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ABSTRACT 

An ideal spoken dialogue system listens continually and 
determines which utterances were spoken to it, understands them 
and responds appropriately while ignoring the rest This paper 
outlines a simple method for achieving this goal which involves 
trading a slight!y higher false rejection rate of in domain 
utterances for a higher correct rejection rate of Out of Domain 
(OOD) utterarces. The system recognizes semantic entities 
specified by a unification grammar which is specialized by 
Explanation Based Learning (EBL). so that it only uses rules 
which are seen in the training data. The resulting grammar has 
probabilities assigned to each consnuct so that 
overgeneralizations are not a problem. The resulting system only 
recognizes utterances which reduce to a valid logical form which 
has meaning for the system and rejects the rest. A class N-gam 
grammar has been trained on the same training data. This 
system gives good recognition perfoimance and offers good OUT 

of dozain discrimination when combined with the senmtic 
analysis. The resulting systems were tested on a Space Station 
Robot Dialogue Speech Database and a subset of the OGI 
conversational speech database. Both systems run in real time 
on a PC laptop and the present performance allonzs continuous 
listenisg with an zcceptzb?y !m fa!se zcceptzce r2te. This type 
of open microphone system has been used in the Clarissa 
procedure reading and nalrigation spoken dialogue system which 
is being tested on the International Space Station. 

1. II\TRODUCTION 
Deciding when the system is being spoken to represents a 
continuing problem for spoken dialogue systems, 
especially when other people are in the environment 
where the system is being used. Early spoken dialogue 
systems used “push-to-talk” as a way to indicate start and 
end of user speech intended for the system This method 
was used at MIT and at SlU [ 11. [2] 

A later development was the attention phrase or name 
which was used by several systems. The Bell Labs system 
used “Watson” as the name of the assistant. [3] Prefixing 
any command to the system with the name allowed the 
system to ignore any other speech. This unfortunately 

ignores the talker if he or she forgets to use the word of 
address. 

A more recent development has been open-microphone 
speech recognition, where the end pointing is based on the 
presence of sound (assumed to be speech) instead of 
silence for a sufkiently long time. Systems using such zn 
approach include the many telephone based systems such 
as HMIHY [4], spoken translation systems such as the 
Japanese-English system by Karaornian et al. [5] and a 
Spanish-English system by iioe et a1 [6]. 

The fundamental assumption is made that the user is 
always talking to the system, or in a speech translation 
system is always taking to another person in another 
language via the system. Therefore the system should 
always attempt to interpret everything that the user says, 
no matter how unlikely the interpretation, and respond io 
that in a reasonable way. 

Sysrems also implemented barge in, which is the ability of 
the user to answer and give information as soon as the 
system has said enough. Once again this could be based 
on just hearing a speech like sound or actually doing 
recognition with a grammar. [7] Unfortunately a back 
channel would trigger the barge in and cancel the system 
output for both varieties of system. Incorrect barge in is 
annoying for users, bur can be simply repaired by saying 
“Say that again.” 

Over the past few years, the RIALIST group at NASA 
knes  has developed system! for tasks in which the usual 
assumptions do not hold. The user may be speakmg to 
the dialogue system or 

1) 
2) speaking to other dialogue agents over a 

This means that the system must discriminate against 
speech which is not directed to it. This paper presents the 
first part of the solution to this problem, the development 

speaking to other people in the area or remotely 
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of a speech understanding system which can d i s c d a t e  
between speech which is semantically meaningful to it and 
speech which has no meaning within the system. This still 
leaves speech which has meaning within the system, but 
which is spoken to another person or agent. It is possible 
to use context’and the particular response expected in this 
particular turn of the dialogue, as a mechanism to curtail 
false positives. For example a “yes” utterance would be 
accepted only if a yesino question had been asked. This 
method is presently used in the NASA systems and 
decreases the false positives for these short utterances. 

Discriminating between in domain and conversational 
speech is more than a two choice problem of deciding the 
closest distance to the representative set. The problem 
with conversational speech is that the topics. vocabularies, 
and expressions change with the situation. So while it 
might be tempting to make a language model for the 
conversational database used in testing the OOD 
discnmination and use utterance verification techmques, 
this would not genera!ize to a real world application. 
Rather we have chosen to concentrate on improving the in 
domain discrimination of the dialogue system and depend 
on that to elinlinate OOD utterances. In addition to the 
method used here, binary decision trees and SVM’s based 
on various phrase properties may increase performance. 
This will be the subject of further research. 

2. RGLE BASED L.4llGUAGE MODELS 
Most of the present dialogue systems use either n-gram 
granmars or hand built finite state grammars for speech 
recognition N-gram grammars require large amounts of 
transcribed speech data in order to train accurate models. 
Because these grammars never have enough training data 
to cover all possible word sequences which may 
potentiaIly be said to the system, the graFm-ar is backed 
off to allow previously unseen word sequences to be 
recognized. This has the unfortunate side effect of 
allowing a large nuniber of false accepts, for data which is 
out of domain or ungrammatical. The system in effect 
coerces any input speech to be the chain of the most 
probable n-gram sequences reco,gnizable by the grammar. 
Thus conversations with coworkers or other 
conxnunication channels become sources of speech 
reco_gtion errors for an n-gram system. Thus recognition 
p--r---c--- r-- __.-_ - - A  I 

ciiciiiiiaiibc l v l  ,“id all“ CGSS z-g:~~, systems h2s been 
very good, but discrimination of out of domain utterances 
has not been good Tools for constructing n-gram 
grammars have been made available to the research 
community, so it is relatively easy to construct an n-gram 
grammar system [8] [9] [ 101 

Hand built finite state grammars require large amounts of 
human effort to develop and require extensive rewriting 

when switchmg ro a new domain. These grammars also 
tend to be fragile in that only a few ways of expressing an 
action or request are allowed or designed in. Many of the 
commercial telephone dialogue systems use this style of - grammar and provide tools for constructing and compiling 
them. Over a long period of use, grammatical 
constructions which are in common use but are not in the 
original grammar are added and these systems become 
more natural to use. 

3.1 Typed Unification Gramniar 
Typed Unification grammars can potentially overcome the 
lack of discrimination in n-gram grammars by recowpizing 
semantic meanings of the input speech. This allows many 
different ways of giving the same command, while 
discriminating against OOD utterances. Semantic 
grammars have traditionally required trained linguists to 
write them and each new domain needed many iterations 
with real data to insure coverage. For real tasks broad 
coverage rule based grammars allow phrases and 
sentences which are grammatical, but only a few of the 
constructions are actually used by humans within a 
p ~ q r t i c ~ ! ~  d c ~ ~ ~ k .  -4 \uay is needed to specialize the 
grammar and its underlying rule set to a new domain. The 
Explanation Based Learning (EBL) machine learning 
method developed for language by Manny Rayner [ 111 
allows a general rule based grammar to be specialized to a 
new sub-domain automatically, given a corpus of training 
data. It is only necessary to make sure that all of the 
sentences in the new domain are parsible by the unification 
grammar, before applying EBL to it. EBL then prunes 
down the number of rules to those seen in the training 
corpus. A M e r  specialization by training probabilities 
for the elements in the grammar, gives very good 
recognition perfomiance. We also provide results fiom a 
non-probabilistic g r a ~ m a r  to show how important this 
step is. In our system the result of utterance recognition is 
a logical form obtained from a second parsing step using 
the Gemini system [ 121. Thus utterances which result in a 
valid logical form are “within domain” and those which 
are not are rejected. 

Another possibility is to use a class n-gram grammar for 
recognition, and then use the unification grammar to 
determine if the utterance has meaning within the system. 
TFis metho:! ~ m s  &jc: .=;;e.l zr?d ~jl&ed we!! w i t h j ~  . ”  this 

.$!h 
,’ 

L2 59dbA domain. 
2.2 Unification Grammar for PSA 
The Personal Satellite Assistant (PSA) is a robotic 
assistant which is designed to navigate around in the 
International Space Station (ISS) propelled by fans. It is 
capable of m a h g  measurements and examining the 
status of T ~ ~ O U S  components visually. [ 131 The language 
consists of commands to navigate to various parts of the 



spacecraft and perform measurements. The commands 
can be elliptic and contain pronominal references. 
Further details of the task and language can be found in 
the following reference [14]. The grzQqar is a large 
coverage grammar whxh was constructed by hand to 
cover a much larger domain than the PSA domain. This 
grammar and grammar compilation tools are publicly 
available 111 the open source Regulus project [16], which 
began as a jomt effort between NASA Ames and Fluency 
Ltd EBL was used to prune down the number of rules to 
those necessary to parse the training corpus. Th~s  makes a 
more compact grammar which runs faster in the Nuance 
Communication speech reco-gnition engine [17], than a 
non-specialized grammar. This grammar still lacks 
probabilities. so a further step of using a training corpus 
to compute probabilities results in a probabilistic 
grammar. 

PS.4 Class 1 95.7 % I 42.6 % 1 57.5 % 

In our system the result of utterance understanding is a 
logical form obtained from the parsing step. Thus 
utterances which result in valid logical forms are “within 
domain” and those which are not are rejected. This 
allows the system to discriminate between in domain and 
out of domain utterances in a principled way. 

3. CLASS K-GRAM LAYGUAGE MODELS 

A class trigam grammar for the PSA domain was 
constructed with 5394 training utterances containing 
approximately 22,000 words. The classes can either be 
consuucted by hand, using knowledge of the domain or 
categories from a unification grammar or completely 
automatically [ 151. The automatically generated classes 
have the problem that they often provide classes of 
inhomogeneous words. Our simple class n-gram grammar 
uses nom colr?pot?nds as destination classes, ti-e classes 
and number classes as recommended by Andreas Stolcke. 
These classes were constructed by hand. The SFU 
language modeling toollut [9] was used to construct the 
class n-gram grammar. The resulting grammar was then 
compiled into a Nuance grammar. 

4. PERFORMANCE MEASUREMENT 
In order to test the claim that the EBL Unification 
grammar based system is able to discriminate between 
sp~ech  iii dcrxi;? zzc! speech cut of domzk, 2 series of 
experiments was performed. The frst experiment was to 
test the reco,onition of in domain speech by the systems on 
PSA dialogues. These dialogues command the robot to 
go to locations and to measure gases, pressure and 
radiation. The commands are complete sentences, but 
tend to be short. However the grammar allowed the 
cascading of requests, so that the utterance “Measure the 
temperamre at the pilot’s seat and the crew hatch and the 

pressure at the lockers.” is a legal utterance. This means 
that a strict word limit on the length of the utterances 
would not be effective in discriminating between the in 
domain and out of domain utterances. The PSA data was 
segmented into a training and test portion, with 221 1 
utterances in the training set and 3888 in the test set. 

The second test set consisted of short utterances from the 
conversational OGI 11 language corpus, cut &om the 
“stones-at” section of the corpus. There were i i 7  
utterances in this test set and each utterance consisted of a 
single sentence or phrase. This makes this data 
comparable in len-gh to the PSA in domain utterances, to 
eliminate any length effects. 

The third test set consisted of OOD utterances recorded 
during the PSA data collection. These 25 utterances serve 
as a verification that the error rates are similar between 
the OGI data and OOD PSA data. 

1 Recognizer 1 AER / Reject FAccept i 
I PSA Class 1 6.86 % j 6.35 % I 0 % I 

PSA I 9.39 % I 4.75 % I o % 1 

Table 1 : In-domain Performance with Minimum WER 

The three grammars were compiled into Nuance 
grammars, the PSA EBL grammar, the PSA EBL 
probabilistic grammar and the PSA class n-gam 
grammar. These were tested on all of the data sets, and 
the resuits shown for the systems trained to miniolize the 
word error rate in Table 1 and 2. The categories in rhe 
tables and plots are Accepted Error Rate (AER) wiich is 
the WER on non-rejected utterances, Rejection (which 
can be false or correct), False Accept (F -4ccept). The 
performance for the Class n-gram and the PCFG grammar 
were comparable for the in domain data, except that the 
Class n-gram has a higher rejection rate by approximately 
2 %. It can be seen that optimizing for WER results in 
systems which have poor rejection of out of domain 
utterances. 

I Recognizer AER 1 Reject 1 FAccept 1 

I PSAPcfg I 100 % 1 33 % 1 6 7 %  I 
Table 2: Out of domain perfonnance with Minhum WER 

Next the systems are tuned to optimize out of domain 
utterances by turning up the rejection threshold, with the 
goal of balancing false rejections in the in domain 
utterances with false acceptances in the out of domain 



utterances. This is done by increasing the weighting of the 
grammar and by increasing the rejection threshold. The 
results are shown in Table 3 and 4 for rejection thresholds 
of 50 and grammar weights of 6 for PSA-PCFG and 7 for 
PSA Class n-gam.  

I Recognizer I AER I Reject I FAccept 1 
1 PSA Class 1-6.86 Oio I 6.35 % 1 0 % 

-1 able 3: In-domain Performance ni th  h4inimum FAcc 

The .4ER performance is only slightly worse on the in 
domain recognition and the false rejection also increases 
slightly. However this makes a huge difference in the 
f a k e  accept rate for out of domain utterances. 

I Recognizer I AER 1 Reject 1 FAccept 1 
PSAClass I 85.3 ‘Yo I 91.49 % I 8. 51% 
PSA 1 97.3 9’0 I 92.59 % 1 7.41 94 I PSA Pcfg I 81.5 Yo I 95.74% 1 4.36 Yo I 
Table 4: OOD performance with h4inimum F .4ccept 

The Pcfg system provides superior performance for 
rejecting out of domain utterances while preserving in 
domain performance. 

8. CONCLUSIONS 

Spoken dialogue systems benefit greatly from being able 
to determine whether the user is talking to the system or to 
another person. By using a unification based grammar 
with probabilities compiled into a Nuance recognition 
grammar we are able to discriminate in domain from OUK 

of domain utterances with acceptable accuracy. . 
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