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Abstract

The  present  work  follows  a  recent  survey  of  airframe  noise  prediction  methodologies.   In  that  survey,  Lighthill’s  acoustic
analogy was identified as the most prominent analytical basis for current approaches to airframe noise research.  Within this
approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-
independent solution is obtained by means of the use of the free-space Green function (FSGF).  Nonetheless, the aeroacoustic
literature would suggest some interest in the use of “tailored” or exact Green’s  function (EGF) for aerodynamic noise prob-
lems  involving  solid  boundaries,  in  particular,  for  trailing  edge  (TE)  noise.   A  study  of  possible  applications  of  EGF  for
prediction of broadband noise  from turbulent flow over an airfoil  surface and the TE  is, therefore,  the primary topic of the
present  work.  Typically,  the  applications  of  EGF  in  the  literature  have  been  limited  to  TE  noise  prediction  at  low  Mach
numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF
to  higher  Mach  numbers,  the  uniqueness  of  the  solution  of  the  wave  equation  when  either  the  Dirichlet  or  the  Neumann
boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill’s equation with either the
Dirichlet  or  the  Neumann  BC  is  given  for  such  a  surface  using  EGFs.  These  solutions  involve  both  surface  and  volume
integrals  just  like  the  solution  of  FW-H  equation  using  FSGF.  Insight  drawn  from  this  analysis  is  evoked  to  discuss  the
potential  application  of  EGF  to broadband  noise  prediction.  It  appears  that  the  use  of  a  EGF offers  distinct  advantages  for
predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface.  It is argued that such an
approach may also apply to an airfoil in motion.  However, for the prediction of broadband noise not directly associated with
a trailing edge, the use of EGF does not appear to offer any advantages over the use of FSGF at the present stage of develop-
ment. It is suggested here that the applications of EGF for airframe noise analysis be continued. As an example pertinent to
airframe  noise  prediction,  the  Fast  Scattering  Code   of  NASA  Langley  is  utilized  to  obtain  the  EGF  numerically  on  the
surface of a three dimensional  wing with a flap and leading edge slat  in uniform rectilinear motion.   The interpretation  and
use of these numerical Green functions are then discussed.
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1. Introduction
In the  present  work  we  continue  the  study of  airframe  noise  (AFN) prediction  methodologies1 .  This  investigation  is  moti-
vated  by  the  need  to  develop  physics-based  AFN  prediction  tools.   As  future  airport-noise  abatement  goals  become  more
stringent,  it will eventually  become imperative  to predict  overall  noise levels  during an aircraft’s  design stage, including its
airframe design.  The success of such a “quiet-design” approach will depend on a physics-based prediction methodology, i.e.,
a  methodology  in  which  the  noise  prediction  process  incorporates  modeling  that  is  derived  from  first  principles.   Noise
prediction  tools  that  include  as  much  physics-based  modeling  as  possible  are  highly tractable  and  robust,  and  thereby  well
suited for future design guidance.

The current  AFN methodology  study  began  with a  survey  of  the  prediction  methods  that  are  currently  in  use or  in various
stages of development1 .  In that work, present approaches to AFN prediction are categorized into four groups, three of which
are  referred  to  as  “semi-empirical,”  “fully  analytic,”  and  “fully  numerical.”   In  the  fourth  approach,  a  computational  fluid
dynamics  (CFD)  simulation  provides  the source  description,  and  the radiated  sound  is  predicted by  an appropriate  acoustic
formulation  based  on  Lighthill’s  acoustic  analogy2.   At  present,  only  the  CFD/acoustic-analogy  (CFD/AA)  approach  pro-
vides the potential to develop the necessary physics-based prediction tools within the required time frame1 .  As this conclu-
sion has remained relevant for the past decade, NASA’s development of a physics-based AFN methodology has been largely
concentrated within the CFD/AA approach. 

The  advantages  of  a  CFD/AA  methodology  result  from  the  very  notion  of  “acoustic  analogy,”  itself.  Morris  and  Farassat
describe an acoustic analogy as “any aerodynamic noise theory in which the equations of motion for a compressible fluid are
rearranged in a way that separates linear acoustic propagation effects.”3   Furthermore, “this rearrangement results in a set of
equivalent  sources  that  are  assumed  to  be  non-negligible  in  a  limited  region  of  space.”  Therefore,  within  the  CFD/AA
approach,  the CFD solution  is regarded  as input  data  to a stand-alone  acoustic  propagation  algorithm.   As such, the  propa-
gated sound can be predicted to observers in arbitrary locations, e.g., at distances many times larger than the spatial  domain
of the input CFD solution.  Moreover, such an acoustic-analogy based algorithm is a direct application of an explicit, analyti-
cal  formulation  for  radiated  sound.   Thus,  there  is  no additional  error  incurred  during the  acoustic  calculation;  i.e.,  the  far-
field noise prediction is as accurate as the computed source input.  

The most commonly used governing equation for AFN prediction is the Ffowcs Williams-Hawkings (FW-H) equation4 . The
solution  of  this  equation  is  obtained  by  using  the  free-space  Green’s  function  (FSGF)  which  is  independent  of  the  aircraft
geometry.  The usefulness of this approach has been clearly  established by the prevalence of noise prediction tools based on
solution of FW-H equation. Nonetheless, in recent years a number of technical papers and books have appeared that promote
the use of the so-called tailored or exact Green’s function as an analytical tool for AFN problems5-12 . Although Howe has
been the leading advocate of the use of EGF, the present authors believe that it was Goldstein who first suggested the use of
EGF in an important  paper in 197413  and in his book on aeroacoustics14 . In Goldstein’s works, the EGF was discussed in
connection  with  the  possible  choices  of  the  Green’s  function  in  acoustic  problems  that  are  solved  in  the  presence  of  solid
bodies. 

We feel  that  it  is  time  that  the  use of  EGF approach  be reviewed  carefully and  compared to  the use of   the FSGF in AFN
prediction problems. Such a review and comparison are presented in this paper. Our approach is as follows. In Section 2, we
briefly discuss the history of broadband noise prediction problem, what is known from previous research, and why the use of
EGF  has  attracted  so  much  attention  from  aeroacousticians.  Then  we  explicitly  state  the  mathematical  problem  that  we
address  here  which  is  whether  EGF  approach  can  be  used  for  a  surface  in  motion.  We  accomplish  this  by  proving  some
uniqueness  theorems  for  the  wave  equation.  To  this  end,  in  Section  3  we  prove  rigorously  that  the  solution  of  the  initial-
boundary value problem of the wave equation is unique with either the Dirichlet  or the Neumann boundary condition speci-
fied on a deformable body in motion. This means that the EGF may be found for a moving surface and used for AFN predic-
tion. In Section 4, we discuss the implications of this result when used for broadband noise prediction. Our main conclusion
is that  there  seems to  be clear  advantages  of using  EGF over  the  FSGF for  TE noise  prediction  at  low Mach numbers  and
perhaps even at high Mach numbers. It is recommended that the use of EGF be explored further in AFN prediction. Finally,
in Section 5 we give examples of EGF for the nontrivial case of two three dimensional wings one of which has a trailing edge
flap and  a  leading  edge  slat.  These  EGF  are  constructed  numerically  for  a  fixed  source  frequency  on  the  wing  surface  for
several observer positions . Concluding remarks follow in Section 6.   
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2. The Airframe Broadband Noise Problem 

2.1. Some History 
Broadband  noise  radiation  from  airfoil  surfaces  has  been  studied  in  connection  with  aircraft  and  underwater  acoustics  by
Amiet and coworkers15-19 , Howe5-7,20-21 , and  Brooks  and coworkers22-24  since  the early 1970s.  Until  recent years,
almost  all  of  noise  prediction  methodologies  depended  on  the  use  of  Ffowcs  Williams  and  Hawkings  (FW-H)  equation4
whose  solution  uses  the  FSGF  of  linear  wave  equation.  The  use  of  FSGF  allows  various  closed  form  solutions  of  FW-H
equation because of extreme simplicity of the analytic form of FSGF and its easily visualizable geometry, e.g., the collapsing
sphere visualization of the characteristic  cone of the wave equation in four dimensions.  Two fundamental  papers by Ffowcs
Williams  and  Hall25  and  Crighton  and  Lippington26  have  contributed  greatly  in  understanding  the  physics  of   TE  noise
generation by quadrupoles and vortices passing in the vicinity of the edge. The results of these authors have been verified by
many others27 .      

 In recent years researchers within NASA, the universities, aircraft and engine industry in the U.S., as well as similar organiza-
tions in Europe and Asia have conducted intensive research on AFN. Many technical papers have been published. There has
been a sudden surge of interest in the use of EGF as evidenced by the number of authors who are using EGF in their publica-
tions. The chief advocate of the use of EGF in recent years is Howe5,6 . But Goldstein had already suggested the use of EGF
in a paper in 197413  and in his well-known book  aeroacoustics14  which is based on an earlier NASA publication with the
same name28 .  It  is  also  true  that  the  authors  of  the  two  fundamental  papers  on  TE  noise25,26  used  the  EGF  for  the  two
dimensional  problems  that  they  considered.  We  will  discuss  below  some  of  the  advantages  of  the  use  of  EGF  in  AFN
prediction.

An open and important question that the researchers who propose the use of EGF have not addressed involves the uniqueness
of the solution  of the wave equation with  the Dirichlet  or Neumann  boundary condition  (BC) on  a moving surface.  Appar-
ently,  the  prevailing  view  is  that  because  of  the  slow  speed  of  aircraft  during  take-off  and  landing  (about  Mach  0.2),  the
uniqueness theorem for a stationary surface will apply in AFN predictions.  Although,  intuitively,  the solution’ s uniqueness
appears  obvious,  it  is  not  enough  to  rely  on  intuition  alone.  If  the  uniqueness  theorem  breaks  down for  a  moving  surface,
much of the recent results based on EGF will be in doubt. We, therefore, propose to prove here two uniqueness theorems for
the  wave  equation  with  the  Dirichlet  or  the  Neumann  BC  for  a  moving  surface.  These  two  theorems  constitute  the  main
contributions of the present paper. We will then discuss the implications of these results as used in broadband  noise predic-
tion.    

2.2. What We Know Now
We give  a  summary  of  what  is  known  in  predicting  broadband  noise  caused  by  turbulent  flow  over  an  airfoil  and  the  TE
noise. Let us start with the acoustic analogy using the FW-H equation whose solution requires FSGF. The FW-H equation as
originally proposed by Ffowcs William and Hawkings is4 :   

(1)·2  p ' =


ÅÅÅÅÅÅÅÅ
 t

@r0  vn  dH f LD -


ÅÅÅÅÅÅÅÅÅÅÅÅ
xi

@p ni dH f LD +
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xi  xj

@HH f L Tij D

Here, the moving surface is described by f Hx, tL = 0  such that ıf = n , n  is the unit outward normal. This assumption implies
that f > 0  outside the moving surface (see fig. 1). Also p ' = c2  r ' = c2 Hr - r0 L , c  and r0  are the speed of sound and density
in the undisturbed medium, respectively, vn , p  and Tij  are the local normal velocity of the surface, the local gage pressure of
the surface,  and the Lighthill  stress tensor,  respectively.  The Heaviside  and the Dirac delta  functions  are denoted HH f L  and
dH f L , respectively. 

Ffowcs  Williams later  proposed  to  use a  penetrable  (porous  or  permeable)  data  surface  to  account  for  nonlinearities  in  the
vicinity of a moving surface29 . We again assume that the penetrable surface defined by f  Hx, tL = 0  and the fluid velocity is
denoted by u . The FW-H equation for penetrable data surface, FW - Hpds , is29,30 :
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(2)Ñ 2  c0
2  r ' ª Ñ 2  p ' =


ÅÅÅÅÅÅÅÅ
 t

@r0  Un  dH f LD -


ÅÅÅÅÅÅÅÅÅÅÅÅ
xi

@Li  dH f LD +
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xi  xj

@Tij  HH f LD

We have used the following notations in the above equation:

(3)Un = K1 -
r

ÅÅÅÅÅÅÅÅÅ
r0

O vn +
r unÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r0

(4)Li = p dij  nj + r ui Hun - vn L
where  dij  is  the  Kronecker  delta.  The  philosophy  behind  using  FW-Hpds  is  to  locate  the  data  surface  f = 0  to  enclose  a
moving noise surface, in such a way that all quadrupoles producing non-negligible noise are included within this surface, so
that no volume integration of the quadrupoles  outside the data surface is necessary.  This data surface must be located in the
region of high grid density in order to adequately  account for the upper spectrum of a broadband AFN calculation.  For this
reason,  one  would  like  this  surface  to  be  as  small  as  possible,  because  of  the  computer  intensive  nature  of  turbulence
simulation31-36 .

The formal  solution  of eqs.(1)  and  (2) has  two surface  integrals  involving local  normal  velocity  and surface  pressure  and  a
volume integral of the Lighthill quadrupole4,30 . This solution form is a consequence of the fact that we have used FSGF in
the  derivation.  For  studying  broadband  noise  some  sort  of  statistical  analysis  of  the  solution  must  be  performed  as,  for
example, is done by Morris and Farassat for jet noise analysis3  to relate the statistics of the noise to the statistics of turbulent
flow.  When  both  surface  and  volume  integrals  appear  in  the  solution,  the  algebra  for  statistical  analysis  becomes  very
complicated. 

Concerning  the  surface  data  needed  for  noise  calculations,  it  is  clear  that,  because  of  the  appearance  of  the  Dirac  delta
functions in eqs. (1) and (2), no normal derivative of surface pressure should appear in the solution. This is expected because
of the following result from generalized function theory37,38 :  

(5)p Hx, tL dH f L = @p Hx, tLD f =0 dH f L fl ı@p Hx, tLD f =0 = ıT  p Hx, tL
where ıT  p Hx, tL  is the gradient of p Hx, tL  tangent to the surface.  Therefore,  the surface input data used for source descrip-
tion for  FW-H equation  is of Dirichlet  type.  It  is important  to remember this when we discuss  the uniqueness  theorems for
the solution of wave equation with the Dirichlet or the Neumann BC.

Some important fact to know about the use of FW-H  and  equations for broadband noise prediction are:

1-   These  equations  are  exact  and  given  the  exact  input  data  that  accurately  models  the  source,  one  should  get  the  correct
radiated noise27 ,

2-  The surface  pressure  p  may include  an  acoustic  component  which  should  be  included  in  predicting  noise  off  the  surfa-
ce4,27  (see next subsection),

3- There is the possibility of noise cancellation from surface and volume sources in eqs.(1)39 . This phenomenon is direction
and frequency dependent.

4-  Doing statistical  analysis  on solutions  based  on FW-H and  FW - Hpds  is difficult  if all  the  integral terms  in the solution
are retained.  Relating the statistics  of  the broadband  noise  to the  statistics  of the volume and  surface  sources is essential  in
understanding and reduction of AFN.

It is important to recognize that, in general,  the volume sources involved in the generation of broadband noise occupy small
region of space in the vicinity of the surface but can have very high velocity gradients. Conceptually,  a compressible  turbu-
lence simulation would model the acoustic waves propagating over the surface. The problem is that compressible turbulence
simulation  is  computer  intensive  and  thus  expensive  and  we  prefer  incompressible  turbulence  simulation.  However,  at
present,  compressible  turbulence  simulations  at  meaningful  scales  are prohibitively  expensive,  and therefore  research  inter-
ests are pursued in the area of incompressible  simulations.  The question is whether  surface integration of the acoustic  pres-
sure  can  be  avoided  if  at  all  possible.  The  affirmative  answer  for  some  noise  prediction  problems  is  given  in  the  next
Subsection.

The possible cancellation between volume and surface integrals is another matter. In general, this problem should not exist if
the penetrable data surface for eq. (2) encloses the entire region of non-negligible turbulence intensity and vortical flow. This
is not always possible because of the high cost of turbulent flow simulation. Although a limited forms of solutions of FW-H
equation   employing  the  FSGF  have  been  tested  so  far,  the  possibility  of  adding  some  of  the  surface  terms  hidden  in  the
volume source term of eqs.(1)  and (2)  to the loading term as discussed  by Farassat,  Myers and Brentner40,41  to avoid this
problem  has  not  been  explored.  Also,  improvements  in  flow  simulation  to  extend  the  region  of  computation  for  use  in  a
solution based on FSGF in FW - H pds  will alleviate the cancellation problem. However, the issue of specifying statistics on
the data surface, based on the flow simulation, remains. The use of EGF can avoid this difficulty in statistical formulation in
certain situations, e.g., TE noise prediction, but not the need for an accurate turbulence simulation.         
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The possible cancellation between volume and surface integrals is another matter. In general, this problem should not exist if
the penetrable data surface for eq. (2) encloses the entire region of non-negligible turbulence intensity and vortical flow. This
is not always possible because of the high cost of turbulent flow simulation. Although a limited forms of solutions of FW-H
equation   employing  the  FSGF  have  been  tested  so  far,  the  possibility  of  adding  some  of  the  surface  terms  hidden  in  the
volume source term of eqs.(1)  and (2)  to the loading term as discussed  by Farassat,  Myers and Brentner40,41  to avoid this
problem  has  not  been  explored.  Also,  improvements  in  flow  simulation  to  extend  the  region  of  computation  for  use  in  a
solution based on FSGF in FW - H pds  will alleviate the cancellation problem. However, the issue of specifying statistics on
the data surface, based on the flow simulation, remains. The use of EGF can avoid this difficulty in statistical formulation in
certain situations, e.g., TE noise prediction, but not the need for an accurate turbulence simulation.         

2.3. Why Use EGF?
Howe7  discusses  the  Curle  problem42  and  the  solution  that  Powell  gives  using  the  image  of  quadrupoles  reflected  in  the
plane  boundary43 .  Howe  points  out  that  to  predict  the  noise  using  the  Curle  formula,  one  has  to  integrate  the  acoustic
pressure  over  a  large  portion  of  the  plane  boundary.  In  the  Powell  formulation,  this  surface  integral  is  simply  equal  to  the
contribution of the image quadrupoles.  Howe considers Powell’s  solution which is based on the EGF more appropriate.  We
will give another example which is the piston in the wall problem.

Figure  2  shows  a  piston  in  an  infinite  baffle  with  normal  velocity  distribution  vn Hx1 , x2 , tL  on  the  piston  surface  WS .  The
solutions of this problem by using FSGF in FW-H equation, and by Rayleigh using two different EGF based on the Dirichlet
and Neumann BCs are44 :

(6)4 p p ' Hx, tL = ‡
Ws

Ar0  v
ÿ
n EretÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d S + ‡

!2

Apÿ E
ret

 cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c r
 dS + ‡

!2

@pDret  cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2  dS HFW - H eq.L

(7)2 p p ' Hx, tL = ‡
!2

Apÿ E
ret

 cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c r
 dS + ‡

!2

@pDret  cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2  dS HDirichlet BCL

(8)2 p p ' Hx, tL = ‡
Ws

Ar0  v
ÿ
n EretÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d S = -‡

Ws

@ p ê nDretÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

 d S HNeumann BCL

It is clear that the solutions given by eqs.(6) and (7) which require the knowledge of the surface pressure over the entire two
dimensional space, have basically two shortcomings as compared to that given by eq.(8). First more input data are needed to
get the acoustic pressure and, second, the prediction is more costly. Note that the simplest solution, eq.(8), uses the Neumann
BC. 

Let us now discuss why Howe recommends the use of the EGF with the Neumann BC  p ê n = 0  for the TE noise problem
when the airfoil moves at low Mach number7 . Let the typical wavelength of the sound associated with the vortical flow over
the  TE  be  much  greater  than  the  chord.  Then  one  can  use  incompressible  turbulence  simulation  near  the  TE  and  use  the
volume quadrupoles  as the  source of  sound  which will  be scattered by  the TE. The use of the Neumann  BC eliminates  the
need for the knowledge of the pressure on the surface. This type of BC means that  p ên  is specified on the airfoil surface
which  for  a  stationary  surface  is   p ê n = 0.  The  condition  imposed  on  the  EGF  in  this  case  is  that  G ên = 0.The only
sources remaining  are  the Lighthill  quadrupoles  which  are  volume sources.  An  additional  advantage  here  is  that  by having
only  one  integral  to  evaluate  the  radiated  noise,  statistical  analysis  of  the  acoustic  pressure  based  on  the  statistics  of  the
turbulent  flow  is  considerably  simplified.  Even  for  the  case  of  high  frequency  TE  noise  where  the  typical  wavelength  of
sound is much smaller  than the chord, or when the airfoil  is in motion, the assumption of  p ên = 0  appears to be accept-
able  on  physical  grounds.  The  turbulent  flow  simulation  near  the  TE may  have  to  be  compressible,  but  limited  to  the  TE
region, and the noncompactness of the volume sources may have to be taken into account for noise calculations.

To study the use of EGF for surfaces in motion, we will next define the problem that we will address in the next section. 
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2.4. Problem Definition
The broadband airframe noise problem that we will address here is due to the turbulent flow in the boundary layer (BL) and
the passage of the vortical motion in the BL over the TE of a wing and its control surfaces. As is well-known, these are not
the only sources of broadband noise of airframe1 . The turbulent pressure fluctuations  on the wing surface and the scattering
of the energy in the vortical  flow over the TE generate broadband  noise that we are concerned with in this paper. Theoreti-
cally, the quadrupoles in the BL and the wake of the wing and control surfaces as well as in the flow over the side edges of
flaps  and  slats  also generate  broadband  noise.  We  are  interested  in  proposing  a  suitable  formulations  to predict  this  broad-
band  noise  assuming  that  high-resolution  turbulent  simulation  data  are  available  to  us.  In  particular,  the  use  of  an  EGF
formulation for this problem will be studied.     

3. Some Uniqueness Theorems for the Initial-Boundary Value Problem of 
the Wave Equation 
The  problem  that  we  are  considering  here  is  described  as  follows.  Let  an  arbitrary  deformable  surface  moving  in  the
unbounded  three  dimensional  space  !3  be  given  implicitly  by  f Hx, tL = 0  such  that  “ f = n ,  where  n  is  the  local  outward
pointing unit  normal to the surface (see fig. 3). The symbol Wt  stands  for the region exterior  to the surface f = 0, and Wt
refers to  the boundary  of Wt  described  by the  equation  f = 0. The fact  that  n  points  into  the exterior  of  f = 0 implies  that
f > 0 in Wt . We want to find out whether the following problem has a unique solution:   

(9)

·2  f = y Hx, tL, Hx, tL e Wt µ @0, TD
IC : f Hx, 0L = gHxL,  t  f Hx, tL = hHxL, x e Wt

BC : either f Hx, tL = k Hx, tL or
f
ÅÅÅÅÅÅÅÅÅÅ
n

= k Hx, tL is specified for Hx, tL e  Wt µ @0, TD

In this section, we are taking c = 1 in the wave operator, i.e., ·2 = t
2 -ı2 .

As  is  well-known  from  the  theory  of  partial  differential  equations,  the  above  BCs  are  called  the  Dirichlet  and  Neumann
boundary  conditions,  respectively.  We  require  that  the  IC  and  BC  be  consistent,  e.g.,  for  Dirichlet  BC,  one  should  have
k Hx, 0L = g HxL  on Wt .

To  prove  uniqueness,  we  must  show  that  if  f1  Hx, tL  and  f2  Hx, tL  are  two  solutions  of  eq.(9),  then  their  difference
f = f1 - f2  which satisfies 

(10)

·2  f = 0, Hx, tL e Wt µ @0, TD
IC : f Hx, 0L = 0,  t  f Hx, 0L = 0, x e Wt

BC : either f Hx, tL = 0 or
f
ÅÅÅÅÅÅÅÅÅÅ
n

= 0 for Hx, tL e  Wt µ @0, TD

has the solution f Hx, tL ª 0 for Hx, tL e Wt µ @0, TD .

The general method of proof is based on an energy relation. This is described in Subsection 3.2 below. 

3.1. The Classical Uniqueness Theorem
The classical uniqueness theorem states that for a stationary surface f HxL = 0, the solution of eq. (1) is unique45 . We will not
give the proof here because it is a special case of our more general result below.

3.2. Extension of the Uniqueness Theorem to a Moving Deformable Surface
We want  to show that  the  solution  of problem described  by eq.(10)  is  f Hx, tL ª 0  for  Hx, tL e Wt µ @0, TD .  We  start  with the
following easily established identity:
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(11)ft  ·2  f =


ÅÅÅÅÅÅÅÅ
 t

 K 1
ÅÅÅÅÅ
2

 ft
2 O - ı ÿ Hft  ıfL + ıft ÿıf =


ÅÅÅÅÅÅÅÅ
 t

 K 1
ÅÅÅÅÅ
2

 ft
2 +

1
ÅÅÅÅÅ
2

 †ıf §2 O - ı ÿ Hft  ıfL

We now integrate this result for Hx, tL e Wt µ @0, TD  and use the divergence theorem. This gives

(12)‡
0

T
 ‡

Wt

 
E
ÅÅÅÅÅÅÅÅÅÅÅ
 t

 d x d t = ‡
0

t

‡
Wt

ft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

 d S d t

where E = 1ÅÅÅÅ2  ft
2 + 1ÅÅÅÅ2  †ıf §2  which can be interpreted as an energy quantity. We next obtain the following result to use on the

left side of the above equation:

(13)
d

ÅÅÅÅÅÅÅÅ
dt

 ‡
Wt

 EHx, tL d x = d
ÅÅÅÅÅÅÅÅ
dt

 ‡
!3

 HH f L EHx, tL d x = ‡
!3

 HH f L EHx, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
 d x - ‡

!3
 vn  dH f L E d x

Here  HH f L  and  dH f L  are  the  Heaviside  function  and  the  Dirac  delta  functions,  respectively.  We  have also  used  the relation
 f ên = - vn  where  vn  is  the  local  normal  velocity  on  the  surface  f = 0.  We  next  use  the  following  relation  proved  in
references37,38   in the above equation:

(14)‡
!3

 vn  dH f L E d x = ‡
Wt

vn  E d S

Equation (13), with some rearrangement, will then yield:

(15)‡
!3

 HH f L EHx, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
 d x = ‡

Wt

 
E
ÅÅÅÅÅÅÅÅÅÅÅ
 t

 d x =
d

ÅÅÅÅÅÅÅÅ
dt

 ‡
Wt

 E dx + ‡
Wt

vn  E d S

This is, of course, a transport theorem. We next use this result in eq.(12) and keep the surface integrals on the right of equal-
ity sign to get:

(16)‡
0

T
 

d
ÅÅÅÅÅÅÅÅ
dt

 ‡
Wt

 E d x d t = ‡
0

T

‡
Wt

Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO d S d t

We next integrate the time integral on the left side. This gives

(17)‡
Wt HTL

 E d x - ‡
Wt H0L

 E d x = ‡
0

T

‡
Wt

Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO d S d t

Here Wt HTL , and Wt H0L  are the regions exterior to the surfaces f Hx, TL = 0  and f Hx, 0L = 0, respectively. Now we utilize the
IC of eq.(10) in the second integral on the left side of eq.(17) to get

(18)‡
Wt H0L

 E d x = 0

Equation.(17), therefore, becomes 

(19)‡
Wt HTL

 E d x = ‡
0

T
 ‡

Wt

 Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO d S d t The Energy Identity

This is the generalization of the energy identity used for obtaining the classical uniqueness theorem45 . We now prove some
very useful uniqueness theorems based on this identity for moving and deformable surfaces for our applications.

3.2.1. The Uniqueness Theorem for an Infinitely Thin Deformable Surface in Motion

For such a body vn = 0 so that eq.(19) becomes identical to what that is obtained for stationary surfaces45 :

(20)‡
Wt HTL

 E d x = ‡
0

T

‡
Wt

ft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

 d S d t
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Now using either  the Dirichlet or the Neumann BC of eq.(10), the right side of eq.(20) vanishes and we obtain: 

(21)‡
Wt HTL

 E d x = 0

Since E  is a positive quantity, this relation implies that E = 0. From this we conclude that f = constant = fHx, 0L = 0. 

3.2.2. The Uniqueness Theorem for an Arbitrary Deformable Surface in Motion With Dirichlet Boundary 
Condition 
This theorem is considerably more difficult to prove than for an infinitely thin moving body. We will again utilize eq.(19) but
this time some concepts from differential  geometry must be used to prove uniqueness  of the solution. We mention here that
by using eq.(19), it is a trivial matter to show that we have uniqueness if consistent Dirichlet and Neumann BCs are specified
on a moving surface. In fact, in this case we have a closed form solution which is the Kirchhoff formula for moving surfaces
first derived by Morgans46  in 1930 and verified much later using generalized function theory by Farassat and Myers47,48 .
We know that in the classical Kirchhoff formula, the imposition of the Dirichlet and Neumann BCs is an overspecification of
data (from classical uniqueness theorem given above). We also feel intuitively, based on the fact that there is total destructive
interference of acoustic signal inside the moving surface, that giving the Dirichlet and Neumann BCs on a moving surface is
also an overspecification.  Now that many researchers are advocating the use of EGF for TE noise prediction, there is a need
for  uniqueness  theorems  of  wave  equation  for  either  Dirichlet,  Neumann  on  a  moving  and  deformable  surface.  We  now
proceed with the proof of the uniqueness theorem when only the Dirichlet BC is specified on the moving surface.   

First we find the expression for the integrand of the surface integral on the right of eq.(19) in terms of the quantities known
on the  surface.  We then proceed  to show that  the integral  on  the right  of  this  equation  vanishes  in the vicinity  of  any  time
t = t0 . This process then can be repeated for all t e @0, TD . This leads to the conclusion that integrand of the integral on the left
of eq.(19) is zero. The conclusion of f ª 0 follows by the same reasoning as used in the case of infinitely thin surface.

Note that eq.(19) was derived in a frame fixed to the undisturbed medium. This means that in this equation ft = fHx, tL ê t .
This is not the same time derivative of f  on the moving surface. Referring to fig. 4, we define a Gaussian coordinate system
Hu1 , u2 L  on  the surface  f = 0.  Next  define  the coordinate  u3 locally  normal  to this  surface  with positive  direction  along the
direction  of  n  with  u3  as  the  distance  from  the  surface  (time  t  is  frozen).  Since  n = ı f ,  this  means  simply  that  we  have
defined  u3 = f ,i.e.,  dn = df = du3 .  We  will  use  the  notation  u = Hu1 , u2 , u3 L .  We  can  then  show  that,  if  we  define
f
è Hu, tL = fHx Hu, tL, tL      

(22)f
è

t  Hu, tL =
f

è
 Hu, tL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 t

=
fHx Hu, tL, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
= ft  Hx, tL + v ÿıfHx, tL = ft  Hx, tL + v ÿı f

è
 Hu, tL

where v = xHu1 , u2 , 0, tL ê  t  is  the local  surface  velocity  which is  unambiguously  defined.  Note that the Dirichlet  BC can
now  be  written  simply  as  fè Hu1 , u2 , 0, tL = 0.  This  means  that  ı f

è
 Hu1 , u2 , 0, tL = f

è
n  Hu1 , u2 , 0, tL n = fn  Hx, tL n  where

f
è

n = f
è ë u3 . Equation (22) and the BC then give

(23)ft  Hx, tL » f =0 = -vn  f
è

n  Iu1 , u2 , 0, tM = -vn  fn  Hx, tL » f =0

Using all these results in the integrand of eq.(19), we get

(24)Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO
f =0

= -vn  I3 + vn
2 M fè n

2
 Iu1, u2 , 0, tM

The most  important thing to recognize at this point is that the expression on the right of eq.(24) is defined in the vicinity of
the surface f = 0  at any time as a function of coordinates Hu, tL  and not just Hu1 , u2 , 0, tL . We use this fact in eq.(25) below.
Now we will take two steps that are crucial in the proof:

1-  At  the  time  t0 e @0, TD ,  set  up  the  coordinate  system  u  on  the  surface  f Hx, t0 L = 0  as  described  above  with  Hu1 , u2 L  the
Gaussian  coordinates  on  this  surface  and  u3 coordinate  normal  to  the  surface,  u3 = 0  on  the  surface  and  positive  in  the
direction of n  and negative in the opposite direction.  Now at the time t0 + dt , the location of the surface f  Hx, t0 + dtL = 0  is
obtained by moving each point Hu1 , u2 , 0L  on f  Hx, t0 L = 0  to Hu1 , u2 , vn  dtL . Transfer  coordinates Hu1 , u2 L  from f  Hx, t0 L = 0
to f  Hx, t0 + dtL = 0 by this process and retain the definition of coordinate system u3 as defined for surface f  Hx, t0 L = 0. 
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2- Assume that the limits  of the Gaussian  coordinates  Hu1 , u2 L  in defining the moving  surface f = 0  is independent  of time
for  t e @t0 , t0 + dtD .  We  call  this  two-dimensional  domain  Wu .  See  Farassat  and  Myers48  for  an  example.  This  assumption
allows us to exchange the order of integration after the second equality sign in eq.(25) blow. 

We can now do all the following manipulations rigorously:           

(25)

‡
t0

t0 +dt

‡
Wt

Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO d S d t = -‡
t0

t0 +dt
 ‡

Wu

 vn  I3 + vn
2 M fè n

2
 Iu1 , u2 , u3 , tM "###################################gH2L  Hu1 , u2 , u3 , tL  du1  du2  dt =

-‡
Wu

 ‡
t0

t0 +dt

 vn  I3 + vn
2 M fè n

2
 "########gH2L  dt du1  du2 =

-‡
Wu

 ‡
0

dn

vn  I3 + vn
2 M fè n

2
 "########gH2L  

dn
ÅÅÅÅÅÅÅÅÅ
vn

du1  du2 = -‡
Wu

 ‡
0

dn

I3 + vn
2 M i
k
jjjj

d f
è

ÅÅÅÅÅÅÅÅÅÅÅÅ
dn

y
{
zzzz

2

 "########gH2L  dn du1  du2 = 0

Here  gH2L is  the  determinant  of  the  coefficients  of  the  first  fundamental  form49 .  In  the  last  step,  we  have  used
d f

è
= f

è Hu1, u2 , vn  dt, t0 + dtL - f
è

 Hu1 , u2 , 0, t0 L = 0 - 0 = 0 by  the  BC.  We  can  now  repeat  the  process  again  for  all  time
t e @0, TD  to obtain: 

(26)‡
Wt HTL

 E d x = 0 fl E =
1
ÅÅÅÅÅ
2

 ft
2 +

1
ÅÅÅÅÅ
2

 †ıf§2 = 0 fl f Hx, tL = constant = f Hx, 0L = 0

Thus  the  uniqueness  of  the  solution  of  the  wave  equation  with  Dirichlet  BC  specified  on  a  deformable  body  in  motion  is
proved.

3.2.3. The Uniqueness Theorem for an Arbitrary Deformable Surface in Motion With Neumann Boundary 
Condition
The basic idea of proof remains the same as in the case of the Dirichlet BC with some minor differences. Note that we have
the Neumann BC fn = 0 on Wt . We can show that, after using the BC, we have 

(27)Kft  
f
ÅÅÅÅÅÅÅÅÅÅ
n

- vn  EO
f =0

= -vnBf
è

t
2

- 2 vT  fT  f
è

t + I1 + vT
2 M fT

2 F

where v ÿıT  f = vT  fT  where vT  and fT  are the  tangential  velocity  of the surface  and the directional  derivative  of f  in the
direction of the tangential  velocity,  respectively.  We now repeat the procedure  for Dirichlet  BC except that  we should  start
from  t = 0  and  use  the  fact  that  fn = 0  to  show  that  f = 0  is  transferred  at  each  step  from  f Hx, tL = 0  to  the  surface
f Hx, t + dtL = 0, t e @0, TD ,  so  that  the  right  side  of eq.(27)  always vanishes.  Equation  (26)  and the  uniqueness  result  for  the
Neumann BC then follow.     

Remarks-1-  Since  our  reasoning  is  local,  the  above  method  can  also  establish  the  uniqueness  of  the  solution  of  the  wave
equation with the Robin BC (a linear combination of the unknown and its normal derivative).

2- To the best of our knowledge, the above theorems are proved for the first time here. We have extensively searched mathe-
matics  and  physics  literature  and  have  not  found  the  proofs  of  these  theorems  elsewhere.  Note  that  the  complications  and
difficulties in the proof come from the motion of the surface. 

3-  The  above  uniqueness  theorems  ensure  the  existence  of  EGF  for  the  problems  under  consideration.  The  reason  is  as
follows.  For  a  linear  operator,  the  existence  of  Green’s  function  is  guaranteed  if  zero  is  not  an  eigenvalue  of  the  operator.
When  zero is  an  eigenvalue  of  the  operator,  it  means that  uniqueness  breaks  down.  Since  we  have established  uniqueness,
zero cannot be an eigenvalue of the problem and the EGF exists.
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3.3. The solution of the Lighthill Equation with the Dirichlet or the Neumann BC using 
EGF
For completeness and for the purpose of comparison of noise prediction formulas in AFN prediction methodologies, we give
the  solution  of  Lighthill’s  equation  using  EGF.  We assume  that  the  moving  surface  f = 0  is  deformable.   The  two  initial-
boundary value problems that we will consider are:

(28)

·2  p ' =
2 Ti j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xi  xj

x e Wt , t e @0, TD,

IC : p ' Hx, 0L = g HxL,  p ' Hx, 0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
= hHxL x e Wt ,

BC : p ' Hx, tL = k Hx, tL x e Wt , t e @0, TD Dirichlet BC

and

(29)

·2  p ' =
2 Ti j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xi  xj

x e Wt , t e @0, TD,

IC : p ' Hx, 0L = g HxL,  p ' Hx, 0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
= hHxL x e Wt ,

BC :
 p ' Hx, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n
= k Hx, tL x e Wt , t e @0, TD Neumann BC

We  are  considering  initial-boundary  value  problems  here.  The  EGFs  for  the  above  wave  equations  satisfy  the  following
conditions: 

(30)
·Hx,tL2  GHx, y, t - tL = dHx - yL dHt - tL x e Wt , y e Wt , t < t, t - t e @0, TD
GHx, y, t - tL = 0 x e Wt , y e Wt , t > t
GHx, y, t - tL = 0 x e Wt , y e Wt , t - t e @0, TD For Dirichlet BC

and

(31)

·Hx,tL2  GHx, y, t - tL = dHx - yL dHt - tL x e Wt , y e Wt , t < t, t - t e @0, TD
GHx, y, t - tL = 0 x e Wt , y e Wt , t > t
GHx, y, t - tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

nx
= 0 x e Wt , y e Wt , t - t e @0, TD For Neumann BC

The solutions of eqs. (28) and (29) are:

(32)
p ' Hx, tL = ‡

0

t

 ‡
Wt HtL

 
2 Ti j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
yi  yj

 GHx, y, t - tL d y d t -

‡
Wt H0L

 CgHyL GHx, y, t - tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
- hHyL GHx, y, t - tLG d y + ‡

0

t
 ‡

Wt  HtL
 kHy, tL GHx, y, t - tL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ny

 d Sy  d t For Dirichlet BC

(33)

p ' Hx, tL = ‡
0

t
 ‡

Wt HtL
 
2 Ti j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
yi  yj

 GHx, y, t - tL d y d t -

‡
Wt H0L

 CgHyL GHx, y, t - tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
- hHyL GHx, y, t - tLG d y + ‡

0

t
 ‡

Wt  HtL
 kHy, tL GHx, y, t - tL dSy  d t For Neumann BC

In  these  equations  the  region  Wt HtL  is  external  to  the  surface  Wt HtL : f Hy, tL = 0.  We  have  left  out  all  the  details  of  the
derivation which  involve some subtleties.  For example,  one has to use the transport  identity of eq.  (15) in the derivation  of
these solutions. In addition, some of the properties of the Green’s function on either side of t = t  must be exploited (See the
books by Goldstein11 , Stakgold46  and Morse and Feshbach52).

We mention here that in acoustic applications, it is usually assumed that the noise generation process startes at t = -¶ , or at
a  finite  time,  after  any  transient  radiation  has  subsided.  Therefore,  one  rarely  sees  the  volume  integrals  on  the  right  of
eqs.(32)  and  (33),  which  account  for  initial  conditions  (IC),  in  current  noise  prediction  formulas.  This  assumption  is  made
here as well.  
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We mention here that in acoustic applications, it is usually assumed that the noise generation process startes at t = -¶ , or at
a  finite  time,  after  any  transient  radiation  has  subsided.  Therefore,  one  rarely  sees  the  volume  integrals  on  the  right  of
eqs.(32)  and  (33),  which  account  for  initial  conditions  (IC),  in  current  noise  prediction  formulas.  This  assumption  is  made
here as well.  

4. Implications of the Uniqueness Theorem 
From eq.(33), we may conclude that, in the case of a stationary airfoil,  when the Neumann BC    p ' ên = 0  is appropriate,
the acoustic pressure for a TE noise prediction is given by 

(34)p ' Hx, tL = ‡
-¶

t
 ‡

Wt HtL
 
2 Ti j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
yi  yj

 GHx, y, t - tL d y d t

This equation  is identical Lighthill’s  equation for  jet  noise prediction,  except that Green’s  function in the above equation is
the  EGF  that  satisfies  eq.(31).  Therefore,  as  suggested  by  Howe,  we  are  justified  in  using  incompressible  turbulent  flow
simulation near the TE to model the source in the integral above. In addition, statistical analysis on this equation to relate the
statistics of the noise to the statistics of the turbulence is relatively easy3 .  A word of caution is in order here, as the simplic-
ity of this equation should be balanced against the difficulty of obtaining the EGF, both analytically and numerically. 

Experimental  and  computational  evidence  indicate  that  even  at  high  frequencies  the  wavefronts  of  the  acoustic  waves
spreading  from the  TE area  are  normal  to  the  airfoil  surface  (see  fig.  5)  in  many  TE  noise  problems.  This  means  that  the
assumption of the vanishing of the normal derivative of the surface pressure  is a reasonable one and use eq.(34) is appropri-
ate for noise prediction  at high frequencies and when the airfoil  is in motion.  Therefore,  the use of EGF with the Neumann
BC    p ' ên = 0 offer clear advantages over the use of FSGF in FW-H equation.

Clearly, eq.(34) can be used to calculate  broadband noise from turbulent flows over a thin surface moving in its plane.  This
application has not been explored although there may be situations where such a model can be utilized.   

In the general cases where we cannot use   p ' ên = 0, we must specify   p ' ên  on the surface for the Neumann BC. The
condition  on  the  EGF  is  then  G ên = 0  on  the  boundary  of  the  moving  surface.  One  then  does  not  require  the  surface
pressure data as input. But the noise radiation formula,  eq.(33) will have both volume and surface integrals just as the solu-
tion of FW-H equation! There does not appear any advantage of EGF over FSGF. 

When we use the Dirichlet BC, the surface pressure  should be specified on the moving surface and the EGF satisfies G = 0
on this surface. The radiation formula is eq.(32) which has both surface and volume integrals. In this case, the input data for
both the solution of FW-H equation and eq.(32) are identical. There is the possibility that when EGF is utilized, the cancella-
tion between  the  volume and  surface  integrals  is  less  than  in the  case  of  using  FSGF39 . If  such  a  possibility  were  proved
valid, this would imply less sensitivity in an EGF formulation to the accuracy of the input flow data.

The current experience with the EGF approach has already encountered some limitations in the application of this method in
aeroacoustics.  Doing analytical work on the EGF, and evaluating it numerically on a computer, incurs many problems, such
as  singularities  on  the  surface.  Furthermore,  for  complicated  surfaces  of  interest  in  AFN  prediction,  the  EGF  can  only  be
obtained  numerically.   Therefore,  any  realistic  AFN  calculation  with  an  EGF  formulation  will  involve  intensive  computer
usage.   It  should  be  mentioned  here  that  these  calculations  are  far  less  than  that  for  turbulent  flow  simulations  (LES  and
DNS).  Thus,  in  general,  the  use  of  EGF  is  within  our  reach  today.   Therefore,  we  think  that  the  use  of  EGF  should  be
explored further for Direichlet and Neumann BCs. 
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5. Exact Green’s Functions for a Wing in Uniform Rectilinear Motion
Much efforts  has  been  spent  to find  either  analytically3,4  or  numerically5-9  the  EGF for  nontrivial  geometries.  The most
significant  lesson  that  one  learns  from these  works  is  that  constructing  EGF  either  analytically  or  numerically  is  difficult.
With  the  exception  of  the  article  by  Hu,  Guo  and  Jones9  EGFs  have  been  constructed  for  two-dimensional  geometries.
However,  Dunn  and  Tinetti  have  developed  the  Fast  Scattering  Code (FSC)  to  calculate  the  scattering  of  the  engine  noise
from  thin  bodies  in  motion50,51 .  The  FSC  solves  the  Helmholtz  equation  for  a  surface  in  uniform  rectilinear  motion  on
which the condition  p ' ê n = 0  or an absorbing BC is imposed. In a typical FSC simulation, an incident acoustic source is
specified  off  the  surface  to  model  the  propulsion  system  noise.  The  scattered  acoustic  field  is  calculated  by  the  efficient
equivalent  source method.  The problem is solved in the frame moving with the surface so that the complex pressure  ampli-
tude on and off  the moving  surface can be found in the moving frame when a source with the complex time dependence of
ei w t is specified. Therefore,  if the incident noise source is taken as a constant frequency monopole source with unit strength
fixed in the moving frame, the pressure distribution on the moving surface gives the complex EGF in the moving frame. 

We present results for two three dimensional wings with realistic geometries. The designs and dimensions of these wings are
shown in figs.  6 and 7. Figures 8 and 9 show the locations of sources for which EGF on the wing surface is computed. The
radius of the circle of the sources which is located in a plane normal to the wing is the mean chord length for each wing. Each
source is spaced 10 degrees apart on the circle. The zero degree is the location ahead of the LE, 90 degrees is exactly above
the  suction  side  and  270  degrees  is  exactly  below  the  pressure  side  of  the  wing.  We  only  present  results  for  three  source
positions for each wing at two frequencies of 3000 Hz and 4097 Hz in the figs. 10 to 13. 

The values plotted in these surface distributions are the absolute value of the complex amplitude of EGF on the wings for the
observer  at  the  assumed  source  position.  In  other  words,  we  are  presenting  in  color
† G Hx, y, t - tL § = °Gè  Hx, yL ei w Ht-tL • = °Gè  Hx, yL •  for the observer x  at the source position and the field point y  varying over
all the points on the wing surface.  Therefore, we have high sensitivity of the noise  to the sources on the regions of the wing
that have high magnitudes (white or red) at the observer  position. In particular, we see that for some observer positions, the
noise is sensitive to the sources over the trailing edge. Note that only a limited range of TE sources contributes to the noise at
the  observer  positions  shown.  This  graphical  representation  of  EGF  on  the  wing  can  serve  in  identifying  the  directivity  of
sources on specific  areas of the wing by varying x ,  or given the observer position,  we can identify regions of the wing that
radiate toward the observer at x .

The FSC is a highly efficient  method of calculating EGF of the wave equation with the Neumann BC. It gives aeroacousti -
cians yet another tool to predict AFN.          

6. Concluding Remarks
In  this  paper,  preliminary  results  are  presented  for  a  study  involving  a  critical  examination  of  the  potential  use  of  EGF
formulations for the prediction of broadband noise due to turbulent flow over an airfoil surface and its TE. In the process of
studying  this  problem  we  have  proved  that  for  a  moving  deformable  surface,  infinitely  thin  or  with  thickness,  the  initial-
boundary  value  problem  of  the  wave  equation  has  a  unique  solution  for  either  the  Dirichlet  of  the  Neumann  BC  on  the
surface. This  existence of EGF then follows from these theorems.

Our conclusions concerning the use of EGF are:

1- For a stationary surface,  the  use of  EGF for  TE noise prediction  with the Neumann BC  p ' ên = 0  results in a volume
integral  involving  the  quadrupoles  in the  vicinity  of  TE.  An incompressible  turbulent  flow simulation  near  the TE is  suffi-
cient for low frequencies but compressible turbulent flow simulation may be needed for high frequencies.

2- It appears that the same Neumann BC  p ' ê n = 0  can be used for TE noise prediction for  an airfoil in motion at higher
Mach  numbers.  The  choice  of  compressibility  of  turbulent  flow  simulation  near  the  TE must  be  decided  by  the  frequency
range of TE noise and the speed of the airfoil.
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3- The use of EGF with Neumann BC makes the statistical analysis of TE noise much simpler than when FSGF is used. This
conclusion applies only when we can use the BC  p ' ên = 0  on the airfoil surface. Otherwise, no advantage over the use of
FSGF can be realized.

4- In the situations where the condition  p ' ên = 0  does not apply, the radiation formulas for the Dirichlet and the Neumann
BC have both volume and surface integrals. No clear advantage of the use of EGF over FSGF can be seen as to the amount of
input data and ease of statistical analysis.  

5- The use of EGF with the Dirichlet  BC has not been fully explored.  The input data needed are identical to when FSGF is
used to solve FW-H equation. The only possible advantage that one can foresee is the reduction of cancellation between the
volume and surface  integrals as compared to the use of FW-H equation. Because of the availability  of the method based on
FW - H pds  and the present difficulty of getting EGF, perhaps this advantage will not give enough incentive to researchers to
examine such an approach.

6-  We  have  not  been  able  to  discern  any  advantages  for  EGF  for  predicting  the  noise  from  turbulent  BL  over  an  airfoil
although for a stationary surface, the ease of statistical analysis of the broadband noise when the Neumann BC   p ' ê n = 0
is used may be an advantage over the use of FSGF.

7- We feel that the use of EGF in AFN prediction is still an open problem. We, therefore, recommend that the use of EGF be
explored further in acoustics.
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Figure 1.  Description of a surface in motion by 0),( =tf xv , f∇=
vvn , and 0),( >tf xv outside the surface. 
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Figure 2.  Piston in the wall problem.  The darker shaded region is vibrating 
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Figure 3.  Deformable surface in motion described by 0),( =tf xv , f∇=
vvn , and 0),( >tf xv outside the surface.
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Figure 4.  Gaussian coordinate system on a deformable body in motion. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

 
Figure 5.  Radiation of waves from a TE, showing the wavefronts propagating normal to the airfoil surface. 

 
 
 
 
 
 
 



           Figure 6. The planform of model 777 wing used for Green's function 
                            calculations. The plane of the source (observer) positions is
                            also shown.

          Figure 7. The planform of model Trap Wing used for Green's function 
                            calculations. The plane of the source (observer) positions is
                            also shown.



          Figure 8. The source (Observer) positions around a circle in a plane for 777
                           wing. Only the EGF for three observer positions are reported here.

          Figure 9. The source (Observer) positions around a circle in a plane for the Trap
                           Wing. Only the EGF for three observer positions are reported here.



(a) Monopole acoustic source at 190o from horizontal.

 

Pressure Side Suction Side

(b) Monopole acoustic source at 200o from horizontal.

(c) Monopole acoustic source at 210o from horizontal.

Figure 10 - Magnitude of acoustic pressure (Pa) on scaled Boeing 777 wing (b/2 = 2.15 m), 
f = 3000 Hz, M = 0.2.



(a) Monopole acoustic source at 190o from horizontal.
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(b) Monopole acoustic source at 200o from horizontal.

(c) Monopole acoustic source at 210o from horizontal.

Figure 11- Magnitude of acoustic pressure (Pa) on scaled Boeing 777 wing (b/2 = 2.15 m), 
f = 4097 Hz, M = 0.2.



(a) Monopole acoustic source at 190o from horizontal.
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Figure 12- Magnitude of acoustic pressure (Pa) on trap wing high lift system, f = 3000 Hz, M = 0.2.

(b) Monopole acoustic source at 200o from horizontal.

(c) Monopole acoustic source at 210o from horizontal.



(a) Monopole acoustic source at 190o from horizontal.

 

Pressure Side Suction Side

Figure 13- Magnitude of acoustic pressure (Pa) on trap wing high lift system, f = 4097 Hz, M = 0.2.

(b) Monopole acoustic source at 200o from horizontal.

(c) Monopole acoustic source at 210o from horizontal.




