

                    Repeat-until-condition: ! C(counter,X); 
         NodeList:{  
      Node:{  
        NodeID: doN;  
        Interface: 

{ in: <in vars from N>;  inout: 
<inout vars from N>;} 

       NodeList:{ 
          N 
       } 

      } 
      Node:{  

                         NodeID: counterUpdate; 
        Interface:{ in: Y;} 
       StartCondition:  

doN.state == FINISHED; 
       Assignment:  

counter = f(counter,Y); 
      } 

      } 
       }    
    } 
  } 

} 
    }  
 

5.2.8 Assign  
Syntactic sugar :   assign y = f(z1,…,zk) 

 

PLEXIL expansion :  
 

Node:  
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Interface in: z1,…,zk; in-out: y 
Assignment: y = f(z1,…,zk) 

5.2.9 Time-limited Node 
Put a limit on the execution time for a node  
 
Syntactic sugar :  do N within d 

 

PLEXIL expansion :  
 

Node:{ 
 NodeID: doTimeLimitedN; 
 Interface: 
  { in <in vars from N>; inout <inout vars from N>;} 

 InvariantCondition:  
  currTimeWithin{doTimeLimitedN.startTime,  
        doTimeLimitedN.startTime+d} 

 Node List:{  
             N 

 } 

}  

To have a time limit with respect to the start of  node N, the normal PLEXIL syntax can be 
used (N.EXECUTING.start = true) 

5.2.10 Node Tree Templates 
Syntactic sugar :  

defineMacro T(const: W; in: X’; inout: Y’) N 

doMacro T(const: V;  in: X, inout: Y) 

where, 
N is a node whose “in” variables match X’+ wi, and the in-out variables match the list Y’. 
W= {Type_wi wi} is a list of variable declarations 
X, Y, X’ and Y’ are lists of variables 
V ={vi} is a list of values or variables 
id is the NodeID assigned to the node by the translator. If no NodeId is specified as an 
input to doMacro it returns a randomly generated id for the node. 
 
PLEXIL expansion for doMacro:  
 

Node:{ 
Interface:{ in: X’ = X, wi ; inout: Y’ = Y;} 
W 
NodeList:{ 

      Node:{ 
           NodeID: setup;  
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    Interface:{ in <vars in V>; inout: wi;}  
   Assignment: each vi to wi; /* This may be a 
sequence of assignments*/ 
                   
        Node:{ 
         NodeID: doN; 
    Interface:{ in: X’, wi; inout: Y’;} 
    StartCondition: setup.state==FINISHED; 
     NodeList:{ 
        N 
    } 
  } 
  } 
} 
 

T is just a name, and the N in doMacro corresponds to the N in the corresponding 
defineMacro. 

5.2.11  Absolute and Relative Time  
Syntactic Sugar:  

AbsoluteTimeWithin : { LowerBound, UpperBound, Frequency } 

 
PLEXIL Expansion:  
lookupWithFrequency { “time” , Frequency}  >= LowerBound & lookup{“time”, 
Frequency}  <= UpperBound 
 
Syntactic Sugar:  

CurrentTimeWithin : { NodeTimepointValue + [ LowerBound,  
UpperBound ], Frequency} 

 
PLEXIL Expansion:  
lookupWithFrequency { “time”, Frequency }  >= NodeTimepointValue + LowerBound & 
lookupWithFrequency{“time”, Frequency}  <= NodeTimepointValue + UpperBound 
 
where, LowerBound and UpperBound are Time values, or variables representing time. If 
Frequency is not specified in the syntactic sugar, it defaults to 10. 

5.2.12 Examples 

5.2.12.1 Red-rock Example Simplified with Syntactic Enhancements 

The red rock example from 4.1.1 and 4.1.2 can be re-written as follows using syntax 
extensions: 
 

Node:{ 
 NodeID: DriveRRorDist4; 
   Boolean haveRR=false, stop=false, goalDist=false; 
   NodeList:{  
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    doMacro ContDrive(in: stop) 
     when  
   lookupWithFrequency("found RR", 10)==true  

  assign haveRR=true 
  when  
   lookupWithFrequency("Rover:distTravelled", 10)==10m  

  assign goalDist=true 
   when  
   haveRR==true | goalDist==true  

  assign stop = true 
 } 

} 

 
The macro definition used above is as follows: 
 

defineMacro ContDrive(:in stop)  
 NodeList:{ 
  Node:{ 
       NodeID: StartDrive;   

        Command: "Rover:drive"; 
  } 

  Node:{  
   NodeID: StopDrive;  
   Interface:{ in stop;} 
    StartCondition: stop && startDrive.state == FINISHED;  
   Command: "Rover:stop"; 
    } 
 } 

5.2.12.2 Mars rover example simplified with syntactic enhancements 
 The Mars rover scenario from section 4.1.3 can be written using syntactic enhancements as 
follows. The Command calls and Lookups have also been simplified for this example: 
 
Node:{  
  NodeId: CasperScenario 
  Interface:{ inout: have_spec_1, have_spec_2,  
       have_img_2, have_img_3, have_img_4, 
       done_dig_1, done_dig_2, done_comm} 
  PostCondition: Comm.outcome==SUCCESS 
  InvariantCondition: InitRover.outcome==SUCCESS ^ 
InitRoverPos.outcome==SUCCESS 
  NodeList:{ 
    Sequence:{ 
       Node:{ 
         NodeId: InitRover 
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         Command: "(start_rover (arguments ) (returns ))" 
       } 
       Node:{ 
         NodeId: InitRoverPos 
         StartCondition: InitRover.state==FINISHED 
         Command: "Rover:initPose(0,0,0)" 
       }    
       doMacro Goto(const: Goto_1 in: String "loc_1") 
       if Goto_1.outcome==SUCCESS 
          then doMacro TakeSpec(in: String "spec_1.dat" inout: 
have_spec_1)     
       doMacro Goto(const: Goto_2, in: String "loc_2") 
       if Goto_2.outcome==SUCCESS 
   then doMacro TakeImage(in: String "img_2.dat"  
                          inout: Real img_2_mem, Boolean 
have_img_2) 
       doMacro Goto(const: Goto_3 in: String "loc_3")      
      
       if Goto_3.outcome==SUCCESS 
   then doMacro TakeImage(in: String "img_3.dat"  
                          inout: Real img_3_mem, Boolean 
have_img_3) 
       doMacro Goto(const: Goto_4 in: String "loc_4")          
       if Goto_4.outcome==SUCCESS 
          then doMacro DoDig(in: String "dig_2.dat" 
                      inout: Boolean done_dig_2, Real 
dig_2_energy) 
       if img_3_mem < 10 
   then doMacro Goto(const: Goto_5 in: String "loc_5") 
       if Goto_5.outcome==SUCCESS 
   then doMacro TakeSpec(in: String "spec_2.dat" inout: 
have_spec_2)     
       doMacro Goto(const: Goto_6 in: String "loc_6")      
      
       if Goto_6.outcome==SUCCESS 
   then doMacro TakeImage(in: String "img_4.dat"  
                          inout: Real img_4_mem, Boolean 
have_img_4)       
       if dig_1_energy < 1000 
   then doMacro Goto(const: Goto_7 in: String "loc_7")          
       if Goto_7.outcome==SUCCESS 
   then doMacro DoDig(in: String "dig_1.dat" 
                 inout: Boolean done_dig_1, Real 
dig_1_energy) 
       if have_img_2==false 
          then { 
          doMacro Goto(const: Goto_2, in: String "loc_2") 
          if Goto_2.outcome==SUCCESS 
             then doMacro TakeImage(in: String "img_2.dat"  
                         inout: Real img_2_mem, 
Boolean have_img_2) 
                 } 
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        Node: { 
           NodeId: Comm 
           StartCondition: AbsoluteTimeWithin(1800, 2000, 10)  
    InvariantCondition: AbsoluteTimeWithin(1800, 2000, 10)  
    Command: "Rover:Comm" 
        }       
      } 
    } 
  } 
} 
 
 
defineMacro Turn_to(NodeId: id in: location, start_time, end_time) 
:{ 
 Node:{ 
  InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
  PostCondition: LookupNow:{"Rover:position"}==location 
  Command: "Navigator:turn(location)" 
 } 
} 
 
defineMacro Goto(NodeId: id in: location, start_time, end_time) :{ 
 Sequence:{ 
   doMacro Turn_to(location); 
   Node:{ 
     InvariantCondition: 
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time 
     PostCondition: LookupNow:{"Rover:position"}==location 
     Command: "Navigator:drive(location)" 
   } 
 } 
} 
 
defineMacro Spec(NodeId:id in: String datafile) :{ 
 Node:{ 
  Command: "Rover:take_spectrometer_reading(datafile)" 
 } 
} 
 
defineMacro TakeSpec(in: String datafile  
                     inout: Boolean have_spec) :{ 
 Sequence: { 
    id = doMacro Spec(in: String datafile)     
    if id.outcome==SUCCESS 
        assign have_spec=true    
 } 
} 
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defineMacro Image(NodeId:id in: String datafile inout: Real 
memoryUsed) :{ 
 Node:{ 
  Command: memoryUsed="Rover:take_picture(datafile)" 
 } 
} 
 
defineMacro TakeImage(in: String datafile  
               inout: Real img_mem, Boolean have_img) :{ 
 Sequence: { 
    id = doMacro Image(in: String datafile inout: Real img_mem) 
    if id.outcome==SUCCESS 
        assign have_img=true 
 } 
} 
 
defineMacro Dig(NodeId:id in: String datafile inout: energy_used) 
:{ 
 Node:{ 
  Command: energy_used="Arm:dig(datafile)" 
 } 
} 
 
defineMacro DoDig(in: String datafile  
           inout: Boolean done_dig, Real energy_used) :{ 
 Sequence: { 
    id = doMacro Dig(in: String datafile, inout energy_used) 
    if id.outcome==SUCCESS 
        assign done_dig=true 
 } 
} 
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Appendix A:  PLEXIL Context Free Grammar 
  
Notation used: 
 
? denotes optional 
* denotes 0 or many elements 
|  denotes alternates 
; added at the end of each grammar production 
“” defined keywords in the language  
As a general rule “<language element>{” … “}” denotes the start and end of that language 
element.  
All caps represents built-in XML types, e.g. STRING, INTEGER… 
 
/*  
     PLEXIL grammar: "{" "}" used only for Node, NodeList, 
VarDecl, In and InOut 
     pre-defined types/values: string, nonNegativeInteger, 
boolean, integer, double, INF, -INF 
*/ 
 
PlexilPlan : Node ; 
Node : (NodeId ":")? "{" NodeAttributes? NodeBody? "}"; 
NodeId : string ; 
NodeBody : NodeList | Command | Assignment ; 
NodeList : "NodeList" ":" "{" Node* "}" ; 
NodeAttributes : /* here the xml schema specifies any order */ 
  StartCondition? 
  RepeatUntilCondition? 
  PreCondition? 
  PostCondition? 
  InvariantCondition? 
  EndCondition? 
  Priority?  
  Interface?  
  VariableDeclarations? ;  
Priority : "Priority" ":" nonNegativeInteger ";" ;  
StartCondition : "StartCondition" ":" BooleanExpression ";" ; 
RepeatUntilCondition :  "RepeatUntilCondition" ":" 
BooleanExpression ";" ;  
PreCondition : "PreCondition" ":" BooleanExpression ";" ;  
PostCondition : "PostCondition" ":" BooleanExpression ";" ; 
InvariantCondition : "InvariantCondition" ":" BooleanExpression 
";" ; 
EndCondition : "EndCondition" ":" BooleanExpression ";" ; 
Interface : /* here the xml schema specifies any order */ 
  In? 
  InOut? ; 
In : "In" ":" "{" (DeclaredVariable ";" )* "}" ; 
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InOut : "InOut" ":" (DeclaredVariable ";" )* "}" ;  
DeclaredVariable : IntegerVariable | RealVariable | 
BooleanVariable | StringVariable | PointerVariable ; 
IntegerVariable : NCName ; 
RealVariable : NCName ; 
BooleanVariable : NCName ; 
StringVariable : NCName ; 
PointerVariable : NCName ; 
VariableDeclarations : ( VariableDeclaration )* ; 
VariableDeclaration : ( "Boolean" ":" "{" (BooleanVariable ("=" 
BooleanValue)? ";" )* "}" ) | 
                      ( "Integer" ":" "{" (IntegerVariable ("=" 
IntegerValue)? ";" )* "}" ) |  
                      ( "Real" ":" "{" (RealVariable ("=" 
RealValue)? ";" )* "}" ) | 
                      ( "String" ":" "{" (StringVariable ("=" 
StringValue)? ";" )* "}" ) | 
                      ( "Pointer" ":" "{" (PointerVariable ("=" 
PointsTo)? ";" )* "}" ) ; 
BooleanValue : boolean | "UNKNOWN" ; 
IntegerValue : integer | "UNKNOWN" ; 
RealValue : double | "UNKNOWN" ; 
StringValue : string | "UNKNOWN" ; 
PointsTo : ExternalStructName InitialValue? ; 
ExternalStructName : string ; 
InitialValue : integer ; 
Command : "Command" ":" (DeclaredVariable "=")? CommandName "(" 
Arguments? ")" ";"; 
Arguments : ((IntegerValue | RealValue | BooleanValue | 
DeclaredVariable ) ";"? )* ; 
Assignment : "Assignment" ":"  (BooleanAssignment | 
NumericAssignment) ; 
BooleanAssignment : BooleanVariable "=" BooleanRHS ";"; 
NumericAssignment : ( IntegerVariable | RealVariable ) "=" 
NumericRHS ";"; 
BooleanRHS : BooleanExpression ; 
NumericRHS : NumericExpression ; 
BooleanExpression : OR | AND | NOT |  
      GT | GE | LT | LE | EQ | NE |  
      BoleanVariable | BooleanValue | Lookup | "(" 
BooleanExpression ")" ; 
OR : "OR" ( BooleanExpression )+ ; 
AND : "AND" ( BooleanExpression)+ ; 
NOT : "NOT" BooleanExpression ; 
GT : NumericExpression ">" NumericExpression ; 
GE : NumericExpression ">=" NumericExpression ; 
LT : NumericExpression "<" NumericExpression ; 
LE : NumericExpression "<=" NumericExpression ;  
EQ : EQBoolean | EQNumeric | EQInternal ; 
EQBoolean : BooleanExpression "==" BooleanExpression ; 
EQNumeric : NumericExpression "==" NumericExpression ; 
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EQInternal : NodeState "==" NodeState | NodeOutcome "==" 
NodeOutcome ; 
NEExpression : NEBoolean | NENumeric | NEInternal ; 
NEBoolean : BooleanExpression "!=" BooleanExpression ; 
NENumeric : NumericExpression "!=" NumericExpression ; 
NEInternal : NodeState "!=" NodeState | NodeOutcome "!=" 
NodeOutcome ; 
NodeState : NodeStateVariable | NodeStateValue ; 
NodeStateVariable : NodeId".state" ; 
NodeStateValue : "WAITING" | "EXECUTING" | "FINISHING" | "FAILING" 
| "FINISHED" ; 
NodeOutcome : NodeOutcomeVariable | NodeOutcomeValue ; 
NodeOutcomeVariable : NodeId".outcome" ; 
NodeOutcomeValue : "SUCCESS" | "FAILURE" | "SKIPPED" | 
"INFINITE_LOOP"; 
NodeTimepointValue : NodeId"."NodeStateValue"."Timepoint ; 
Timepoint : "START" | "END" ; 
NumericExpression : ADD | SUB | MUL | DIV |  
   IntegerVariable | RealVariable | IntegerValue | 
RealValue |  
   Lookup |  NodeTimepointValue | PlusInfinity | 
MinusInfinity |  
   "(" NumericExpression ")" ; 
PlusInfinity : "INF" ; 
MinusInfinity : "-INF" ; 
ADD : NumericExpression "+" NumericExpression ; 
SUB : NumericExpression "-" NumericExpression ; 
MUL : NumericExpression "*" NumericExpression ; 
DIV : NumericExpression "/" NumericExpression ; 
Lookup : LookupWithFrequency | LookupOnChange | LookupNow ; 
LookupWithFrequency : "LookupWithFrequency" ":" StateName "," 
Parameter* "," Frequency ";" ; 
StateName : string ; 
Frequency : RealValue | DeclaredVariable ; 
LookupOnChange : "LookupOnChange" ":" StateName "," Parameter* 
("," Tolerance)? ";" ; 
Tolerance : Value | DeclaredVariable ; 
LookupNow : "LookupNow" ":" StateName ";" ;  
Parameter: string ; 
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Appendix B: Automated Verification for PLEXIL 
 
PLEXIL is designed to be easily verifiable. A future proposal is to use a combination of 
formal methods and advanced testing techniques to provide automated support for the 
design and verification of the PLEXIL language and execution system.  
 
The verification effort will be performed at several levels: 
– Plan verification. Our goal is to design the PLEXIL language to facilitate verification 

and to build tools that automate the verification of plans written in the PLEXIL 
language. We have already worked towards designing the language to facilitate 
verification. For example, the current definition of the PLEXIL language requires 
explicit interfaces between execution nodes, which facilitate checking that typed 
variables are used properly (e.g. a node can not do an assignment to an “in” variable).  
We also plan to build a tool that will check key properties for PLEXIL plans. The idea 
is to check that plan properties are met before executing the plan. For example, we can 
check that temporal constraints between execution nodes don’t introduce deadlock or 
that all the node conditions are satisfiable (hence all the nodes can potentially execute). 
We will use model checking technology for automated plan verification. We are 
working on an automatic translation from XML PLEXIL plans into a Java 
representation (using the Castor tool, which translates XML schemas into Java code), 
and to use the Java PathFinder model checking tool developed at Ames to check 
properties of the translated plans. Java PathFinder analyzes all the features of Java; in 
addition it uses decision procedures to handle numeric constraints.  We plan to use the 
plan verification tool in conjunction with the user interface developed on top of 
Maestro - the idea is that the user will create or modify a PLEXIL plan and will use our 
tool to validate the plan, before sending it to the executive. 
 

– Automated test plan generation.  Another direction for work is to develop a tool for 
automated generation of test plans, written in PLEXIL. We will build upon our 
previous work on plan generation for the CRL Exec (for the K9 rover developed at 
Ames), where we developed a tool that generates hundreds of complex plans in a few 
seconds. Our approach will use specification-based testing techniques, where the 
specification is the PLEXIL grammar. We will use symbolic execution techniques to 
deal with the time/data constraints in plans. The generated plans will be used to test the 
PLEXIL execution system and the various PLEXIL translators that will be developed in 
the later phases of the project. 
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Appendix C: PLEXIL Plan Editor 
 
A graphical editor for viewing and editing task plans specified in the PLEXIL Language is 
currently being prototyped at IA Tech, Inc. The PLEXIL Plan Editor (PPE) is developed as 
a component under the Ensemble architecture and implemented on top of the Eclipse 
Platform. 
 

C.1 The Ensemble Platform 
 
Ensemble is an open architecture for the development, integration, and deployment of 
mission operations software.  It is a collaboration effort shared by multiple teams from 
multiple NASA centers, including the Jet Propulsion Laboratory (JPL) and Ames Research 
Center, with the objective of bringing a diverse set of NASA mission operations tools into 
a common framework based on the Eclipse Platform.  Currently, JPL is developing 
Maestro based on the Mars Exploration Rover (MER) Science Activity Planner (SAP) and 
Ames is developing SPIFe based on the MER Constraint Editor and MAPGEN software.  It 
is expected that many other NASA ground-based mission operations tools will be migrated 
to the Ensemble architecture in the future. 
 
Developing the PLEXIL Plan Editor under the Ensemble architecture provides the 
advantage of leveraging other Ensemble components when creating a PLEXIL plan.  For 
example, the user can use various Ensemble image viewers to visualize the terrains and 
designate targets.  The locations of the targets can then be used as parameters in the plan.  
We also envision that the PLEXIL plan can be tied to SPIFe so that it can provide a 
timeline view and a constraint editor to the plan. 
 
The Ensemble architecture is based heavily upon the tools and technologies of the Eclipse 
Platform.  Eclipse is an open source software development project providing a universal 
platform for integrating development tools.  At the core of Eclipse is an architecture for 
dynamic discovery, loading, and running of plug-ins.  The platform handles the logistics of 
finding and running the right code.  Each plug-in can then focus on doing a small number 
of tasks well.  The Ensemble components are developed as plug-ins on the Eclipse 
Platform.  The plug-ins are then used to build customized operations tools, such as 
Maestro, using the Eclipse Rich Client Platform. 
 
In addition to the Eclipse Platform, the Eclipse Project also provides a full-featured 
integrated development environment (IDE). The IDE consists of a set of Java Development 
Tools (JDT) and the Plug-in Development Environment (PDE) 
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C.2 The Plexil Plan Editor 
The PLEXIL Plan Editor allows the user to create a PLEXIL plan by adding different types 
of nodes to the editing area, connecting the child nodes to the node-list nodes, and 
specifying attributes and actions of each node.  Plan editing functions that have been 
implemented include selecting, deleting, moving, resizing, and reconnecting the nodes.  All 
editing actions can be undone and redone an unlimited number of times.  When a node is 
selected, its attribute and action fields are displayed and can be edited in the Property 
Sheet.  For the initial prototype, all the fields are entered as text strings. 
 
The PLEXIL Plan Editor is implemented based on the model-view-controller (MVC) 
pattern of the Eclipse Graphical Editing Framework (GEF). 
 
C.2.1 The Model 
 
The first step of building the PPE is to create a model of the PLEXIL plan.  The model 
stores all data that may be edited or viewed by the user.  That means besides the pertinent 
data relevant to a PLEXIL plan, the model also includes data for visual representation, such 
as the position and size of each node. 
 
The model is composed of Java objects of various classes.  We first define a base Node 
class which contains the common attributes of the three types of PLEXIL nodes.  We then 
define the ListNode, CommandNode, and AssignmentNode classes by extending the base 
Node class with additional action fields. In addition to the node classes, the model also 
includes the Plan class which contains an array of all the nodes in the plan, and the 
Connection class which contains the source and target node of the connection. 
 
The model also provides ways for 1) persistence such that the model can restore its state 
from permanent storage, and 2) other objects to listen to changes in the model.  A super 
class ModelElement is implemented to provide these two functionalities. 
 
C.2.2 The Views 
 

We use predefined figures provided by Draw2D to represent our model. The Plan is 
represented by the Figure class equipped with the FreeformLayout manager.  This gives 
the user the freedom to drag and drop nodes at any location.  Node-List nodes are 
represented by Ellipse and action nodes by RectangleFigure.  To distinguish the two types 
of action nodes, Command nodes are colored yellow while the Assignment nodes are 
colored green.  Each node is also labeled with its NodeID. The figure is updated whenever 
the NodeID is changed. The connection linking a Node-List node to its child node is 
represented by a polyline decorated with an arrow. 
 
C.2.3 The Controllers 
 
For each element of the model, we define a controller so that the element can be 
manipulated by the user.  The role of the controllers (or edit parts in GEF terminology) is to 
understand the model, listen to events about its changes, and update views correspondingly.  
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Each controller implements the PropertyChangeListener interface. When the controller is 
activated, it registers with the model as the receiver of the property change events.  Upon 
deactivation, it removes itself from the list of listeners.  Finally, when it receives a property 
change event, it refreshes one or more visual aspects of the figure representing the model 
based on the name of the property and the new and old values. 
 
Figure 15 is a screen shot of the PLEXIL Plan Editor with the DriveRR plan.  The plan 
commands the rover to drive forward until it sees a ``red rock''.  In this plan, the actions are 
controlled by the ContDrive node.  The StartDrive node issues a drive command to the 
rover (by calling a functional layer API Rover:drive) as soon as it is instantiated, and stops 
the rover whenever the interface variable stop becomes true.  The assignment node 
SenseRR sets the haveRR variable when a red rock is detected, while the assignment node 
SetRRFlag sets the stop variable when haveRR is set. 
 
In the screen shot the StopDrive node is selected so its attributes and actions are displayed 
in the Property Sheet.  The node is executed when the StartCondition is satisfied; that 
means the stop variable is true and the state of the StartDrive node is FINISHED.  Since 
the Rover:drive command is asynchronous, the StartDrive node is in the FINISHED state 
after the command is successfully issued. 
 

 
Figure 15: PLEXIL plan editor 
 

C.2.4 PLEXIL Plan Editing Perspective 
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A PLEXIL Plan Editing perspective is implemented to facilitate the use of the editor.  In 
Eclipse, a perspective is a stacked, tiled, or detached arrangement of views and editors.  In 
the PLEXIL perspective, we place the Editor to the left of the workbench and the Property 
Sheet to the right.  The perspective is added to Ensemble so that when the user selects this 
perspective the workbench will only show the view and editor that are relevant for editing a 
PLEXIL plan. 
 
C.2.5 PLEXIL Plan Editing Actions 
 
Two actions are implemented and they are added to the menu of the Ensemble workbench 
when the PLEXIL Plan Editing Perspective is selected.  The OpenPlanAction is used to 
open an existing plan file saved in the workspace.  The ExportPlanAction is used to 
export the plan to a file containing its PLEXIL XML representation. 
 
Below is the XML5 representation of the DriveRR plan. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<Node xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
      xsi:noNamespaceSchemaLocation="schema/plexil.xsd"> 
    <NodeAttributes> 
        <NodeID>DriveRR</NodeID> 
        <Comment>Drive Rover to Red Rock</Comment> 
        <Priority>1</Priority> 
        <Variables>Bool haveRR = false; stop = false</Variables> 
    </NodeAttributes> 
    <NodeBody> 
        <Node> 
            <NodeAttributes> 
                <NodeID>ContDrive</NodeID> 
                <Priority>1</Priority> 
                <Interface>in stop</Interface> 
            </NodeAttributes> 
            <NodeBody> 
                <Node> 
                    <NodeAttributes> 
                        <NodeID>StartDrive</NodeID> 
                        <Priority>1</Priority> 
                    </NodeAttributes> 
                    <NodeBody> 
                        <Commands>Rover:drive</Commands> 
                    </NodeBody> 
                </Node> 
                <Node> 
                    <NodeAttributes> 
                        <NodeID>StopDrive</NodeID> 
                        <StartCondition>stop && startDrive.state == 
FINISHED</Start-Condition> 
                        <Priority>1</Priority> 
                        <Interface>in stop</Interface> 
                    </NodeAttributes> 
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                    <NodeBody> 
                        <Commands>Rover:stop</Commands> 
                    </NodeBody> 
                </Node> 
            </NodeBody> 
        </Node> 
        <Node> 
            <NodeAttributes> 
                <NodeID>SenseRR</NodeID> 
                <StartCondition>lookup("found RR", 10) == true</Start-
Condition> 
                <Priority>1</Priority> 
                <Interface>inout haveRR</Interface> 
            </NodeAttributes> 
            <NodeBody> 
                <Assignments>haveRR = true</Assignments> 
            </NodeBody> 
        </Node> 
        <Node> 
            <NodeAttributes> 
                <NodeID>SetRRFlag</NodeID> 
                <Priority>1</Priority> 
                <Interface>in haveRR ; inout stop</Interface> 
            </NodeAttributes> 
            <NodeBody> 
                <Assignments>stop = true</Assignments> 
            </NodeBody> 
        </Node> 
    </NodeBody> 
</Node> 
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Appendix D: Compete Set of Node State Transitions 
 
Node state transitions are affected by only a small subset of condition changes either in self 
(the node itself) or an ancestor or descendant of the node. The table below presents the 
complete set of transitions: 
 

Node B 
relation 
to Node 

A 

Current 
State of 
Node B 

Node 
A - 

Start 
Condit
ion T 

Node A - 
End 

Condition 
T 

Node A - 
Invariant 

Condition F 

Node A - 
Comman
d Abort 
Done Notes 

Self Waiting 
TD_Wa

iting       

End + invariant have 
no impact on waiting 
node 

Self - List Executing   
TD_Exec_L

istNode 
TD_Exec_Lis

tNode   
Start cond has no 
effect during exec 

Self - 
Cmd Executing   

TD_Exec_C
mdNode 

TD_Exec_Cm
dNode   

Start cond has no 
effect during exec 

Self - 
Assign Executing   

TD_Exec_A
ssignNode 

TD_Exec_As
signNode   

Start cond has no 
effect during exec 

Self Finishing     TD_Finishing   

Start or end condition 
irrelevant once node 
in finishing state 

Self Failing         

Start, end or 
invariant condition 
irrelevant once node 
in failing state 

Self 
Cmd_Faili

ng       
TD_Exec_

Cmd 

Start or end condition 
irrelevant and 
invarient yields no 
change 

Self Finished         
Nothing happens once 
a node is finished 

Descend
ent Waiting   

TD_Waitin
g TD_Waiting   

Only end or invariant 
failure of ancestor 
can affect a waiting 
node 

Descend
ent - List Executing     

TD_Exec_Lis
tNode   

Ancestor end 
condition has no 
affect on node 
already executing, 
finishing or failing 

Descend
ent - 
Cmd Executing     

TD_Exec_Cm
dNode   

Ancestor end 
condition has no 
affect on node 
already executing, 
finishing or failing 

Descend
ent - 

Assign Executing     
TD_Exec_As

signNode   

Ancestor end 
condition has no 
affect on node 
already executing, 
finishing or failing 
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Descend
ent Finishing     TD_Finishing   

Ancestor end 
condition has no 
affect on node 
already executing, 
finishing or failing 

Descend
ent Failing     TD_Failing   

Ancestor failure 
changes handling of a 
failing descendent (no 
repeat, diff outcome) 

Descend
ent 

Cmd_Faili
ng         

Cannot happen - 
commands have no 
descendents 

Descend
ent Finished         

Nothing happens once 
a node is finished 

Ancestor Waiting         

Cannot happen - a 
waiting node has no 
descendents waiting 
for state changes 

Ancestor Executing   
TD_Exec_L

istNode 
TD_Exec_Lis

tNode 
TD_Exec_
ListNode 

Ancestor can only be 
list - may be waiting 
for descendent to 
complete execution 

Ancestor Finishing   
TD_Finishi

ng TD_Finishing 
TD_Finishi

ng 

Ancestor may be 
waiting for 
descendent to 
complete execution 

Ancestor Failing   TD_Failing TD_Failing 
TD_Failin

g 

Ancestor may be 
waiting for 
descendent to 
complete execution - 
so have to check 

Ancestor 
Cmd_Faili

ng         

Cannot happen - an 
ancestor cannot be a 
command 

Ancestor Finished         
Nothing happens once 
a node is finished 

 
 

• Transition diagram for state Waiting (TD_Waiting) is shown in Figure 6 
• Transition diagram for NodeList in state Executing (TD_Exec_ListNode) is shown 

in Figure 7 
• Transition diagram for an Assignment node in state Executing 

(TD_Exec_Assignment) is shown in Figure 8 
• Transition diagram for a Command node in state Executing is shown in 

(TD_EXEC_CmdNode) is shown in Figure 9 
• Transition diagram for state Finishing (TD_Finishing) is shown in Figure 10 
• Transition diagram for state Failing (TD_Failing) is shown in Figure 12 

 
 
 
 
 
 






