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Detection of damage due to foreign object impact is an important factor in the 
development of new aerospace vehicles. Acoustic waves generated on impact can be detected 
using a set of piezoelectric transducers, and the location of impact can be determined by 
triangulation based on the differences in the arrival time of the waves at each of the sensors. 
These sensors generate electrical signals in response to mechanical motion resulting from the 
impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, 
accurately determining these time differentials can be challenging, and even small 
measurement inaccuracies can lead to significant errors in the computed damage location. 
Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the 
signals resulting from the impact to be isolated from ambient electromechanical noise. Data 
extracted from these transformed signals are input to an artificial neural network to aid in 
identifying the moment of impact from the transformed signals. By distinguishing which of 
the signal components are resultant from the impact and which are characteristic of noise 
and normal aerodynamic loads, the time differentials as well as the location of damage can 
be accurately assessed. The combination of wavelet transformations and neural network 
processing results in an efficient and accurate approach for passive in-flight detection of 
foreign object damage. 

Nomenclature 
f = signal represented in the time domain 
F = signal represented in the frequency domain 
T = time 
W(a,b) = wavelet transform coefficients 
ψ = wavelet basis function 
ψ* = complex conjugate of wavelet function 
ψa,b = wavelet function (scaled and time shifted) 
ω = frequency 

I. Introduction 
HE on-board, near real-time detection of foreign object impacts, and the assessment of their potential to lead to 
structural damage, is becoming an increasingly important consideration in the development of new aerospace 

vehicles. While damage detection was once largely the domain of ground-based pre- and post flight inspections in a 
controlled environment, incidents such as the catastrophic failure of the space shuttle Columbia in February 2003 
during reentry and numerous aviation accidents resulting from foreign object damage have spurred the need for in-
situ damage detection and impact detection methods.1   

T 

Piezoelectric transducers are often the sensor of choice for in-flight impact detection because of their low cost 
and their ability to operate either in an active or in a passive mode.2 Acoustic waves generated on impact can be 
detected using a set of four piezoelectric transducers, and the location of impact can be determined by triangulation 
based on the differences in the arrival time of the waves at each of the piezoelectric sensors. These sensors generate 
electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due 
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to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and 
even small measurement inaccuracies can lead to significant errors in the computed damage location.3  

Wavelet transforms are used to analyze the signals at multiple levels of detail to distinguish them from ambient 
electromechanical noise. Wavelet transforms have often been demonstrated to be more beneficial than other signal 
processing methods since they simultaneous retain the characteristics of the original signal in both the time and the 
frequency domains. 

Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the 
region of interest (that is, the moment of impact) from the transformed signals. By distinguishing which of the signal 
components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the 
time differentials as well as the location of damage can be more accurately assessed. Once properly trained, neural 
networks are computationally efficient and no iterative calculations are required. Computational efficiency is an 
important factor for near real time in-flight impact detection because of the reduction in power and weight required 
for computational hardware. By identifying impacts or other in-flight singularities in a passive mode, more 
computationally intense damage characterization algorithms using active sensors can be initiated only as needed.  

The objective of this paper is to illustrate how a combination of wavelet transforms and artificial neural networks 
can accurately determine the time differences in the detection of a signal by piezoelectric transducers resulting from 
an impact, how those time differences can be used to determine the location of that impact, and why accurate 
determination of these time differences is essential to the accurate location of the impact. This paper shows how 
wavelet transformations combined with neural network processing results in an effective approach for passive in-
flight detection of impacts from foreign objects. After the introduction, the experimental equipment and testing 
technique is described. In Section III, the triangulation method used to locate the impact site is derived from the 
differences in the time of the detection of a signal at the piezoelectric transducers, and it shown that the accuracy of 
the estimated impact site is dependent on the ability to precisely determine the times of arrival of the signal resulting 
from the impact at each of the sensors. Section IV identifies how wavelet transforms are used to increase the signal 
to noise ratio in the measured signals. Section V describes how a neural network is employed to identify the time of 
impact, concluding with the results of this effort in Section VI. 

II. Experimental Test Apparatus and Setup 
The test experiments were conducted by releasing a 28 g weight from a 

height of 0.25 m onto a solid planar surface and measuring the resulting 
acoustic waves generated by impacts at various locations. The surface was 
1.5 m x 0.788 m x 18 mm, solidly supported around the perimeter. A 
commercial product, SMART Layer® from Accellent Technologies, Inc., 
was used to transform the acoustic waves into electrical signals.4 The 
SMART Layer consisted of four piezoelectric transducers arranged in a 
square pattern, 127 mm on each side, with embedded wiring in a thin 
dielectric film as shown in Fig. 1. 

The piezoelectric transducers were connected to a high-speed data 
acquisition system which digitized the electrical signal from each sensor 
and recorded the data. The data acquisition system consisted of a National 
Instruments PXI-6115 multifunction input/output (I/O) board in a National 
Instruments PXI-1002 
four-slot PXI (PCI 
(Personal Computer 

Interface) Extensions for Instrumentation) chassis, shown in Fig. 
2. The data acquisition card supported four analog inputs with a 
dedicated analog to digital converter (ADC) per channel, capable 
of acquiring a total of 64 megasamples per channel at up to 10 
megasamples per second per channel. 

 
Figure 1. SMART Layer film. 

The PXI chassis was connected to a Dell OptiPlex GX270 
personal computer via a MXI-4 (Multi-System Extension 
Interface) to PCI adapter. The data acquisition software used a 
combination of custom software developed using LabVIEW with 
NI-DAQ (National Instruments Data Acquisition) software. 

The data acquisition card was programmed to trigger when 

 
 
Figure 2. National Instruments PXI-1002. 
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one of the analog input channel voltages exceeded a threshold, and the trigger level was set to a value slightly above 
the nominal voltage as measured in a pre-trigger stage. Upon exceeding the threshold level, the software captured 
and recorded the data to disk. Data from the transducers were sampled at data rates ranging from 200,000 to 
10,000,000 samples per second. 

A Fourier analysis of the test signals prior to the impact showed dominant noise frequencies of 60 Hz, 20 kHz, 
and 21.8 kHz (and at their harmonics), in decreasing order of magnitude. After impact, additional frequencies were 
excited around 160 Hz, 256 Hz, 24 Hz, 13.6 kHz, and 21.3 kHz, in decreasing order of magnitude. 

III. Identification of Impact Site 
After the data from each piezoelectric transducer have been acquired, the location of the impact can be 

determined. The impact on the structure causes the piezoelectric elements to react passively to produce an electrical 
output in response to mechanical vibrations resulting from the impact. As the acoustic wave, radiating in a circular 
pattern from the source of the impact, reaches each of the four sensors, an electrical signal will be output. Based on 
the differentials between the times of arrival of the signals at each sensor, the impact location may be determined. 
The time of initial arrival of the signal at a sensor is used instead of the time of peak value to avoid constructive or 
destructive wave interference, waves from rebounding impacts, and boundary reflections.3

This arrival time is determined in three steps. First, the propagation 
speed of an acoustic wave through the material is determined. Next, the 
relative location of the impact is calculated based on the time 
differentials of the received signals at each of the sensors, and the 
relative location is transformed into test coordinates to identify the 
location of the impact. The equations below were derived for custom 
software implementation using MATLAB® from The MathWorks, Inc.5

For materials of uniform density and constant wave propagation 
speed, this speed can be determined using an experimental calibration 
technique. By generating a controlled impact at a known location and 
orientation relative to the sensors, the velocity of a wave through a 
given material may be determined. 

 In Fig. 3, P1 through P4 represent the four piezo-
electric sensor elements, and S represents the source 
of impact during calibration. By measuring the time t 
for a signal originating at the source to travel the 
distance d between two sensors, the velocity d/t of the 
wave can be computed. To ensure the accuracy of the 
final result, a high sample rate (10 megasamples per 
second) was used for measuring the time 
differentials, and results were averaged from repeated 
trials. 

After the one-time determination of the wave 
velocity, the location of a foreign object impact can 
be determined from the time differential between the 
detection of the impact at each of four sensors. The 
approach described below is based on a square 
arrangement shown in Fig. 3 for the four sensors, 
although other layouts can be used with appropriate 
coordinate transformations. 
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P3 P4

S

d

P1P2

P3 P4

S

d

 
 

Figure 3. Sensors and impact source. 
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Figure 4. Sensor layout after coordinate transformation. 

The wave resulting from the impact was assumed to radiate from a point source and the physical test coordinate 
system was transformed into a unit square coordinate system using relative positions and distances as shown in 
Fig. 4. The first sensor to receive the signal is arbitrarily designated as the point P1 and is located at relative 
Cartesian coordinates (1, 1). P2 and P4 are designated at relative coordinates (0, 1) and (1, 0), respectively. Finally, 
P3 is designated at the origin, and the source, S, is at an unknown location (x, y). 

With these transformations from test to relative coordinates, the distance between sensors, shown as d in Figure 
3, becomes unity after transformation to the coordinate system shown in Fig. 4. 
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For a uniform wave propagation speed, an impact at unknown 
point S outside the boundaries of the sensors radiates outward in all 
directions and the signal is received at the closest sensor, arbitrarily 
designated P1. The signal  travels in all directions forming a circle 
of radius r, which is the relative distance from the source, S, to 
sensor P1, as shown in Fig. 5. 

The signal will be received at the remaining three sensors after 
time lags tn. These time differentials may be normalized and 
converted to relative differences using the propagation velocity and 
actual distance between sensors. The total relative distance traveled 
by the signal from the source to each of the four sensors, Dn, is the 
radius of the circle, r, plus the remaining distances, dn, shown in 
Fig. 5. 

Note that for sensor P1, the total distance, D1, is merely the 
radius of the circle, r, since t1 and d1 are both zero. The three 
distances can be computed by solving a linear system of 
simultaneous equations. Once the equations have been solved for 
these relative distances, the solution can be transformed back to the 
test coordinates to compute the actual location of the source. Each of these distances can also be expressed as the 
distance between two points, namely, the distance from the source to the sensor, as shown in Eqs. (1) through (4). 
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Figure 5. Sensor distances. 
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11 11 −+−=−= yxD PS   (1) 

( ) ( )22
22 10 −+−=−= yxD PS   (2) 

( ) ( )22
33 00 −+−=−= yxD PS   (3) 

( ) ( )22
44 01 −+−=−= yxD PS   (4) 

Simplifying and squaring both sides yields Eqs. (5) through (8). 

( ) ( ) 22211 22222
1 +−−+=−+−= yxyxyxD   (5) 

( ) 22222

222

( ) 22222

22 −−=−

22
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3 yxD +=   (7) 

1214 +−+=+−= xyxyxD   (8) 

The second-order terms in Eqs. (5) through (8) can be eliminated by forming new Eqs. (9) through (11) that are 
the differences of the original equations. 
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From Fig. 5, the total distance Dn is the sum of the radius r plus the remaining distance dn, so the above 
equations can be rewritten as Eqs. (12) through (14).  

( ) 2
22

2
2

2 221 drddrrx −−=+−=−   (12) 

( ) 222

( ) 222

2

2

)

333 2222 drddrryx −−=+−=−−   (13) 

444 221 drddrry −−=+−=−   (14) 

These equations can be rewritten as three equations (Eqs. (15) through (17)) in three unknowns. 

122 2
22 +=− drdx   (15) 

2222 33 +=−+ drdyx   (16) 

122 44 +=− drdy   (17) 

Adding Eqs. (15) and (17), then subtracting Eq. (16), yields the result shown in Eq. (18), which can be solved for 
r as shown in Eq. (19). 

( ) 2
4

2
3

2
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( 423

432

2 ddd
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r
−−
+−

=
222

  (19) 

Now that the value of r is known, it can be substituted in Equations (15) and (17) and solving for x and y, 
respectively, which results in Eq. (20) and (21). This system can also be solved using the matrix form in Eq. (22). 
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The source location previously identified has been defined relative to the unit square coordinate system. These 
coordinates may be transformed to absolute test coordinates using the transformation given by Eq. (23), where x and 
y are the relative coordinates, x′ and y′ are the test coordinates, Tt is the translation matrix, Ts is the scaling matrix, 
and Tr is the rotation matrices, respectively. 
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The translation, scaling, and rotation matrices are all 3x3 matrices, defined as shown in Eqs. (24) through (26), 
where tx and ty are the offsets between the origins of the relative and test coordinate systems, sx and sy are scale 
factors between the two coordinate systems, and θ is the angle between the axes of the coordinate systems. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
10
01

y

x

t t
t

T   (24) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
00
00

y

x

s s
s

T   (25) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

θθ
θθ

rT   (26) 

These parameters can be derived from the test coordinates of two of the sensors: the first sensor to receive the 
signal, P1, and the sensor diagonally across from it, P3, which is also the origin of the relative coordinate system. 
The two translation offsets, tx and ty, are simply the test coordinates of sensor P3, so Eq. (24) can be rewritten as 
shown in Eq. (27), where x3 and y3 are the test x and y coordinates of sensor P3. 
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 and sThe two scale factors, sx y, are the same as the test length of the sides of the sensor array. The length of one 
side is easily computed from the distance between P1 and P3, which is the length of the diagonal of the square 
formed by the four sensors, as shown in Eq. (28). 
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Finally, the test angle between the diagonal formed by P1 and P3 is the arctangent of the slope of the diagonal, 
shown in Eq. (29). 
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The term π/4 in Eq. (35) represents the angle of the diagonal, so subtracting this term gives the rotation angle 
with respect to the x axis, not the diagonal. Finally, the three transformation matrices can be multiplied together to 
form a single transformation matrix, T, as shown in Eq. (30). 
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In summary, the relative location of impact can be determined by converting the time differentials to distances 
(wave propagation velocity divided by time) and by solving Eq. (22) for relative coordinates x and y plus radius r. 
These relative coordinates can be converted back to physical test coordinates, x’ and y’, using Eqs. (23) and (30). 

From Eq. (22) it can be seen that even a small error in the time differential greatly affects the accuracy of the 
computed x and y coordinates. For example, consider a damage source arbitrarily located at relative coordinates (2.0, 
0.6). The distances corresponding to this location can be determined geometrically using the Pythagorean Theorem 
(Eq. 31) and Figure 5.  

( ) ( )2
12

2
12 yyxxd −+−=   (31) 

Using Eq. (31) and Figure 5, the relative distances corresponding to (2.0, 0.6) for d2, d3, d4, and r are 1.077, 
0.9626, 1.011, and 0.0892, respectively. Using these distances in Eq. (22) correctly results in x and y coordinates of 
(2.0, 0.6). However, introducing a 1% error in the d2 term in Eq. (22) results in coordinates of (1.64, 0.57), an 18% 
error. This error becomes greater with increasing distance between the damage source and the sensors. 

IV. Signal Analysis and Wavelet Decomposition 
As just shown, accurately determining the location of the impact depends on the precision of the time 

differentials. Even small discrepancies in the time differential measurements can propagate into significantly larger 
errors when computing the impact location. Under ideal conditions, there would be no output from the piezoelectric 

transducers until the time of impact, which would allow the time of impact to be readily discerned.  

 
a) Unzoomed            b) Zoomed 
Figure 6. Piezoelectric transducer output. 

In a laboratory environment, ambient background electrical and mechanical noise is relatively consistent and can 
be easily eliminated or mitigated through the use of shielding, filtering, or simple signal processing methods. 
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However, these approaches are not suitable for in-flight measurements due to the unpredictable nature of the noise 
sources. Mechanical vibration and flutter due to aerodynamic effects will vary considerably during flight, causing 
variances in the electrical output of the sensors. Piezoelectric devices and their associated wiring are also susceptible 
to electromagnetic interference. These sources all produce undesirable contributions to the total output of the 
sensors, often masking early indications of an impact which may be mistaken for noise using traditional signal 
processing techniques.  

The data in Fig. 6 from the four sensors, acquired at a rate of 5 megasamples per second, illustrate the difficulty 
in identifying the arrival time of a signal resulting from an impact. Even in the zoomed graph (Fig. 6b), it is not 
readily apparent when the impact occurs, which leads to uncertainly in establishing the location of impact.  

Digital filtering can help to reduce some of the noise, but does not eliminate the problem. Figure 7 shows a 
zoomed portion of a graph of the same signals after a 4th order Butterworth digital bandpass filter is applied with a 
lower cutoff frequency, f1, of  80 Hertz (Hz) and a upper cutoff frequency, f2, of 25 kHz, based on Fourier analysis 
of the signals. In addition to not aiding in identifying the time differentials, a further complication with using digital 
filtering for in-flight evaluation is that the choice of bandpass frequencies is dependent on current flight conditions. 
Spectral analysis of the signal can be used to identify the changes in the frequency response of the transducers, but at 
the expense of losing the temporal content necessary for determining the time differentials. Furthermore, Fourier 
transforms are suitable for representing infinite periodic 
sequences, but cannot adequately represent the finite, 
aperiodic signals characteristic of transient events.6

Wavelet transforms offer a more promising alternative 
to traditional signal processing methods.7 These transforms 
allows for multiresolution analysis of a signal by 
decomposing that signal at multiple levels of detail and 
abstraction. These decomposed signals retain character-
istics of the original signal in both the time and frequency 
domains simultaneously, so time differences in the signal 
outputs from the four piezoelectric transducers can be 
identified, despite changes in the spectral components of 
these signals caused by noise and aerodynamic effects. 

With continuous Fourier transforms, signals are 
approximated in the frequency domain by a linear 
combination of sinusoids as given by Eq. (32). The inverse 
of this representation can be used to transform the signal 
back to the time domain (Eq. 33). 

 
Figure 7. Filtered transducer output. 

( ) ( ) dtetfF tiωω −+∞

∞−∫=   (32) 

( ) ( ) ωω
π

ω deFtf ti∫ ∞−
=

2
+∞1

  (33) 

In a similar manner, Ref. 8 shows a signal may be represented as a continuous wavelet transform by a linear 
combination of a basis function,ψ, known as a “mother wavelet,” giving the wavelet coefficients W in Eq. (34), 
where ψ* denotes complex conjugation. Unlike the sinusoidal Fourier transform, these functions are finite. A 
wavelet basis has compact support if the value of the function is zero outside of certain boundaries. This property of 
a wavelet with compact support was used for this application, since it allows wavelet transforms to retain the 
properties of the original signal in the time domain. 

( ) ( ) dt
a

bt
a

tfbaW ⎟
⎠
⎞

⎜
⎝
⎛ −

= ∫
∞+

∞−
*1, ψ   (34) 

To simplify the notation, the expression ψa,b is defined in Eq. (35) and the transform in Eq. (34) can be rewritten 
as Eq. (36). 
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( ) ⎟
⎠
⎞

⎜
⎝
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=
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a

tba ψψ 1
,   (35) 

( ) ( ) ( )dtttfbaW ba,*, ψ∫ ∞−
=

+∞
  (36) 

The wavelet coefficients, W, are scaled and time shifted to represent the complete time spectrum at varying 
degrees of detail or abstraction.8 The selection of the scale factor determines how much the signal is dilated (a > 1) 
or contracted (0 < a < 1). The time shift, b, determines which portion of the signal is transformed by the finite basis 
function. The exact values for a and b are both application dependent. The original signal can be completely 
reconstructed using the admissibility constant C derived from the Fourier transform of the wavelet function as given 
by Eqs. (37) through (39). However, by selectively setting some of the coefficients to zero, an approximation of the 
signal can be obtained without some of the undesirable noise which appears as detail in the wavelet transformation.  

( ) ( ) dtet tiωψω −+∞

∞−∫=Ψ   (37) 

( )
ω

ω
ω

dC ∫
∞+

∞−

Ψ
=

2

  (38) 

( ) ( ) dbdatbaW
aC

tf baa b ,2 ),( ψ∫ ∫−∞= −∞=
=

11 +∞ +∞
  (39) 

For computer implementations, a discrete wavelet transformation can be used, which decomposes the signals 
into discrete levels, where a is equal to 2n, with n representing the level of detail. Signals were transformed using the 
MATLAB Wavelet Toolbox9 using the discrete form of Eqs. (34) through (39). Although there are many types of 
wavelet basis functions, biorthogonal wavelets are best suited for signal processing applications because of their 
compact support and linear phase property, allowing signals to be perfectly reconstructed without any phase shift.10

 
 

    a) Unzoomed           b) Zoomed 
    Figure 8. Piezoelectric transducer output reconstructed from wavelet detail level 10. 

Figure 8 shows the signals from the four piezoelectric transducers as reconstructed using a discrete wavelet 
transform at the level of detail which maximized the signal (post-impact) to noise (pre-impact) ratio (S/N), which is 
computed in decibels (dB) using Eq. (40).  
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rangenoise
rangesignalNS 10log10/ =   (40) 

Table 1 shows the average signal to noise ratios for the unfiltered signals, the digitally filtered signals, and the 
signals reconstructed from a wavelet transform with a detail level of 10. In this case, level 10 was found to be 
optimum, resulting in a signal to noise ratio of 17.7 dB, a 12.4 dB increase over the filtered signal. Since this signal 
is reconstructed from a single level of detail, most of the noise in the original signal has been eliminated, allowing 
the time differentials to be more readily discerned (Fig. 8b). 

Table 1.  Signal to Noise Ratios. 
Unfiltered Filtered Wavelet  

Signal range (V) .0193 .0153 .00540 
Noise range (V) .00781 .00451 .0000916 
S/N (in dB) 3.9 5.3 17.7 

V. Identifying Time of Impact Using a Neural Network 
For in-flight assessment of a foreign object impact, signals from the piezoelectric sensors must be analyzed to 

determine if an impact has occurred. The first step towards identification of an impact involves a simple threshold 
technique to ascertain if the measured value from the sensors significantly exceeded the background noise level. 
This assessment is easily performed at the time of acquisition by establishing an analog voltage trigger level. When 
the received signal exceeds this threshold, the recording of the signal begins, including a portion of the pretrigger 
data for the determination of the time differentials as previously discussed. 

Accurately determining the location of impact depends on the determination of these time differentials. This in 
turn relies on the ability to determine the earliest time at which the signal has changed as a result of the impact. To 
make this determination, the reconstructed signal from Eq. (38) is segmented into small time regions, and the signal 
from that region is processed by a trained neural net to determine if it indicates the start of an impact. Portions of the 
signal which are not associated with the impact will exhibit degrees of consistency across the time segment, whereas 
those portions indicative of an impact will contain evidence of discontinuity within the segment. The signal was 
segmented into these regions, with a 50% overlap in the segments to ensure that at least one segment completely 
contains data associated with the measurement of the moment of impact. 

Artificial neural networks have been proven effective for impact detection.11 Neural networks transform 
measured inputs into expected outputs using a set of weights and are computationally efficient after training.12 The 
outputs are a linear combination of these inputs and the weights. The network is “trained” using supervised learning 
by adjusting the weights such that the error (the actual output of the network compared to the expected output) is 
locally minimized. A multilayer feed-forward neural network13 was used consisting of 24 inputs, a single hidden 
layer of four nodes, and a single output. The segmented inputs were obtained from the reconstructed signals and 
further condensed into 24 inputs by averaging. The choice of 24 nodes was a tradeoff between maximizing accuracy 
and minimizing execution time. The number of nodes in the hidden layer was chosen experimentally to be small 
enough to facilitate learning without being so large as to memorize the patterns used for training13, which would 
impede the network from recognizing patterns not already present in the set of data used to train the network. The 
single output was a measure of the likelihood that this segment indicated the detection of an impact.  

The output from the neural network served two purposes. First, the network aided in determining if an impact 
occurred at all by examining each segment of the received signal. Second, if the determination was that an impact 
had occurred, the neural network helped identify in which time segment the impact was first detected. That segment 
was further examined to determine the point in time when the impact occurred.  

The output of the net is the weighted, biased sum of all the inputs, adjusted by an activation function to restrict 
the output between a range of values. The output of a node is given by the sum of the weights associated with that 
node. The error associated with the output of the network can be computed as the mean square error based on the 
differences between the actual outputs of the network and the expected outputs used for training. The network is 
trained by adjusting the weights to minimize the total Mean Squared Error (MSE).13

The neural network was constructed and trained using the Neural Network Toolkit for MATLAB.14 The 
Levenberg-Marquardt method was used to train the network because of the reduced learning time associated with 
higher-order training methods.15 Sets of data collected from all four sensors from 35 impacts yielded a total of 140 
signals. An additional 35 sets of data were collected when no impact occurred. Both the impact and non-impact 
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signals were segmented and used to train and validate the network. Eighty percent of the data were used to train the 
network, with the remaining 20% reserved for simulation and testing of the trained network. The network was 
trained using repeated training runs, and in all but two runs, the network was able to converge below the target error 
level (less than .001 MSE) within 3000 cycles, or epochs. Neural networks frequently do not converge because of 
the initial value of the weights, which are randomly initialized to avoid biasing the output of the network.16

VI. Results and Conclusion 
The use of coordinate transformations to scale the location of the sensors relative to a unit square simplified the 

determination of the point of impact, but did require the extra step to transform these relative coordinates back into 
the test coordinate system. The location of impact was able to be determined using piezoelectric sensors, but the 
ability to determine the location of impact was greatly dependent on the accurate determination of the differences 
between the times that the impact was identified at each sensor. 

These time differentials were difficult to identify using only digital filtering because of the low signal to noise 
ratios as shown in Table 1 (5.3 dB). Using wavelet transforms for multiresolution analysis resulted in a signal to 
noise ratio of 17.7 dB. Wavelet analysis was 12.4 dB more effective at noise reduction than with traditional Fourier 
analysis and digital filtering, allowing the time differentials to be determined with greater accuracy. 

The neural network aided in the identification of the time differentials by pattern matching to determine if a 
segment of the signal is consistent throughout the segment, or if there is a change in the signal indicative of the 
detection of an impact. The neural network correctly identified the segment of the signal that included the impact 
93% of the time. The accuracy would likely have been greater had more test cases been used to train the neural net. 
The ability of a neural network to adapt to changing conditions by retraining makes it well-suited for in-flight 
impact detection. 

Even small errors in the arrival times of the signals resulting from the impact can result in significant errors in 
the computed location of the impact. These errors in the location of impact can be greater than the error in the time 
differentials by an order of magnitude or more, as shown in section III of this paper. Using the techniques presented 
in this paper, the 12.4 dB gain in signal to noise ratio allows the arrival times of the signal at each sensor to be 
readily distinguished.  
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