
April 2006

Plan Execution Interchange Language (PLEXIL)

Tara Estlin
Jet Propulsion Laboratory

Ari Jónsson
NASA Ames Research Center

Corina Pasareanu
QSS Group, Inc.

Reid Simmons
Carnegie Mellon University

Kam Tso
IA Tech Inc

Vandi Verma
QSS Group, Inc.

NASA/TM-2006-213483

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California, 94035-1000

https://ntrs.nasa.gov/search.jsp?R=20060019246 2019-08-29T21:47:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10517485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

April 2006

Plan Execution Interchange Language (PLEXIL)

Tara Estlin
Jet Propulsion Laboratory

Ari Jónsson
NASA Ames Research Center

Corina Pasareanu
QSS Group, Inc.

Reid Simmons
Carnegie Mellon University

Kam Tso
IA Tech Inc

Vandi Verma
QSS Group, Inc.

NASA/TM-2006-213483

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California, 94035-1000

 1

Plan Execution Interchange Language
(PLEXIL)
Version 0.1

Ari Jónsson*, Corina Pasareanu+, Vandi+ Verma1
<ajonsson,pcorina,vandi>@email.arc.nasa.gov

USRA-RIACS*, QSS+, at NASA Ames Research Center

Reid Simmons
reids@cs.cmu.edu

Carnegie Mellon University

Kam Tso
kam.s.tso@jpl.nasa.gov

IA Tech Inc.

Tara Estlin
tara.estlin@jpl.nasa.gov

Jet Propulsion Lab

Technical Content Dated: 09/28/052

1 Introduction
Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans
to be executed are generated on board the spacecraft or on the ground. Plan execution
frameworks vary greatly, due to both different capabilities of the execution systems, and
relations to associated decision-making frameworks. The latter dependency has made the
reuse of execution and planning frameworks more difficult, and has all but precluded
information sharing between different execution and decision-making systems.

As a step in the direction of addressing some of these issues, a general plan execution
language, called the Plan Execution Interchange Language (PLEXIL), is being developed.
PLEXIL is capable of expressing concepts used by many high-level automated planners
and hence provides an interface to multiple planners. PLEXIL includes a domain
description that specifies command types, expansions, constraints, etc., as well as feedback
to the higher-level decision-making capabilities.

1 Names in alphabetical order. In addition Emmanuel Benazera, Rich Levinson, Rich Washington, and
Howard Cannon provided invaluable insights.
2 For an updated version of the document, email plexil@nx.arc.nasa.gov. We also expect to make this
document available on our web page very soon, http://ti.arc.nasa.gov/plexil.

 2

This document describes the grammar and semantics of PLEXIL. It includes a graphical
depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on
implementing a universal execution system, based on PLEXIL, using state-of-the-art rover
functional interfaces and planners as test cases.

PLEXIL extends many execution control capabilities of other systems. The key
characteristics of PLEXIL are that it is compact, semantically clear, and deterministic given
the same sequence of measurements. At the same time, the language is quite expressive
and can represent simple branches, floating branches, loops, time- and event- driven
activities, concurrent activities, sequences, and temporal constraints. The core syntax of
the language is simple and uniform, making plan interpretation simple and efficient, while
enabling the application of validation and testing techniques.

In conjunction with the PLEXIL language, a general execution system will be built. The
system builds on the Coupled Layer Architecture for Robotic Autonomy (CLARAty), a
two-layer software architecture that was developed to enable both a plug-and-play
capability and a tighter coupling of high-level decision-making planners and the interface
to hardware. The CLARAty architecture has successfully enabled interoperability at the
functional layer, which is the interface to the hardware. The development of the PLEXIL-
based execution system will provide a level of interchangeability for the decision layer.

As test cases for the general PLEXIL execution engine, two different types of planners will
be utilized for generating PLEXIL plans and re-planning based on feedback information.
One is a constructive planner (called PICO) that generates long-term contingent plans,
which are flexible. The other is an iterative repair-based planner (called CASPER), which
generates fixed plan instances but can easily re-plan in the face of changes.

Figure 1: An instance of the architecture where PLEXIL is shown to interface with the CASPER and
PICO planners

On-board planner
(CASPER planner)

Off-board planner
(PICO Contingent Planner)

Universal Executive

CLARAty Functional Layer

Interface Interface

Plan Execution
Interchange
Language (PLEXIL)

 3

Figure 2: PLEXIL - Executive Interface

The domain description is an external library that contains declarations of the names of
states, arguments of commands, etc. for interfacing with the functional layer. The domain
description defines the interface of the executive with the functional layer. In addition it
can also contain declarations for general library functions that, for example, perform a
complicated mathematical calculation.

Consider the following stylized plan:

• Drive rover
– Until target in view, or
– Until time-out at time 10

• Take Navcam
– After drive, if drive timed out

• Take Pancam
– After drive, if target in view

• Heat up to 10C
– Whenever temp below 0

Figure 3 and Figure 4 show an example where alternate options in the same PLEXIL plan
above are executed based on different sensed states of the world. In Figure 3 the drive
times out and a Navcam image is taken based on the PLEXIL plan above. Execution in
Figure 4 follows an alternate path since in this scenario the target is reached. A Pancam
image is taken instead, based on the same PLEXIL plan above.

 4

Figure 3: An example of execution where the drive times out.

Figure 4: An example of execution where the target is reached.

The domain specification given for this scenario contains the following mapping:

Commands: void rover_drive(int speed);
 void rover_stop();
 void take_navcam();
 void take_pancam();
 void turn_on_heater();
StateNames: temperature, target_in_view;

Here, Commands are function calls provided by the low level interface to the rover
(functional layer) and StateNames are sensed or derived values that can be accessed
from the functional layer.

Note that the actual code sent to the Universal Executive will be in XML, which is a fairly
standard representation for information exchange, but is not easy to read.
Example PLEXIL syntax for executing the above scenario is shown in Table 1.

Drive Pancam

Heat Heat

Temp:

Time: 0 5 10

Target

Drive Navcam

Heat Heat

Temp:

Time: 0 5 10

Target

 5

2 PLEXIL Syntax
2.1 Introduction
The PLEXIL plan execution language is based on a hierarchical representation of execution
nodes. Execution nodes describe both initiation of real-world actions, and the control of
their execution. The nodes are arranged into hierarchical trees where leaf nodes are action
nodes and internal nodes are control nodes. The execution of each node is governed by a
set of conditions, such as when the node gets activated and when it is done. When action

Node: {
 NodeID: DriveToTarget;
 Boolean drive_done, timeout;

 NodeList: {

 Command: rover_drive(10);

 When
 AbsoluteTimeWithin:{10, POSITIVE_INFINITY}
 Sequence:{
 Command: rover_stop();
 Assign: timeout=true;
 }

 When
 LookupWithFrequency{target_in_view,10}==true;
 Sequence:{
 Command: rover_stop();
 Assign: drive_done=true;
 }

 When timeout==true
 Command: take_navcam();

 When drive_done==true
 Command: take_pancam();

 Node:{
 NodeID: Heater;
 StartCondition: LookupOnChange{“temperature”}<0
 EndCondition: LookupOnChange{“temperature”}>=10
 RepeatUntilCondition: false;
 Command: turn_on_heater();
 }
 }

}

Table 1: Plexil syntax for the example shown in Figure 3 and Figure 4

 6

nodes are executed, commands are sent to the rover, whereas when internal nodes are
executed, they are expanded to the next level of nodes in the tree.
For a simple example, consider the following PLEXIL plan, with PLEXIL syntax shown in
bold and domain specific variables in normal font:

Node:{
 NodeId: DriveUntilStuck;
 RepeatUntilCondition: LookupOnChange{“Rover:wheelStuck”}==false;
 NodeList:{
 Node:{ DriveOneMeter
 Command: Rover:Drive(1);
 }
 }
}

The plan has one action node, which drives the rover one meter, by calling the appropriate
command in the functional layer. The plan then has one control node, which simply keeps
repeating the action node until the rover is stuck. The question of whether the rover is
stuck is answered by lookupOnChange, which requests information from the functional
layer.
In this section, we describe the core notions and elements of the PLEXIL syntax. The full
grammar is given in Appendix A.

2.2 Node Description
There are three types of nodes in PLEXIL. The internal or NodeList nodes simply contain
a list of child nodes. The action node types can be split into two types - external action
nodes, i.e., Command nodes, and internal action nodes, also known as Assignment nodes.
Each node has the following elements, called NodeAttributes.

NodeAttributes:

Identifier (NodeID): A unique symbolic name
StartCondition: Boolean expression
EndCondition: Boolean expression
PreCondition: Boolean expression
PostCondition: Boolean expression
InvariantCondition: Boolean expression
RepeatUntilCondition: Boolean expression
Priority: Integer
Variables: List of local variable declarations
Interface: List of variables “passed” to node

The execution of a node is driven by the node conditions, which are Boolean expressions.
Conditions capture internal and external information as well as temporal relationships. A
NodeID is a unique identifier for a node. NodeIDs are locally scoped. Hence node A and
node B may both have children called C. The child of node A is referenced as A.C, the
child of node B as B.C, etc. Two siblings in the node tree are not allowed to have the same
name.

 7

Nodes also have type-specific elements called the NodeBody. For list nodes, the element is
a list of nodes; for assignment nodes, it is an assignment statement where the left-hand side
is a parameter variable for that node; and for command nodes it is a call to a functional
layer function.

NodeBody:
 NodeList or Assignment or Command

2.3 External and Internal Information

2.3.1 External States
To control execution, PLEXIL node elements may acquire information from world events
and states. In PLEXIL we refer to world events and states as world state. The specific
names used to look up world state are defined in a domain description.

Access to events and states is via one-time lookups, notifications of change in value, or
lookups at a given frequency. The most common update is for temporal information, such
as a temporal value, e.g., a comparison like:

AbsoluteTimeWithin(“2005-10-09 14H06M12S UTC” ,
PLUS_INFINITY)

In the example above an event will be triggered when the absolute time is in the interval
[“2005-10-09 14H06M12S UTC”, PLUS_INFINITY]
PLEXIL expects that all lookups, commands, and general function calls have no side
effects. In other words, they only affect the state of execution through the value they return.

2.3.2 Internal Variables
In addition to the external states, a PLEXIL plan has access to the internal state of a node.
There are a number of internal variables, such as the start and end times of each state of a
node, the execution state of a node, etc. These are typically used to either track the state of
PLEXIL execution, or to store information from external states. These variables are global
and are referenced with a structure member notation:

node.state

node.state.Timepoint

node.outcome

node.failureType

Timepoints are integers that are bound to actual values at run time. The start and end
Timepoint of each node state are stored.

2.3.3 Declared Local Variables
Other variables are defined as local variables in nodes. Variable declarations are similar to
corresponding declarations in programming languages. A counter, for example, could be
defined in a node that leads to a looping structure:

Integer i=0

 8

Variables passed as parameters to lookups, commands, and functions are passed by value.
Hence the value of these variables is not changed.

2.3.4 Interfaces
Finally, declared variables can appear in the interface of nodes. Interface variables that are
read-only are specified with the keyword in and interface variables that are read-write are
specified with the keyword inout. inout interface variables are passed by reference from a
parent node to a child node.

A child of a node only has access to the variables declared in the parent that are explicitly
passed via the interface. If a node has a variable in its interface, this variable must be in the
interface of all the ancestor nodes up to the node that declared it.

2.4 Information Access and Update

2.4.1 Lookups
Lookups can appear in Assignments or Conditions. Lookups are of three types:

1. LookupOnChange:
LookupOnChange{“Rover battery level”, 1}

2. LookupWithFrequency :
LookupWithFrequency{“Rover battery level”, 10)

3. LookupNow:
LookupNow{“Rover battery level”}

The value of world states can be accessed via lookups. Each external state is identified by a
domain-specific name, e.g., “Rover battery level”. A LookupNow which is a
single (request-based) lookup simply specifies the name, e.g.:

LookupNow{“Rover battery level”}

and the value returned is the value of state “Rover battery level” when the
lookupNow is done.

A LookupWithFrequency which is a repeated lookup specifies a frequency for checking the
state value, e.g.:

LookupWithFrequency{“Rover battery level”, 10}

meaning that the state value should be checked 10 times per second.

A LookupOnChange is an event-based repeated lookup and returns the state value
whenever it changes. A tolerance parameter may be specified to restrict the value to be
returned only when it changes by more than the specified tolerance, which is 1V here.
 LookupOnChange {“Rover battery level”, 1}

The return value of a lookup is of any of the types allowed in the domain description.

 9

Note that an internal PLEXIL event may or may not be triggered when a value is returned
or even when the value changes. An internal PLEXIL event is generated only when an
expression in a condition evaluates to true.

2.4.2 Assignment
An Assignment is of the form:

Variable = Expression

where, the Expression can be a declared variable (including interface variable), an internal
state variable (Node.state.Timepoint), a LookupOnce, a constant, or a numeric operation.
The LHS (Left Hand Side) of the assignment (Variable) can only be a declared variable
including interface variable.

2.4.3 Command
A Command is of the form:

Variable_to_store_return_value = Command_name list_of_arguments

Commands are the interface to the functional layer, or library calls (e.g. functions to
perform complex computation) specified in the domain description. The command name is
specified in the domain description. The arguments to the command may be variables,
declared or internal states, or constants. Although numeric operations and lookups are not
allowed in the list of arguments, this is not a real limitation since assignments may be used
to assign values to variables that may be used as parameters to commands.

The Variable_to_store_return_value of a command is optional. It is a variable that must be
previously declared in the node or passed through its interface from an ancestor.

2.4.4 Conditions
Conditions drive the execution of each node. Each condition is evaluated with a Boolean
expression. Boolean expressions are arbitrary logical formulas, without quantification,
where each predicate is either a temporal relation or a data relation. Relations are based on
Boolean expressions or standard comparisons, such as equality, inequality, “less than or
equal,” etc. Relations can refer to either internal variables, external state and event
information, or time. We allow getting current time through a lookup. Temporal relations
CurrentTimeWithin and AbsoluteTimeWithin are also provided as syntactic sugar.

Based on the way conditions are checked, we have two types of conditions: gate conditions
(monitored continuously) and check conditions (checked once):

Gate conditions:

• StartCondition
• EndCondition
• InvariantCondition

 10

Check conditions:

• PreCondition
• PostCondition
• RepeatUntilCondition

All of the above conditions may be Data or Temporal conditions or Boolean combinations
of them. Data conditions are constraints on internal or external variables, which are read
via lookups (details in section 3.2). Temporal conditions specify absolute time constraints
or time constraints relative to Timepoints in nodes.

Some example conditions:

CurrentTimeWithin{node1.FINISHED.START, +[20S,30S]}

LookupOnChange{“Rover:batteryCharge”} > 120.0

node3.state == FINISHED && node3.outcome == SUCCESS

Here, node1.FINISHED.START represents the Timepoint at which node1 entered state
FINISHED. The RelativeTimeWithin condition above may be understood by representing
current time explicitly as T. Then CurrentTimeWithin{node1.FINISHED.start, [20S,30S]}
is equivalent to:

T ∈ [node1.state.FINISHED.START+20S,
node1.FINISHED.START+30S]

Lookups that appear in gate conditions must be of type event based or frequency based, and
lookups that appear in check conditions must be request based.

2.5 Domain Description Syntax
The domain description syntax includes the following elements:

• List of state variables that may be accessed through lookups:

 StateVariables: ”StateVariables:{“ (Type StateVariableName
“;”)* “}”

• List of commands and general functions:

 FunctionDeclaration: ”FunctionDeclaration: {” (Type

 FunctionName ArgumentDeclaration* “;”)* “}”

 ArgumentDeclaration : Type ArgumentName “;”

• Interrupt handlers (other function declarations) to be invoked when a call to the

functional layer needs to be interrupted can also be specified:

 11

FunctionInterrupt: “FunctionInterrupt: {“ FunctionName HandlerName
ArgumentDeclaration* “}”

In PLEXIL Functions, Commands, and Assignments have no side effects. In other words,
they do not affect the state of executive in any way other than through return values.

3 PLEXIL Execution Semantics
3.1 Overview of Node Execution
This section describes the execution of a single node.

There are three main types of nodes. A node can be:

1. A Command node
2. An Assignment node
3. A NodeList node

The attributes listed below are internal to a node, hence they cannot be modified from
within a plan, but are accessible. In other words they can be read, in StartCondition,
assignments, etc:

Timepoint: Time at start or end of any state
state: Indicator of execution state
failureType: Indicates the cause for node failure (e.g.
INVARIANT_CONDITION_FAIL, PRECONDITION_FAIL, PARENT_FAIL
etc.)
failedExpression An integer that stores the number of the expression in the
condition (from the LHS) that caused the failure.
outcome: Indicates success or failure for a node, or whether the node was skipped

We assume that for each node the executive has access to the Parent and child nodes of the
node.

Each node must be in one and only one of the following states at any given time:

• Waiting
• Executing
• Finishing
• Failing
• Finished
• Command_Failing (only for command nodes)

The completion and outcome of a node are independent. If the state of a node is Finished,
all iterations of the node have completed. No node state transitions occur after this sink
state. The outcome of a node is a node attribute that provides additional information about
the result of node execution. A node may have any one of the following outcomes:

• SUCCESS
• FAILURE
• SKIPPED (node didn’t get to run)
• INFINITE_LOOP (type of failure)

 12

The outcome of a node is a NodeAttribute that is only valid when the node transitions out
of state Executing or Failing or when it is in state Finished. An outcome SKIPPED implies
that the node did not get to execute, and the outcome INFINITE_LOOP implies that the
node was poorly written and had an error that created an infinite loop.

The semantics of node execution is given in terms of states and transitions between states
that are triggered by condition changes. At each execution step, all condition changes that
may result in node state changes are processed until quiescence (in other words until all
nodes are waiting on a condition change affected by an external event, or have been
determined to be infinite loops). Precedence order is used to resolve conflicts. The set of
condition changes that cause node state transitions are as follows:

• StartCondition True
• InvariantCondition False
• EndCondition True
• Ancestor_InvariantCondition False
• Ancestor_EndCondition True
• All_children_Waiting_or_Finished True

Additional details on conditions are provided in section 3.2.

Figure 5 is a legend for Figure 6 to Figure 12. The ovals represent node states. The yellow
rectangles represent condition changes that cause a transition from a node state. The
rectangles with bars represent the outcome of a node. The lilac diamonds represent checks.
Transitions are represented by directed arrows. If there are multiple condition changes that
may happen simultaneously, integers are used to represent the precedence order. A
condition change with precedence order 1 gets priority over any other condition change. A
condition change with precedence order 2 is processed if there is no condition change with
priority 1 and so on. Some checks are a binary choice between True and False. Others are a
choice between True, False, and Maybe (represented as T, F, and M respectively in the
figures).

 13

Figure 5: Legend for all state transition diagrams to follow

Figure 6 captures all transitions from node state Waiting.

Figure 6 : Diagram representing all state transitions from a node in state WAITING

 14

Figure 7: Diagram representing all state transition from a NodeList node in state EXECUTING

Figure 8: All state transitions from a Command node in state EXECUTING

 15

Figure 9: All state transitions from an Assignment node in state EXECUTING

Figure 10: All state transitions from a node in state FAILING

 16

Figure 11: All state transitions from a Command node in state FAILING

Figure 12: All state transitions from a node in state FINISHING

A table with complete coverage of node state transitions is provided in Appendix D.

3.2 Conditions
Conditions come in two flavors: gate conditions (Start, End, and Invariant Conditions) and
check conditions (Pre, Post, and RepeatUntil Conditions). The gate conditions are checked
repeatedly3 until they evaluate to true, while check conditions are instantaneous - the result
determines what is done at that time. A gate condition is checked whenever any of the
variables in the Boolean expression representing the gate condition alter.

3 Of course, not all such conditions need to be implemented in that fashion – many, in
particular temporal ones, can be done by signals or other event notification mechanisms.

 17

In addition, the conditions are also classified in an alternate way. Start, End and
RepeatUntil conditions drive the execution of a node. Pre, Post, and Invariant conditions
monitor the execution of a node. Hence, these conditions are also called failure conditions.
If any of these conditions fail to evaluate to true, the node execution is aborted with a
failure indication.

Whenever a condition is no longer needed by the current state or any of the states that this
node may transition to in the current iteration, it is no longer checked. Hence, when a node
reaches state FINISHED, all the conditions associated with the node are no longer checked.
The conditions of ancestors and children of a node may also affect node execution as
described in section 3.1. Below we discuss only the affect of a conditions of a node on
itself.

3.2.1 StartCondition
The most commonly used gate condition is the StartCondition for a node. It determines
when a node is eligible for execution, and is thus a gate condition. To specify that a node
should start executing after a certain time, one can specify the following using an
AbsoluteTimeWithin Temporal condition:

StartCondition: AbsoluteTimeWithin{“2005-03-21 16H20M00S
UTC”, PLUS-INFINITY}

For example, a StartCondition could be:
LookupOnChange{“Rover battery level”} > 10.0
&& (powerTrackingNode.state == EXECUTING)

The current time is implicit in PLEXIL, but the start condition above may be understood by
making the current time explicit as T. The above start condition is then:

T ∈ [“2005-03-21 16H20M00S UTC”, PLUS-INFINITY]

When the StartCondition of a node becomes true, the PreCondition is checked. If the
PreCondition is true as well, the node state becomes EXECUTING, and all children of the
node are created. Assignment or command nodes are executed. The default StartCondition
of a node is true.

3.2.2 PreCondition
A PreCondition is a check condition. When the StartCondition of a node becomes true, the
PreCondition is checked. If the PreCondition evaluate to false, then the node fails before
its children are created. The outcome of the node is set to FAILURE and the
RepeatUntilCondition is checked to determine if the node will wait to run at a later time or
terminate completely. Even though the node did not execute, since it passed its
StartCondition it is considered to have undergone an iteration. The outcome will be
FAILURE and the failureType will be PRECONDITION_FAIL. It is possible in the

 18

implementation of the executive to save the variable bindings that made the PreCondition
fail in some debugging file or core file. The default PreCondition of a node is true.

3.2.3 InvariantCondition
Invariant conditions are gate conditions. They are typically used to capture constraints that
must be true for the entire duration of the execution of a node. Should the
InvariantCondition become false, the node fails and transitions to state FAILING. The
outcome is set to FAILURE and the failureType is INVARIANT_CONDITION_FAIL.
The default InvariantCondition of a node is true.

3.2.4 EndCondition
The EndCondition is a gate condition. It determines when the node goals have been
achieved, and execution can be wrapped up.

Intuitively a parent node finishes naturally when its children are FINISHED or when its
EndCondition becomes true (in which case the children are signaled to wrap up). Note that
the EndCondition does not lead to immediate end of node execution (one iteration), as child
processes may need to complete and clean up. The children are considered to have
“wrapped up” if all children are either in state WAITING or FINISHED, but no other
intermediate state.

When the EndCondition of a node becomes true, the node transitions to the state
FINISHING. The intent of state FINISHING is to wait for active children to complete. An
example of an EndCondition would be a confirmation from the functional layer that
something has been successfully completed; for example:

EndCondition: LookupOnChange{“E-box temperature”, 1} > 20.0

The default EndConditions of a node are different depending on the type of node: The
default EndCondition of a NodeList node is “All children finished”. The default
EndCondition of a Command node is “Command call returned” and the default
EndCondition of an Assignment node is “Assignment complete”. The actual EndCondition
of a Command and Assignment node is a conjunction of the explicitly specified expression
for the EndCondition and the default condition. This is not the case for a NodeList node.
When an explicit EndCondition is specified for a NodeList node, it replaces the default.

3.2.5 PostCondition
PostConditions are check conditions. The PostConditions of a node are checked after each
iteration of the node is completed. If the PostCondition is false, the node terminates with
outcome FAILURE and the relevant failure information is saved (the specific conjunct is
saved). Note that since a node’s PostCondition is not checked until all children have
completed, there is no need to halt running children. PostConditions are typically
redundant checks that ensure that the result of node execution was as desired.

 19

3.2.6 RepeatUntilCondition
RepeatUntilConditions are check conditions. Their purpose is to determine whether the
node should be re-run, or whether it is fully done and should be transitioned to state
FINISHED (no longer needed for the execution of the current plan). When a node has
completed an iteration of execution, its RepeatUntilCondition is checked. If it is true, then
the node is re-activated and put in state WAITING, and waits for its StartCondition to
become true again. Note that the node’s internal variables are all reset, just as if the node
were running for the first time4.

Once the node has ended the execution of the current iteration, i.e., its EndCondition is true
and all remaining children have completed their execution, the RepeatUntilCondition is
checked. If it evaluates to true, the node is eligible for execution when its StartCondition
becomes true. Otherwise, the node is permanently removed from the execution process.
An example of a RepeatUntilCondition is given in section 2.1, but an even more common
use is that of a loop counter check shown below:

Repeat-until-condition: counter < 10

3.3 Node Termination
There is a distinction between the completion of a single iteration of a node and the
completion of all iterations of a node. The completion of all iterations of a node is
represented by state FINISHED.

After each iteration of a node, the RepeatUntil condition of the node is checked. The node
resumes another iteration (goes back to state WAITING) until the RepeatUntil condition is
satisfied. Note that there are no static variables in a node and values are not maintained
between iterations. Variables such as counters are thus declared in the parent. All the
conditions associated with a node that has FINISHED execution are no longer monitored.

If a node’s own InvariantCondition fails, the instantiation used in the condition evaluation
is saved. If its parent caused the termination, a link to the ancestor node is saved as an
explanation. If the terminated node is a list node, all children are terminated. Terminating
non-executing children implies that the StartConditions of these nodes will no longer be
monitored.
If the terminated node is a command node, then the ongoing call into the functional layer
has to be interrupted. The domain description provides one way to do this. The interface to
the functional layer may also provide a more drastic way, such as killing a thread.

In PLEXIL, node “success” and “failure” is separate from the temporal state of a node.
The outcome field stores the “success” or “failure” of a node and the state field stores the
temporal state of a node, which may have the values WAITING, EXECUTING,
FINISHING, FAILING, and FINISHED. This is useful, for instance, when there is a
sequence of nodes, with one node constrained to start after another node is done. Often one

4 This is equivalent to saying that nodes do not have static local variables.

 20

wants for subsequent nodes in a chain should to continue even if one of the nodes in that
sequence has been terminated.

3.4 Node Synchronization
No two assignment nodes can execute in parallel if they write to the same variable. All
events received by the executive are queued.

3.5 Events
An event is either:

• A change in the state of the external world represented by declared variables or
lookups

• A change in the state of internal variables of the executive

3.6 Condition Changes
Events are queued. Each event is processed in the order in which it was received. All
conditions affected by the event are evaluated and one or more condition changes may
evaluate to true. Given only the previous state and any combination of the following
condition changes, the next state of a node is determined:

• StartCondition T
• InvariantCondition F
• EndCondition T
• Ancestor_inv_condition F
• Ancestor_end_condition T
• All_children_waiting_or_finished T

3.7 Expanded Semantics of Lookups and Conditions
There are a number of parameters for lookups. The subsets of parameters parsed for a
condition or assignment are different. For example, if a frequency is specified with a
lookup in an assignment it is ignored since an assignment is considered to be atomic.
An internal PLEXIL event is generated when the value returned by a lookup (either event
based or frequency based) has changed (i.e, the previous value is different from the current
value by more than the Tolerance, if specified). Note that a change in value is reported
based only on the information from lookups. The true state of the world may change at a
higher frequency.

Example 1: Consider the example shown in
Figure 13. There may be three classes of lookups:

1) Lookup with Frequency

StartCondition: LookupWithFrequency{x, 0.1;}

2) Lookup triggered by change

 21

StartCondition: LookupOnChage{x, 0.5}

3) Lookup now
These lookups appear in check conditions (such as the PreCondition below) or in

Assignments. This lookup is evaluated only once at the time the condition is evaluated.

StartCondition: LookupOnChange{y} == 4
PreCondition: LookupNow{x}!=1

Figure 13: Illustration of the difference between event-based lookups, frequency-based lookups, and
one-time request-based lookups

In this example, the first lookup (frequency based) returns the value of x at time T=10, T=20 and T=30
before an internal event is triggered when the value of x changes at T=30. In

Figure 13 a solid square represents that the value of the variable represented within the
square was returned, and a dashed square represents that in addition to the value being
returned an event was also triggered.

In the third case, the value of y is returned in an event-based manner from the functional
layer when it changes. The lookup for the value of x is part of a PreCondition and is
checked only once at the instance when the StartCondition is satisfied. The StartCondition
in this example is satisfied at T=35 when y=4, hence the lookup for x is performed at T=35
and the value of x is returned. In this example the PreCondition would evaluate to false

Example 2: Consider another example:

 22

StartCondition:{ LookupWithFrequency{x, 0.1} == 1 ^
LookupNow{y} == 3}

As shown in Figure 14 , an event is triggered at time T=10 to initialize the value of x from
UNKNOWN to 0. The StartCondition is checked, but the value of y at this point is still
UNKNOWN, so the condition does not yet hold. When the value of y changes to 2 another
event is triggered. This initializes the value of y to 2, and the StartCondition is checked
once again. In this case, the StartCondition evaluates to false since the value of x is 0. The
StartCondition is checked again at T=20, but since the value of x is still 0 the condition still
evaluates to false. The same happens when the value of y changes to 3. At time T=30, a
lookup of the value of x returns 1 and the StartCondition is checked again. This time it
evaluates to true.

Figure 14: Example of a condition that involved two lookups

Lookups simply read state values. The domain declaration contains a list of state names
that PLEXIL expects to look up “safely.” In other words, looking up these states should not
change any states. Note that an implementation of the executive may choose to cache state
values without violating this requirement.

It is good form to ensure that anything specified as a lookup in the domain description is
known to have a low latency return value, else it may delay the execution of a node in
which it is used (for example, if it were used in a PreCondition).

 23

Only LookupWithFrequency and LookupOnChange may be used in gate conditions (such
as start conditions, invariant conditions, and end conditions). If the lookup has a frequency,
the variables in these conditions are checked at the specified frequency. If a
LookupOnChange is specified, the variable is checked asynchronously.

StartCondition:{ LookupOnChange{“Rover battery level”} > 10.0

&& LookupWithFrequency{“E-box temperature”, 1} > 20.0

&& {powerTrackingNode.state == EXECUTING}

&& AbsoluteTimeWithin{“2005-03-21 16H20M00S UTC”, PLUS-INFINITY}}

In the example above, an asynchronous event is triggered whenever the rover battery level
changes. The value of the E-box temperature is checked at a frequency of 1 Hz. If this
value has changed since the last time it was checked, an internal event is triggered. The
state of the powerTrackingNode is maintained internally and it triggers an event when it
changes. Time too is maintained internally and events based on time are triggered
internally by the executive.

The start condition specified in the example above is checked whenever an event
corresponding to the a change in the rover battery level or the E-box temperature is
triggered or if the state of powerTrackingNode changes or if the current time enters the
window [“2005-03-21 16H20M00S UTC”, PLUS-INFINITY].

Only LookupNow may be used in a check condition (such as PreCondition, and
PostCondition) or an Assignment.

3.8 Commands
Calls to commands do NOT block execution. And command nodes do not finish until the
command call completes (so they can have duration).

3.9 Types
There are two extra values for data (FAIL and UNKNOWN) and one extra value MAYBE
for Boolean expressions. The domain of declared variables and values returned by lookups
and commands (which may, or may not, be assigned to declared variables) is extended with
two additional values – UNKNOWN and FAIL. UNKNOWN means uninitialized and
FAIL means that the lookup or command failed. UNKNOWN or FAIL have non-standard
interpretation in a Boolean expression. Below is an illustration of a non-standard truth
value we call MAYBE.

Assume we have an invariant condition:
 LookupWithFrequency{"Temperature", 1} > 0 && LookupWithFrequency{"Battery",
0.01} > 20
At initialization the values are:

Temperature = UNKNOWN
and

 24

 Battery = UNKNOWN

Whenever a variable that appears in a Boolean expression evaluates to UNKNOWN or
FAIL the expression evaluates to MAYBE. We extend the definition of logical operations
AND (^), OR (|), and NOT(!) as follows:

TRUE ^ MAYBE = MAYBE
FALSE ^ MAYBE = FALSE
TRUE | MAYBE = TRUE
FALSE | MAYBE = MAYBE
MAYBE ^ MAYBE = MAYBE
MAYBE | MAYBE = MAYBE
!MAYBE = MAYBE

When a condition evaluates to MAYBE or FAIL the node execution proceeds as shown in
Figure 6 to Figure 12. Also for example, MAYBE+3 would evaluate to MAYBE.
In addition, Node Timepoints that have not occurred are also UNKNOWN.

4 Illustrative Examples
4.1 Red Rock Scenario
In this scenario the rover is required to drive until it sees a “red rock”. The following
sections present variations on this basic scenario to illustrate different aspects of PLEXIL.

4.1.1 Drive to red rock with a continuous drive node
This example demonstrates the modularity that PLEXIL facilitates. The goal of the
example is to show how a general node, developed independent of the context that it may
be used in, is extended for use in a specific context.

In the example, the node ContDrive is a general node that issues a drive command to the
rover as soon as it is instantiated (by calling a functional layer API Rover:drive) and stops
the rover whenever the interface variable stop becomes true.

To use the general node ContDrive (which knows nothing about red rocks) in a scenario
where the rover is required to stop whenever it sees a red rock, we define two other nodes,
SenseRR and SetRRFlag, as follows:

Node:{
 NodeId:DriveToRedRock1;
 Boolean haveRR=false, stop=false;

 NodeList:{
 Node:{

 NodeId: SenseRR;
 Interface:{ inout: haveRR;}

 25

 StartCondition:
{ LookupWithFrequency:{“found RR”, 10}==true }

 Assignment: haveRR=true;
 }

 Node:{
NodeId:ContDrive
Interface:{ in: stop; }

 NodeList:{
 Node:{

NodeId: StartDrive;
 Command: "Rover:drive";

 }
Node:{

NodeId: StopDrive;
 Interface:{ in stop;}
 StartCondition:

{ stop==true &&
startDrive.state==FINISHED }

 Command: "Rover:stop";
 }
 }

}

 Node:{
NodeId: SetRRFlag

 Interface:{ inout stop; in haveRR; }
 StartCondition: haveRR == true;
 Assignment: stop = true;
 }

}
}

4.1.2 Drive 10m or to red rock with continuous drive node
In this example, the rover is required to drive until it either sees a red rock or has traveled a
distance of 10m. The purpose of this example is to further emphasize the modularity of
PLEXIL. This example uses the ContDrive and SenseRR nodes from section 4.1.1, but
uses the SetRRorDistFlag node instead of the SetRRFlag node to stop the rover when it
either sees a red rock or has traveled a distance of 10m.

Node:{ DriveRRorDist
 Boolean haveRR=false, stop=false;
 NodeList:{

Node:{
 NodeId: SenseRR;

 Interface:{ inout: haveRR;}
 StartCondition:

{ LookupWithFrequency:{“found RR”, 10}==true }
 Assignment: haveRR = true;
 }

 26

 Node:{
NodeId:ContDrive
Interface:{ in: stop; }

 NodeList:{
 Node:{

NodeId: StartDrive;
Command: "Rover:drive";

 }
Node:{

NodeId: StopDrive;
 Interface:{ in stop;}

 StartCondition:
{ stop && startDrive.state==FINISHED }

 Command: "Rover:stop";
 }
 }

}
 Node:{
 NodeId: TrackDist;

Interface:{ inout goalDist;}
StartCondition:
{ LookupOnChange:{ "Rover:distTravelled", 10}==10m }

 Assignment: goalDist=true
 }
 Node:{
 NodeId: SetRRorDistFlag;
 Interface:{ inout stop; in haveRR; in goalDist;}
 StartCondition:{ haveRR==true | goalDist==true}
 Assignment: stop=true;
 }
 }
}

4.1.3 Mars Rover Scenario

Reference for this scenario: T. Estlin, F. Fisher, D. Gaines, C. Chouinard, S. Schaffer,
and I. Nesnas. "Continuous Planning and Execution for an Autonomous
Rover," Proceedings of the Third International NASA Workshop on
Planning and Scheduling for Space, Houston, TX, Oct 2002.

This example uses the same names for the various activities as the paper does so as to
minimize confusion. Hence the PLEXIL plan does not have an image_1 activity etc
because in the scenario CASPER was initially given an oversubscribed problem. The rover
has to drive to various locations, take images, or spectra, or do digs. The plan ends with it
communicating with Earth.

Casper is an online planner and in the original scenario it re-planned every time there was a
conflict. The PLEXIL plan represents the entire scenario as a contingent plan. The

 27

contingencies that did not come up in the CASPER scenario are not currently modeled in
the plan for simplicity.

At first the rover is initialized. Then the rover should go to location 1 and take a
spectrometer reading, spec_1. After this the rover should go to location 2 and take an
image, img_2. If an obstacle is encountered enroute the navigator must plan a new path to
location 2. If the estimated time to reach location 2 ever exceeds the allowed window of
time the rover should abort the drive. The rover should then go to location 3 and take an
image, img_3. If the image data cannot be compressed as much as expected and the image
takes up more memory than expected, not all science data will be able to be stored for this
day. Hence the low priority spectrometer 2 reading, spec_2, should be skipped. Then the
rover should go to location 4 and do a dig, dig_2. If more energy is used than expected
there will not be enough energy to complete all the activities and so a lower priority science
goal, dig_1 (that is scheduled later in the plan) must be skipped in order to ensure that
there will be enough energy to complete other high priority science goals and the end of
day communication activity. After this the rover should go to location 5 and take a
spectrometer reading, spec_2.After this the rover should to to location 6 and take an image,
img_4. Then it should go to location 7 and do a dig, dig_1. Then it should go to location 2
and take an image, img_2. In the end it should communicate with earth.

CASPER SCENARIO IN CORE PLEXIL SYNTAX:

Node:{
 NodeId: CasperScenario
 Interface:{ inout: have_spec_1, have_spec_2,
 have_img_2, have_img_3, have_img_4,
 done_dig_1, done_dig_2, done_comm}
 PostCondition: Comm.outcome==SUCCESS
 InvariantCondition: InitRover.outcome==SUCCESS ^
InitRoverPos.outcome==SUCCESS
 NodeList:{
 Node:{
 NodeId: InitRover
 Command: "Rover:init"
 }
 Node:{
 NodeId: InitRoverPos
 StartCondition: InitRover.state==FINISHED
 Command: "Rover:setLocation(0,0,0)"
 }
 Node:{
 NodeId: Setup_Goto_1
 StartCondition: InitRoverPos.state==FINISHED
 Command: "Navigator:turn(loc_1)"
 }
 Node:{
 NodeId: Goto_1
 StartCondition: Setup_Goto_1.state==FINISHED

 28

InvariantCondition:LookupOnce("currentTime")+LookupOnChange:{"Navi
gator:estimatedTimeToGoal"} > end_time
 Command: "Navigator:drive(loc_1)"
 }
 Node:{
 NodeId: Spec_1
 StartCondition: Goto_1.state==FINISHED &
Goto_1.outcome==SUCCESS
 Command: "Rover:take_spectrometer_reading(spec_1.dat)"
 }
 Node:{
 NodeId: Set_spec1_flag
 Interface:{ inout: Boolean have_spec_1}
 StartCondition: Spec_1.state==FINISHED &
Spec_1.outcome==SUCCESS
 Assignment: have_spec=true
 }
 Node:{
 NodeId: Setup_Goto_2
 StartCondition: Spec_1.state==FINISHED |
Goto_1.outcome==FAIL
 Command: "Navigator:turn(loc_2)"
 }
 Node:{
 NodeId: Goto_2
 StartCondition: Setup_Goto_2.state==FINISHED
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_2)"
 }
 Node:{
 NodeId: SafeguardRover
 StartCondition: Goto_2.state==FINISHED &
Goto_2.outcome==FAILURE &
Goto_2.failType==InvariantCondition_failed
 Command: "Navigator:stop"
 }
 Node:{
 NodeId: Image_2
 Interface:{ inout: Real img_2_mem }
 StartCondition: (Goto_2.state==FINISHED &
Goto_2.outcome==SUCCESS) | (Goto_2b.state==FINISHED &
Goto_2b.outcome==SUCCESS
 NodeList: {
 Node: {
 NodeId: doImg
 Command: img_2_mem="Rover:take_picture(img_2.dat)"
 }
 Node: {
 StartCondition: doImg.state==FINISHED

 29

 Assignment: img_2_mem=LookupOnce("Rover:ram_update");
 }
 }
 Node:{
 NodeId: Set_img2_flag
 Interface:{ inout: Boolean have_img_2}
 StartCondition: Image_2.state==FINISHED &
Image_2.outcome==SUCCESS
 Assignment: have_img_2=true
 }
 Node:{
 NodeId: Setup_Goto_3
 StartCondition: Image_2.state==FINISHED |
Goto_2.outcome==FAIL
 Command: "Navigator:turn(loc_3)"
 }
 Node:{
 NodeId: Goto_3
 StartCondition: Setup_Goto_3.state==FINISHED
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_3)"
 }
 Node:{
 NodeId: Image_3
 Interface:{ inout: Real img_3_mem }
 StartCondition: Goto_3.state==FINISHED &
Goto_3.outcome==SUCCESS
 Command: img_3_mem = "Rover.take_picture(img_3.dat)"
 }
 Node:{
 NodeId: Set_img3_flag
 Interface:{ inout: Boolean have_img_3}
 StartCondition: Image_3.state==FINISHED &
Image_3.outcome==SUCCESS
 Assignment: have_img_3=true
 }
 Node:{
 NodeId: Setup_Goto_4
 StartCondition: Image_3.state==FINISHED |
Goto_3.outcome==FAIL
 Command: "Navigator:turn(loc_4)"
 }
 Node:{
 NodeId: Goto_4
 StartCondition: Setup_Goto_4.state==FINISHED
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_4)"
 }

 30

 Node:{
 NodeId: Dig_2
 Interface:{ inout: Real dig_2_energy }
 StartCondition: Goto_4.state==FINISHED &
Goto_4.outcome==SUCCESS
 Command: dig_2_energy="Arm:dig(dig_2.dat)"
 }
 Node:{
 NodeId: Set_dig2_flag
 Interface:{ inout: Boolean done_dig_2}
 StartCondition: Dig_2.state==FINISHED &
Dig_2.outcome==SUCCESS
 Assignment: done_dig_2=true
 }
 Node:{
 NodeId: Setup_Goto_5
 StartCondition: (Dig_2.state==FINISHED |
Goto_4.outcome==FAILED) & img_3_mem < 10
 Command: "Navigator:turn(loc_5)"
 }
 Node:{
 NodeId: Goto_5
 Interface: {in: Real img_3_mem}
 StartCondition: Setup_Goto_5.state==FINISHED
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator"drive(loc_5)"
 }
 Node:{
 NodeId: Spec_2
 StartCondition: Goto_2.state==FINISHED &
Goto_2.outcome==SUCCESS
 Command: "Rover:take_spectrometer_reading(spec_2.dat)"
 }
 Node:{
 NodeId: Set_spec2_flag
 Interface:{ inout: Boolean have_spec_2}
 StartCondition: Spec_2.state==FINISHED &
Spec_2.outcome==SUCCESS
 Assignment: have_spec=true
 }
 Node:{
 NodeId: Setup_Goto_6
 StartCondition: Spec_2.state==FINISHED |
Goto_5.outcome==FAIL
 Command: "Navigator:turn(loc_6)"
 }
 Node:{
 NodeId: Goto_6
 StartCondition: Setup_Goto_6.state==FINISHED

 31

 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_6)"
 }
 Node:{
 NodeId: Image_4
 Interface:{ inout: Real img_4_mem }
 StartCondition: Goto_4.state==FINISHED &
Goto_4.outcome==SUCCESS
 Command: img_4_mem="Rover:take_picture(img_4.dat)"
 }
 Node:{
 NodeId: Set_img4_flag
 Interface:{ inout: Boolean have_img_4}
 StartCondition: Image_4.state==FINISHED &
Image_4.outcome==SUCCESS
 Assignment: have_img_4=true
 }
 Node:{
 NodeId: Setup_Goto_7
 StartCondition: (Image_4.state==FINISHED |
Goto_6.outcome==FAIL) & dig_1_energy < 1000
 Command: "Navigator:turn(locl_7)"
 }
 Node:{
 NodeId: Goto_7
 Interface: {in: dig_1_energy}
 StartCondition: Setup_Goto_7.state==FINISHED
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_7)"
 }
 Node:{
 NodeId: Dig_1
 Interface:{ inout: Real dig_1_energy }
 StartCondition: Goto_4.state==FINISHED &
Goto_4.outcome==SUCCESS
 Command: dig_1_energy="Arm:dig(dig1.dat)"
 }
 Node:{
 NodeId: Set_dig1_flag
 Interface:{ inout: Boolean done_dig_1}
 StartCondition: Dig_1.state==FINISHED &
Dig_1.outcome==SUCCESS
 Assignment: done_dig_1=true
 }
 Node:{
 NodeId: Setup_Goto_2b
 StartCondition: Spec_1.state==FINISHED |
Goto_1.outcome==FAIL

 32

 Command: "Navigator_turn(loc_2b)"
 }
 Node:{
 NodeId: Goto_2b
 StartCondition: have_img_1==false & (Dig_1.state==FINISHED
| Goto_7.outcome==FAIL)
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 Command: "Navigator:drive(loc_2b)"
 }
 Node:{
 NodeId: Setup_Comm
 StartCondition: Image_2.state==FINISHED |
(Goto_2.outcome==FAIL & (Spec_1.state==FINISHED |
Goto_1.outcome==FAIL))
 Command: "Navigator:turn(loc_7)"
 }
 Node:{
 NodeId: Goto_7
 StartCondition: Setup_Comm.state==FINISHED
 Command: "Navigator:drive(loc_7)"
 }
 Node: {
 NodeId: Comm
 StartCondition: Goto_7.state==FINISHED
 InvariantCondition: AbsoluteTimeWithin(1800, 2000, 10)
 Command: "Rover:Comm"
 }
 }
}

5 Practical Issues

5.1 Commonly Used Elements
This section presents examples of commonly used execution control structures and
describes how they can be implemented in PLEXIL.

5.1.1 Time-stamped commands
A time-stamped command is one that is to be executed at a specific time. To execute
command <cmd> at time <time> in PLEXIL:

Node:{
 NodeId: doTimeStampedCommand;
 Start-cond: AbsoluteTimeWithin{<time>,+inf};
 Command: <cmd>;
}

 33

5.1.2 Command sequences
A sequence of commands, where one follows immediately after the completion of the
previous, can be implemented as follows (where <cmdN> is the Nth command,
<cmdNdone> is the indicator for the Nth command having successfully completed, and
<freq> is the frequency with which we will check for command completion).

Node:{
 NodeId: doSequence;
 NodeList:{
 Node:{
 NodeId: doCommand1;
 EndCondition: LookupWithFrequency{“<cmd1done>”,
<freq>}
 Command: <cmd1>;
 }
 Node:{
 NodeId: doCommand2;
 StartCondition: doCommand1.state = FINISHED;
 EndCondition: LookupWithFrequency{“<cmd2done>”,
<freq>}
 Command: <cmd2>;
 }
 ...

 }

}

5.2 Syntax Extensions (Syntactic Sugar)
The core PLEXIL plan description language is rather terse, having only the essential
elements needed to describe instances of plans for execution. To make it more accessible
to users and programmers developing plans and plan-generation tools, the language is
extended to include a number of convenient and commonly used syntax extensions
(syntactic sugar).

5.2.1 whenD construct
Syntactic sugar :

 When D do N

where,
N is a node or “syntactic sugar” for a node

In general for any syntactic construct provided in this section, D can be omitted if it is
always true.

PLEXIL expansion :

 34

Node:{
 Interface:{ in <in vars from N>, <vars from D>; inout:
<inout vars from N>;}
 StartCondition: D;
 { Node list:
 N

 }

}

5.2.2 Sequence
Syntactic sugar :

sequence N1, N2,…,Nk

PLEXIL expansion :

Node:{
 NodeID: sequenceN1Nk;
 Interface:
 { in: <in vars from N1, N2, …, Nk>;
 inout: <inout vars from N1, N2, …, Nk>;}
 Node list:{
 Node:{
 NodeID: doN1;
 Interface:
 { in: <in vars from N1;
 inout: <inout vars from N1>;}
 Node list:{
 N1

 }
 }
 Node:{
 NodeID: doN2;

Interface:
 { in <in vars from N2;

 inout: <inout vars from N2>;}

 StartCondition: doN1.state == FINISHED;
 Node list:{
 N2

 }
 }
 ...

 35

 }
 }

5.2.3 List
Syntactic sugar :

list N1, N2,…,Nk

Equivalent to a sequence for the nodes in a NodeList

PLEXIL expansion :

 Node:{
 NodeID: doN1;
 Interface:
 { in: <in vars from N1;
 inout: <inout vars from N1>;}
 Node list:{
 N1

 }
 }
 Node:{
 NodeID: doN2;

Interface:
 { in <in vars from N2;

 inout: <inout vars from N2>;}

 StartCondition: doN1.state == FINISHED;
 Node list:{
 N2

 }
 }
 ...

5.2.4 If-then-else
Syntactic sugar :

if C then N1 else N2

PLEXIL expansion :

Node:{
 Interface:
 { in: <in vars from N1, N2>,<vars from C>;

 36

 in-out: <inout vars from N1, N2>;}
 Boolean which;
 NodeList:{
 Node:{
 NodeID: setup;

Interface:
 { in-out: which, <vars from C>;}

 Assignment: which = C;
 }

 Node:{
 NodeID: doIf;
 StartCondition: setup.state==FINISHED
 EndCondition:
 isTrueNode.state==FINISHED ||

 isFalseNode.state==FINISHED

Interface:
 { in: which, <in vars from N1, N2>
 inout: <inout vars from N1, N2>}

 NodeList:{
 Node:{
 NodeID: isTrueNode;
 Interface:{ in which, <in vars from N1>}
 StartCondition: which=true;
 Node list:{
 N1

 }

 }

 Node:{
 NodeID: isFalseNode;
 Interface:{ in which, <in vars from N2>}
 StartCondition: which=false;
 NodeList:{
 N2

 }
 }
 }
 }
 }

 }

 37

5.2.5 Special case If-then
Is equivalent to: if C then N1 else “nothing”

Syntactic sugar : if C then N1

PLEXIL expansion :

Node:{
Interface:

{ in: <in vars from N1>, <vars from C>;
in-out: <inout vars from N1>;}

Boolean which;
Node list:{

 Node:{
 NodeID: setup;
 Interface:{ in-out: which;}
 Assignment: which = C;
 }
 Node:{
 NodeID: doIf;
 StartCondition: setup.state==FINISHED;

 EndCondition: which==false |
 isTrueNode.state==FINISHED

 Node list:{
 Node:{
 NodeID: isTrueNode;
 StartCondition: which=true;
 NodeList:{
 N1
 }
 }
 }
 }
 }

 }

5.2.6 While Loops
Syntactic sugar : while C do N

PLEXIL expansion :
Node:{
 Interface:
 { in <in vars from N>, <vars from C>,
 inout: <inout vars from N>;}
 Boolean which;

 Node list:{
 Node:{

 38

 NodeID: setup;
 Interface:{ in-out: which;}
 Assignment: which = C;
 }

Node:{
 NodeID: doWhile;
 Interface:
 { in <in vars from N>, <vars from C>;
 inout: <inout vars from N>;}

StartCondition: setup.state==FINISHED;
 EndCondition: which==false |
 isTrueNode.state==FINISHED
 Node list:{
 Node:{
 NodeID: isTrueNode;
 StartCondition: which==true;
 Interface:
 { in <in vars from N>, <vars from

C>;
 inout: <inout vars from N>;}
 Repeat-until-condition: not C;
 NodeList:{
 N

 }

 }

 }

}

5.2.7 For Loops
Syntactic sugar : for(int counter = initValue(Z), C(counter,X)
f(counter,Y)) N
Where, the counter type could be int, float or any other type supported by PLEXIL

PLEXIL expansion :

Node:{
Interface:

{ in: X,Y,Z <in vars from N>;
inout: <inout vars from N>;}

Interger counter; Boolean which;
NodeList:{

 Node:{
 NodeID: setup;
 Interface:{ in:Z;}
 counter = initValue(Z);
 }
 Node:{

 39

 NodeID: setup;
 Interface:{ in:C, counter, X;

inout: which}
 which = C(counter, X);
 }
 Node:{
 Interface:

{ in: X,Y, <in vars from N>;
inout: <inout vars from N>, which;}

 StartCondition: setup.state == FINISHED;
 EndCondition: which==false |

 doLoop.state==FINISHED
 NodeList:{
 Node:{
 NodeID: doLoop;
 Interface:

{ in: X,Y, <in vars from N>;
inout: <inout vars from N>, which;}

 Repeat-until-condition: ! C(counter,X);
 NodeList:{
 Node:{
 NodeID: doN;
 Interface:

{ in: <in vars from N>; inout:
<inout vars from N>;}

 NodeList:{
 N
 }

 }
 Node:{

 NodeID: counterUpdate;
 Interface:{ in: Y;}
 StartCondition:

doN.state == FINISHED;
 Assignment:

counter = f(counter,Y);
 }

 }
 }
 }
 }

}
 }

5.2.8 Assign
Syntactic sugar : assign y = f(z1,…,zk)

PLEXIL expansion :

Node:

 40

Interface in: z1,…,zk; in-out: y
Assignment: y = f(z1,…,zk)

5.2.9 Time-limited Node
Put a limit on the execution time for a node

Syntactic sugar : do N within d

PLEXIL expansion :

Node:{
 NodeID: doTimeLimitedN;
 Interface:
 { in <in vars from N>; inout <inout vars from N>;}

 InvariantCondition:
 currTimeWithin{doTimeLimitedN.startTime,
 doTimeLimitedN.startTime+d}

 Node List:{
 N

 }

}

To have a time limit with respect to the start of node N, the normal PLEXIL syntax can be
used (N.EXECUTING.start = true)

5.2.10 Node Tree Templates
Syntactic sugar :

defineMacro T(const: W; in: X’; inout: Y’) N

doMacro T(const: V; in: X, inout: Y)

where,
N is a node whose “in” variables match X’+ wi, and the in-out variables match the list Y’.
W= {Type_wi wi} is a list of variable declarations
X, Y, X’ and Y’ are lists of variables
V ={vi} is a list of values or variables
id is the NodeID assigned to the node by the translator. If no NodeId is specified as an
input to doMacro it returns a randomly generated id for the node.

PLEXIL expansion for doMacro:

Node:{
Interface:{ in: X’ = X, wi ; inout: Y’ = Y;}
W
NodeList:{

 Node:{
 NodeID: setup;

 41

 Interface:{ in <vars in V>; inout: wi;}
 Assignment: each vi to wi; /* This may be a
sequence of assignments*/

 Node:{
 NodeID: doN;
 Interface:{ in: X’, wi; inout: Y’;}
 StartCondition: setup.state==FINISHED;
 NodeList:{
 N
 }
 }
 }
}

T is just a name, and the N in doMacro corresponds to the N in the corresponding
defineMacro.

5.2.11 Absolute and Relative Time
Syntactic Sugar:

AbsoluteTimeWithin : { LowerBound, UpperBound, Frequency }

PLEXIL Expansion:
lookupWithFrequency { “time” , Frequency} >= LowerBound & lookup{“time”,
Frequency} <= UpperBound

Syntactic Sugar:

CurrentTimeWithin : { NodeTimepointValue + [LowerBound,
UpperBound], Frequency}

PLEXIL Expansion:
lookupWithFrequency { “time”, Frequency } >= NodeTimepointValue + LowerBound &
lookupWithFrequency{“time”, Frequency} <= NodeTimepointValue + UpperBound

where, LowerBound and UpperBound are Time values, or variables representing time. If
Frequency is not specified in the syntactic sugar, it defaults to 10.

5.2.12 Examples

5.2.12.1 Red-rock Example Simplified with Syntactic Enhancements

The red rock example from 4.1.1 and 4.1.2 can be re-written as follows using syntax
extensions:

Node:{
 NodeID: DriveRRorDist4;
 Boolean haveRR=false, stop=false, goalDist=false;
 NodeList:{

 42

 doMacro ContDrive(in: stop)
 when
 lookupWithFrequency("found RR", 10)==true

 assign haveRR=true
 when
 lookupWithFrequency("Rover:distTravelled", 10)==10m

 assign goalDist=true
 when
 haveRR==true | goalDist==true

 assign stop = true
 }

}

The macro definition used above is as follows:

defineMacro ContDrive(:in stop)
 NodeList:{
 Node:{
 NodeID: StartDrive;

 Command: "Rover:drive";
 }

 Node:{
 NodeID: StopDrive;
 Interface:{ in stop;}
 StartCondition: stop && startDrive.state == FINISHED;
 Command: "Rover:stop";
 }
 }

5.2.12.2 Mars rover example simplified with syntactic enhancements
 The Mars rover scenario from section 4.1.3 can be written using syntactic enhancements as
follows. The Command calls and Lookups have also been simplified for this example:

Node:{
 NodeId: CasperScenario
 Interface:{ inout: have_spec_1, have_spec_2,
 have_img_2, have_img_3, have_img_4,
 done_dig_1, done_dig_2, done_comm}
 PostCondition: Comm.outcome==SUCCESS
 InvariantCondition: InitRover.outcome==SUCCESS ^
InitRoverPos.outcome==SUCCESS
 NodeList:{
 Sequence:{
 Node:{
 NodeId: InitRover

 43

 Command: "(start_rover (arguments) (returns))"
 }
 Node:{
 NodeId: InitRoverPos
 StartCondition: InitRover.state==FINISHED
 Command: "Rover:initPose(0,0,0)"
 }
 doMacro Goto(const: Goto_1 in: String "loc_1")
 if Goto_1.outcome==SUCCESS
 then doMacro TakeSpec(in: String "spec_1.dat" inout:
have_spec_1)
 doMacro Goto(const: Goto_2, in: String "loc_2")
 if Goto_2.outcome==SUCCESS
 then doMacro TakeImage(in: String "img_2.dat"
 inout: Real img_2_mem, Boolean
have_img_2)
 doMacro Goto(const: Goto_3 in: String "loc_3")

 if Goto_3.outcome==SUCCESS
 then doMacro TakeImage(in: String "img_3.dat"
 inout: Real img_3_mem, Boolean
have_img_3)
 doMacro Goto(const: Goto_4 in: String "loc_4")
 if Goto_4.outcome==SUCCESS
 then doMacro DoDig(in: String "dig_2.dat"
 inout: Boolean done_dig_2, Real
dig_2_energy)
 if img_3_mem < 10
 then doMacro Goto(const: Goto_5 in: String "loc_5")
 if Goto_5.outcome==SUCCESS
 then doMacro TakeSpec(in: String "spec_2.dat" inout:
have_spec_2)
 doMacro Goto(const: Goto_6 in: String "loc_6")

 if Goto_6.outcome==SUCCESS
 then doMacro TakeImage(in: String "img_4.dat"
 inout: Real img_4_mem, Boolean
have_img_4)
 if dig_1_energy < 1000
 then doMacro Goto(const: Goto_7 in: String "loc_7")
 if Goto_7.outcome==SUCCESS
 then doMacro DoDig(in: String "dig_1.dat"
 inout: Boolean done_dig_1, Real
dig_1_energy)
 if have_img_2==false
 then {
 doMacro Goto(const: Goto_2, in: String "loc_2")
 if Goto_2.outcome==SUCCESS
 then doMacro TakeImage(in: String "img_2.dat"
 inout: Real img_2_mem,
Boolean have_img_2)
 }

 44

 Node: {
 NodeId: Comm
 StartCondition: AbsoluteTimeWithin(1800, 2000, 10)
 InvariantCondition: AbsoluteTimeWithin(1800, 2000, 10)
 Command: "Rover:Comm"
 }
 }
 }
 }
}

defineMacro Turn_to(NodeId: id in: location, start_time, end_time)
:{
 Node:{
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 PostCondition: LookupNow:{"Rover:position"}==location
 Command: "Navigator:turn(location)"
 }
}

defineMacro Goto(NodeId: id in: location, start_time, end_time) :{
 Sequence:{
 doMacro Turn_to(location);
 Node:{
 InvariantCondition:
LookupOnce("currentTime")+LookupOnChange:{"Navigator:estimatedTime
ToGoal"} > end_time
 PostCondition: LookupNow:{"Rover:position"}==location
 Command: "Navigator:drive(location)"
 }
 }
}

defineMacro Spec(NodeId:id in: String datafile) :{
 Node:{
 Command: "Rover:take_spectrometer_reading(datafile)"
 }
}

defineMacro TakeSpec(in: String datafile
 inout: Boolean have_spec) :{
 Sequence: {
 id = doMacro Spec(in: String datafile)
 if id.outcome==SUCCESS
 assign have_spec=true
 }
}

 45

defineMacro Image(NodeId:id in: String datafile inout: Real
memoryUsed) :{
 Node:{
 Command: memoryUsed="Rover:take_picture(datafile)"
 }
}

defineMacro TakeImage(in: String datafile
 inout: Real img_mem, Boolean have_img) :{
 Sequence: {
 id = doMacro Image(in: String datafile inout: Real img_mem)
 if id.outcome==SUCCESS
 assign have_img=true
 }
}

defineMacro Dig(NodeId:id in: String datafile inout: energy_used)
:{
 Node:{
 Command: energy_used="Arm:dig(datafile)"
 }
}

defineMacro DoDig(in: String datafile
 inout: Boolean done_dig, Real energy_used) :{
 Sequence: {
 id = doMacro Dig(in: String datafile, inout energy_used)
 if id.outcome==SUCCESS
 assign done_dig=true
 }
}

 46

Appendix A: PLEXIL Context Free Grammar

Notation used:

? denotes optional
* denotes 0 or many elements
| denotes alternates
; added at the end of each grammar production
“” defined keywords in the language
As a general rule “<language element>{” … “}” denotes the start and end of that language
element.
All caps represents built-in XML types, e.g. STRING, INTEGER…

/*
 PLEXIL grammar: "{" "}" used only for Node, NodeList,
VarDecl, In and InOut
 pre-defined types/values: string, nonNegativeInteger,
boolean, integer, double, INF, -INF
*/

PlexilPlan : Node ;
Node : (NodeId ":")? "{" NodeAttributes? NodeBody? "}";
NodeId : string ;
NodeBody : NodeList | Command | Assignment ;
NodeList : "NodeList" ":" "{" Node* "}" ;
NodeAttributes : /* here the xml schema specifies any order */
 StartCondition?
 RepeatUntilCondition?
 PreCondition?
 PostCondition?
 InvariantCondition?
 EndCondition?
 Priority?
 Interface?
 VariableDeclarations? ;
Priority : "Priority" ":" nonNegativeInteger ";" ;
StartCondition : "StartCondition" ":" BooleanExpression ";" ;
RepeatUntilCondition : "RepeatUntilCondition" ":"
BooleanExpression ";" ;
PreCondition : "PreCondition" ":" BooleanExpression ";" ;
PostCondition : "PostCondition" ":" BooleanExpression ";" ;
InvariantCondition : "InvariantCondition" ":" BooleanExpression
";" ;
EndCondition : "EndCondition" ":" BooleanExpression ";" ;
Interface : /* here the xml schema specifies any order */
 In?
 InOut? ;
In : "In" ":" "{" (DeclaredVariable ";")* "}" ;

 47

InOut : "InOut" ":" (DeclaredVariable ";")* "}" ;
DeclaredVariable : IntegerVariable | RealVariable |
BooleanVariable | StringVariable | PointerVariable ;
IntegerVariable : NCName ;
RealVariable : NCName ;
BooleanVariable : NCName ;
StringVariable : NCName ;
PointerVariable : NCName ;
VariableDeclarations : (VariableDeclaration)* ;
VariableDeclaration : ("Boolean" ":" "{" (BooleanVariable ("="
BooleanValue)? ";")* "}") |
 ("Integer" ":" "{" (IntegerVariable ("="
IntegerValue)? ";")* "}") |
 ("Real" ":" "{" (RealVariable ("="
RealValue)? ";")* "}") |
 ("String" ":" "{" (StringVariable ("="
StringValue)? ";")* "}") |
 ("Pointer" ":" "{" (PointerVariable ("="
PointsTo)? ";")* "}") ;
BooleanValue : boolean | "UNKNOWN" ;
IntegerValue : integer | "UNKNOWN" ;
RealValue : double | "UNKNOWN" ;
StringValue : string | "UNKNOWN" ;
PointsTo : ExternalStructName InitialValue? ;
ExternalStructName : string ;
InitialValue : integer ;
Command : "Command" ":" (DeclaredVariable "=")? CommandName "("
Arguments? ")" ";";
Arguments : ((IntegerValue | RealValue | BooleanValue |
DeclaredVariable) ";"?)* ;
Assignment : "Assignment" ":" (BooleanAssignment |
NumericAssignment) ;
BooleanAssignment : BooleanVariable "=" BooleanRHS ";";
NumericAssignment : (IntegerVariable | RealVariable) "="
NumericRHS ";";
BooleanRHS : BooleanExpression ;
NumericRHS : NumericExpression ;
BooleanExpression : OR | AND | NOT |
 GT | GE | LT | LE | EQ | NE |
 BoleanVariable | BooleanValue | Lookup | "("
BooleanExpression ")" ;
OR : "OR" (BooleanExpression)+ ;
AND : "AND" (BooleanExpression)+ ;
NOT : "NOT" BooleanExpression ;
GT : NumericExpression ">" NumericExpression ;
GE : NumericExpression ">=" NumericExpression ;
LT : NumericExpression "<" NumericExpression ;
LE : NumericExpression "<=" NumericExpression ;
EQ : EQBoolean | EQNumeric | EQInternal ;
EQBoolean : BooleanExpression "==" BooleanExpression ;
EQNumeric : NumericExpression "==" NumericExpression ;

 48

EQInternal : NodeState "==" NodeState | NodeOutcome "=="
NodeOutcome ;
NEExpression : NEBoolean | NENumeric | NEInternal ;
NEBoolean : BooleanExpression "!=" BooleanExpression ;
NENumeric : NumericExpression "!=" NumericExpression ;
NEInternal : NodeState "!=" NodeState | NodeOutcome "!="
NodeOutcome ;
NodeState : NodeStateVariable | NodeStateValue ;
NodeStateVariable : NodeId".state" ;
NodeStateValue : "WAITING" | "EXECUTING" | "FINISHING" | "FAILING"
| "FINISHED" ;
NodeOutcome : NodeOutcomeVariable | NodeOutcomeValue ;
NodeOutcomeVariable : NodeId".outcome" ;
NodeOutcomeValue : "SUCCESS" | "FAILURE" | "SKIPPED" |
"INFINITE_LOOP";
NodeTimepointValue : NodeId"."NodeStateValue"."Timepoint ;
Timepoint : "START" | "END" ;
NumericExpression : ADD | SUB | MUL | DIV |
 IntegerVariable | RealVariable | IntegerValue |
RealValue |
 Lookup | NodeTimepointValue | PlusInfinity |
MinusInfinity |
 "(" NumericExpression ")" ;
PlusInfinity : "INF" ;
MinusInfinity : "-INF" ;
ADD : NumericExpression "+" NumericExpression ;
SUB : NumericExpression "-" NumericExpression ;
MUL : NumericExpression "*" NumericExpression ;
DIV : NumericExpression "/" NumericExpression ;
Lookup : LookupWithFrequency | LookupOnChange | LookupNow ;
LookupWithFrequency : "LookupWithFrequency" ":" StateName ","
Parameter* "," Frequency ";" ;
StateName : string ;
Frequency : RealValue | DeclaredVariable ;
LookupOnChange : "LookupOnChange" ":" StateName "," Parameter*
("," Tolerance)? ";" ;
Tolerance : Value | DeclaredVariable ;
LookupNow : "LookupNow" ":" StateName ";" ;
Parameter: string ;

 49

Appendix B: Automated Verification for PLEXIL

PLEXIL is designed to be easily verifiable. A future proposal is to use a combination of
formal methods and advanced testing techniques to provide automated support for the
design and verification of the PLEXIL language and execution system.

The verification effort will be performed at several levels:
– Plan verification. Our goal is to design the PLEXIL language to facilitate verification

and to build tools that automate the verification of plans written in the PLEXIL
language. We have already worked towards designing the language to facilitate
verification. For example, the current definition of the PLEXIL language requires
explicit interfaces between execution nodes, which facilitate checking that typed
variables are used properly (e.g. a node can not do an assignment to an “in” variable).
We also plan to build a tool that will check key properties for PLEXIL plans. The idea
is to check that plan properties are met before executing the plan. For example, we can
check that temporal constraints between execution nodes don’t introduce deadlock or
that all the node conditions are satisfiable (hence all the nodes can potentially execute).
We will use model checking technology for automated plan verification. We are
working on an automatic translation from XML PLEXIL plans into a Java
representation (using the Castor tool, which translates XML schemas into Java code),
and to use the Java PathFinder model checking tool developed at Ames to check
properties of the translated plans. Java PathFinder analyzes all the features of Java; in
addition it uses decision procedures to handle numeric constraints. We plan to use the
plan verification tool in conjunction with the user interface developed on top of
Maestro - the idea is that the user will create or modify a PLEXIL plan and will use our
tool to validate the plan, before sending it to the executive.

– Automated test plan generation. Another direction for work is to develop a tool for
automated generation of test plans, written in PLEXIL. We will build upon our
previous work on plan generation for the CRL Exec (for the K9 rover developed at
Ames), where we developed a tool that generates hundreds of complex plans in a few
seconds. Our approach will use specification-based testing techniques, where the
specification is the PLEXIL grammar. We will use symbolic execution techniques to
deal with the time/data constraints in plans. The generated plans will be used to test the
PLEXIL execution system and the various PLEXIL translators that will be developed in
the later phases of the project.

 50

Appendix C: PLEXIL Plan Editor

A graphical editor for viewing and editing task plans specified in the PLEXIL Language is
currently being prototyped at IA Tech, Inc. The PLEXIL Plan Editor (PPE) is developed as
a component under the Ensemble architecture and implemented on top of the Eclipse
Platform.

C.1 The Ensemble Platform

Ensemble is an open architecture for the development, integration, and deployment of
mission operations software. It is a collaboration effort shared by multiple teams from
multiple NASA centers, including the Jet Propulsion Laboratory (JPL) and Ames Research
Center, with the objective of bringing a diverse set of NASA mission operations tools into
a common framework based on the Eclipse Platform. Currently, JPL is developing
Maestro based on the Mars Exploration Rover (MER) Science Activity Planner (SAP) and
Ames is developing SPIFe based on the MER Constraint Editor and MAPGEN software. It
is expected that many other NASA ground-based mission operations tools will be migrated
to the Ensemble architecture in the future.

Developing the PLEXIL Plan Editor under the Ensemble architecture provides the
advantage of leveraging other Ensemble components when creating a PLEXIL plan. For
example, the user can use various Ensemble image viewers to visualize the terrains and
designate targets. The locations of the targets can then be used as parameters in the plan.
We also envision that the PLEXIL plan can be tied to SPIFe so that it can provide a
timeline view and a constraint editor to the plan.

The Ensemble architecture is based heavily upon the tools and technologies of the Eclipse
Platform. Eclipse is an open source software development project providing a universal
platform for integrating development tools. At the core of Eclipse is an architecture for
dynamic discovery, loading, and running of plug-ins. The platform handles the logistics of
finding and running the right code. Each plug-in can then focus on doing a small number
of tasks well. The Ensemble components are developed as plug-ins on the Eclipse
Platform. The plug-ins are then used to build customized operations tools, such as
Maestro, using the Eclipse Rich Client Platform.

In addition to the Eclipse Platform, the Eclipse Project also provides a full-featured
integrated development environment (IDE). The IDE consists of a set of Java Development
Tools (JDT) and the Plug-in Development Environment (PDE)

 51

C.2 The Plexil Plan Editor
The PLEXIL Plan Editor allows the user to create a PLEXIL plan by adding different types
of nodes to the editing area, connecting the child nodes to the node-list nodes, and
specifying attributes and actions of each node. Plan editing functions that have been
implemented include selecting, deleting, moving, resizing, and reconnecting the nodes. All
editing actions can be undone and redone an unlimited number of times. When a node is
selected, its attribute and action fields are displayed and can be edited in the Property
Sheet. For the initial prototype, all the fields are entered as text strings.

The PLEXIL Plan Editor is implemented based on the model-view-controller (MVC)
pattern of the Eclipse Graphical Editing Framework (GEF).

C.2.1 The Model

The first step of building the PPE is to create a model of the PLEXIL plan. The model
stores all data that may be edited or viewed by the user. That means besides the pertinent
data relevant to a PLEXIL plan, the model also includes data for visual representation, such
as the position and size of each node.

The model is composed of Java objects of various classes. We first define a base Node
class which contains the common attributes of the three types of PLEXIL nodes. We then
define the ListNode, CommandNode, and AssignmentNode classes by extending the base
Node class with additional action fields. In addition to the node classes, the model also
includes the Plan class which contains an array of all the nodes in the plan, and the
Connection class which contains the source and target node of the connection.

The model also provides ways for 1) persistence such that the model can restore its state
from permanent storage, and 2) other objects to listen to changes in the model. A super
class ModelElement is implemented to provide these two functionalities.

C.2.2 The Views

We use predefined figures provided by Draw2D to represent our model. The Plan is
represented by the Figure class equipped with the FreeformLayout manager. This gives
the user the freedom to drag and drop nodes at any location. Node-List nodes are
represented by Ellipse and action nodes by RectangleFigure. To distinguish the two types
of action nodes, Command nodes are colored yellow while the Assignment nodes are
colored green. Each node is also labeled with its NodeID. The figure is updated whenever
the NodeID is changed. The connection linking a Node-List node to its child node is
represented by a polyline decorated with an arrow.

C.2.3 The Controllers

For each element of the model, we define a controller so that the element can be
manipulated by the user. The role of the controllers (or edit parts in GEF terminology) is to
understand the model, listen to events about its changes, and update views correspondingly.

 52

Each controller implements the PropertyChangeListener interface. When the controller is
activated, it registers with the model as the receiver of the property change events. Upon
deactivation, it removes itself from the list of listeners. Finally, when it receives a property
change event, it refreshes one or more visual aspects of the figure representing the model
based on the name of the property and the new and old values.

Figure 15 is a screen shot of the PLEXIL Plan Editor with the DriveRR plan. The plan
commands the rover to drive forward until it sees a ``red rock''. In this plan, the actions are
controlled by the ContDrive node. The StartDrive node issues a drive command to the
rover (by calling a functional layer API Rover:drive) as soon as it is instantiated, and stops
the rover whenever the interface variable stop becomes true. The assignment node
SenseRR sets the haveRR variable when a red rock is detected, while the assignment node
SetRRFlag sets the stop variable when haveRR is set.

In the screen shot the StopDrive node is selected so its attributes and actions are displayed
in the Property Sheet. The node is executed when the StartCondition is satisfied; that
means the stop variable is true and the state of the StartDrive node is FINISHED. Since
the Rover:drive command is asynchronous, the StartDrive node is in the FINISHED state
after the command is successfully issued.

Figure 15: PLEXIL plan editor

C.2.4 PLEXIL Plan Editing Perspective

 53

A PLEXIL Plan Editing perspective is implemented to facilitate the use of the editor. In
Eclipse, a perspective is a stacked, tiled, or detached arrangement of views and editors. In
the PLEXIL perspective, we place the Editor to the left of the workbench and the Property
Sheet to the right. The perspective is added to Ensemble so that when the user selects this
perspective the workbench will only show the view and editor that are relevant for editing a
PLEXIL plan.

C.2.5 PLEXIL Plan Editing Actions

Two actions are implemented and they are added to the menu of the Ensemble workbench
when the PLEXIL Plan Editing Perspective is selected. The OpenPlanAction is used to
open an existing plan file saved in the workspace. The ExportPlanAction is used to
export the plan to a file containing its PLEXIL XML representation.

Below is the XML5 representation of the DriveRR plan.

<?xml version="1.0" encoding="UTF-8"?>
<Node xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema/plexil.xsd">
 <NodeAttributes>
 <NodeID>DriveRR</NodeID>
 <Comment>Drive Rover to Red Rock</Comment>
 <Priority>1</Priority>
 <Variables>Bool haveRR = false; stop = false</Variables>
 </NodeAttributes>
 <NodeBody>
 <Node>
 <NodeAttributes>
 <NodeID>ContDrive</NodeID>
 <Priority>1</Priority>
 <Interface>in stop</Interface>
 </NodeAttributes>
 <NodeBody>
 <Node>
 <NodeAttributes>
 <NodeID>StartDrive</NodeID>
 <Priority>1</Priority>
 </NodeAttributes>
 <NodeBody>
 <Commands>Rover:drive</Commands>
 </NodeBody>
 </Node>
 <Node>
 <NodeAttributes>
 <NodeID>StopDrive</NodeID>
 <StartCondition>stop && startDrive.state ==
FINISHED</Start-Condition>
 <Priority>1</Priority>
 <Interface>in stop</Interface>
 </NodeAttributes>

 54

 <NodeBody>
 <Commands>Rover:stop</Commands>
 </NodeBody>
 </Node>
 </NodeBody>
 </Node>
 <Node>
 <NodeAttributes>
 <NodeID>SenseRR</NodeID>
 <StartCondition>lookup("found RR", 10) == true</Start-
Condition>
 <Priority>1</Priority>
 <Interface>inout haveRR</Interface>
 </NodeAttributes>
 <NodeBody>
 <Assignments>haveRR = true</Assignments>
 </NodeBody>
 </Node>
 <Node>
 <NodeAttributes>
 <NodeID>SetRRFlag</NodeID>
 <Priority>1</Priority>
 <Interface>in haveRR ; inout stop</Interface>
 </NodeAttributes>
 <NodeBody>
 <Assignments>stop = true</Assignments>
 </NodeBody>
 </Node>
 </NodeBody>
</Node>

 55

Appendix D: Compete Set of Node State Transitions

Node state transitions are affected by only a small subset of condition changes either in self
(the node itself) or an ancestor or descendant of the node. The table below presents the
complete set of transitions:

Node B
relation
to Node

A

Current
State of
Node B

Node
A -

Start
Condit
ion T

Node A -
End

Condition
T

Node A -
Invariant

Condition F

Node A -
Comman
d Abort
Done Notes

Self Waiting
TD_Wa

iting

End + invariant have
no impact on waiting
node

Self - List Executing
TD_Exec_L

istNode
TD_Exec_Lis

tNode
Start cond has no
effect during exec

Self -
Cmd Executing

TD_Exec_C
mdNode

TD_Exec_Cm
dNode

Start cond has no
effect during exec

Self -
Assign Executing

TD_Exec_A
ssignNode

TD_Exec_As
signNode

Start cond has no
effect during exec

Self Finishing TD_Finishing

Start or end condition
irrelevant once node
in finishing state

Self Failing

Start, end or
invariant condition
irrelevant once node
in failing state

Self
Cmd_Faili

ng
TD_Exec_

Cmd

Start or end condition
irrelevant and
invarient yields no
change

Self Finished
Nothing happens once
a node is finished

Descend
ent Waiting

TD_Waitin
g TD_Waiting

Only end or invariant
failure of ancestor
can affect a waiting
node

Descend
ent - List Executing

TD_Exec_Lis
tNode

Ancestor end
condition has no
affect on node
already executing,
finishing or failing

Descend
ent -
Cmd Executing

TD_Exec_Cm
dNode

Ancestor end
condition has no
affect on node
already executing,
finishing or failing

Descend
ent -

Assign Executing
TD_Exec_As

signNode

Ancestor end
condition has no
affect on node
already executing,
finishing or failing

 56

Descend
ent Finishing TD_Finishing

Ancestor end
condition has no
affect on node
already executing,
finishing or failing

Descend
ent Failing TD_Failing

Ancestor failure
changes handling of a
failing descendent (no
repeat, diff outcome)

Descend
ent

Cmd_Faili
ng

Cannot happen -
commands have no
descendents

Descend
ent Finished

Nothing happens once
a node is finished

Ancestor Waiting

Cannot happen - a
waiting node has no
descendents waiting
for state changes

Ancestor Executing
TD_Exec_L

istNode
TD_Exec_Lis

tNode
TD_Exec_
ListNode

Ancestor can only be
list - may be waiting
for descendent to
complete execution

Ancestor Finishing
TD_Finishi

ng TD_Finishing
TD_Finishi

ng

Ancestor may be
waiting for
descendent to
complete execution

Ancestor Failing TD_Failing TD_Failing
TD_Failin

g

Ancestor may be
waiting for
descendent to
complete execution -
so have to check

Ancestor
Cmd_Faili

ng

Cannot happen - an
ancestor cannot be a
command

Ancestor Finished
Nothing happens once
a node is finished

• Transition diagram for state Waiting (TD_Waiting) is shown in Figure 6
• Transition diagram for NodeList in state Executing (TD_Exec_ListNode) is shown

in Figure 7
• Transition diagram for an Assignment node in state Executing

(TD_Exec_Assignment) is shown in Figure 8
• Transition diagram for a Command node in state Executing is shown in

(TD_EXEC_CmdNode) is shown in Figure 9
• Transition diagram for state Finishing (TD_Finishing) is shown in Figure 10
• Transition diagram for state Failing (TD_Failing) is shown in Figure 12

