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Utilizing Hierarchical Segmentation to Generate 
'Water and Snow Masks to Facilitate Monitoring Change 
with Remotely Sensed Image Data 

ABSTRACT 

The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise 

optimization and constrained spectral clustering that produces a hierarchical set of image 

segmentations. This segmentation hierarchy organizes image data in a manner that makes the 

image's information content more accessible for analysis by enabling region-based analysis. 

This paper discusses data analysis with HSEG and describes several measures of region 

characteristics that may be useful analyzing segmentation hierarchies for various 

applications. Segmentation hierarchy analysis for generating landwater and snowhce masks 

from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and 

compared with the corresponding MODIS standard products. The masks based on HSEG 

segmentation hierarchies compare very favorably to the MODIS standard products. Further, 

the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG 

snowhce mask did not require the setting of a critical threshold as required in the production 

of the corresponding MODIS standard product. 

.. 
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. INTRODUCTION 

Image segmentation is the partitioning of an image into related sections or regions. 

For remotely sensed images of the earth, an example of an image segmentation is a labeled 

map that divides the image into areas covered by distinct earth surface covers such as water, 

snow, types of natural vegetation, types of rock formations, types of agricultural crops and 

other man created development. In unsupervised image segmentation, the labeled map may 

consist of generic labels such as region 1 , region 2, etc., which may be converted to 

meaningful labels by post-segmentation analysis. 

Utilizing image segmentation as a first step in an image analysis scheme makes 

possible a more reliable labeling of image objects based on region feature values, which may 

now include region shape and texture. This is an appropriate approach for the analysis of 

natural image objects, since these objects are usually composed of varied patches and not 

discrete spatial elements like image pixels. 

A segmentation hierarchy is a set of several segmentations of the same image at 

different levels of detail in which the segmentations at coarser levels of detail can be 

produced fiom simple merges of regions at finer levels of detail. This is useful for 

applications that require different levels of image segmentation detail depending on the 

particular image objects analyzed. In such a structure, an object of interest may be 

represented by multiple image segments in finer levels of detail in the segmentation 

hierarchy, and may be merged into a surrounding region at coarser levels of detail in the 

segmentation hierarchy. If the segmentation hierarchy has sufficient resolution, the object of 

interest will be represented as a single region segment at some intermediate !eve! of 

segmentation detail. The segmentation hierarchy may be analyzed to identify the hierarchical 

level at which the object of interest is represented by a single region segment. The object 
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, may then be identified through its spectral and spatial characteristics. Additional clues for 

object identification may be obtained fiom the behavior of the image segmentations at the 

hierarchical segmentation levels above and below the level at which the object of interest is 

represented by a single region. 

Segmentation hierarchies may be formed through a region growing approach to image 

segmentation. In region growing, spatially adjacent regions iteratively merge through a 

specified merge selection process. Hierarchical Step-Wise Optimization (HSWO) is a form 

of region growing segmentation in which the iterations consist of finding the best 

segmentation with one region less than the current segmentation (Tilton and Cox 1983, and 

Beaulieu and Goldberg 1989). The best segmentation is defined through a mathematical 

criterion such as a minimum vector norm or minimum mean squared error. An augmentation 

of HS WO, called HSEG (for Hierarchical Segmentation), was introduced by Tilton (1 998) 

which spatially non-adjacent regions are allowed to merge controlled by a threshold based on 

previous merges of spatially adjacent regions. HSEG also includes a method for selecting the 

most “significant” iterations fkom which the segmentation result is saved to form an output 

segmentation hierarchy. 

Until recently, successful analysis of HSEG generated segmentation hierarchies has 

been accomplished only through the use of an analyst intensive graphical tool that allows a 

trained user to visualize and interact with the segmentation hierarchies. While it is possible to 

interactively label an image using such a tool, the manual interaction is subjective and time 

consuming. This paper describes some initial attempts towards the automated labeling of 

objects based on their representation in HSEG generated segmentation hierarchies. As 2 case 

study, we focused on twelve MODIS data sets with a spatial resolution of 1 .O km2 centered 

approximately on the Salton Sea in southern California. The data sets were fkom January 3 1, 
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. 2003 through February 28,2005 and included broad seasonal changes in vegetation canopy 

characteristics, including those due to drought and fire-induced change. While our eventual 

goal is to develop techniques for monitoring land-use and land- cover change in this and 

similar time series data sets, this paper concentrates on the use of segmentation hierarchies 

for generating landwater and snowhce masks from MODIS data, and compares and contrasts 

these results to the corresponding MODIS standard products. 

Hierarchical Segmentation 

The hierarchical image segmentation algorithm that was used in this study (HSEG) is 

based upon the relatively widely utilized hierarchical step-wise optimization (HS WO) region 

growing approach of Beaulieu and Goldberg (1989), which can be summarized as follows. 

0 Initialize the segmentation by assigning each image pixel a region label. If a pre- 

segmentation is provided, label each image pixel according to the pre-segmentation. 

Otherwise, label each image pixel as a separate region. 

Calculate the dissimilarity criterion value between all pairs of spatially adjacent 

regions, find the pair of spatially adjacent regions with the smallest dissimilarity 

0 

criterion value, and merge that pair of regions. 

Stop if no more merges are required. Otherwise, return to step 2.  0 

HSEG differs from HSWO in two major aspects. First, the HSEG algorithm allows 

for the merging of spatially non-adjacent regions, as controlled by the spclust-wght 

parameter. For spclust-wght = 0.0, only spatially adjacent regions are allowed to merge, as 

in HSWO. However, for spclust-wght > 0.0, HSEG allows merges between spatially non- 

adjacent regions. For spclust-wght = 1.0, merges between spatially adjacent and non-adjacent 

regions are given equal weight. For values of spclust-wght between 0.0 and 1 .O, merges 
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, between spatially adjacent regions are favored by a factor of 1 .O/spcZust-wght. Allowing for 

a range of merge priorities for spatially non-adjacent regions uniquely provides HSEG with a 

great deal of flexibility in tailoring the segmentation results to a particular need. 

Another way HSEG differs from HSWO is in the provision of an approach for 

selecting the most “significant” iterations from which the segmentation results are saved into 

an,output segmentation hierarchy. In this approach, the behavior of a certain criterion is 

monitored (either the maximum merging threshold, a global region dissimilarity function, or 

the global region standard deviation). When the ratio of the criterion value for the current 

iteration divided by the criterion value for the previous iteration exceeds a user settable 

threshold value, the segmentation result from the previous iteration is saved as a member of 

the output segmentation hierarchy. This down-selection to most significant results provides a 

more compact segmentation hierarchy for post-process analysis. Through this approach, 

HSEG provides a compact segmentation hierarchy in a single run in contrast to some other 

algorithms that require multiple runs to produce a segmentation hierarchy (e.g., the 

segmentation algorithm provided with the popular ecognition package, see 

http : / /www. def iniens-imaging . corn/) or algorithms that produce a voluminous complete 

segmentation (HSWO). 

HSEG also provides a selection of dissimilarity functions for determining most 

similar pairs of regions for merging. The available selection of dissimilarity functions are 

based on vector noms, and on mean-squared error. Options for additional dissimilarity 

functions can easily be added. 

The merging of spatially non-adjacent regions in HSEG leads to heavy computational 

demands. These demands are significantly reduced through a recursive approximation of 

HSEG, called RHSEG, which recursively subdivides the imagery data into smaller 
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. processing windows (sections) to limit to a manageable number the number of regions 

considered at any point in the algorithm (usually in the range of 1000 to 4000 regions). 

RHSEG includes a provision to blend the results fiom the subsections to avoid the production 

of segmentation artifacts along the processing window seams. This recursive approximation 

also leads to a very efficient parallel implementation. This parallel implementation of 

RHSEG is so efficient that full Landsat Thematic Mapper (TM) scenes (approximately 7000 

by 6500 pixels) can be processed in 2 - 8 minutes on a Beowulf cluster consisting of 256 

2.4GHz CPUs (http://thunderhead.gsfc.nasa.gov). This is only 10 to 20 times the amount of 

time that the Landsat TM sensor takes to collect this amount of data. 

A demonstration version of RHSEG along with a companion HSEGViewer program 

(for visualizing and manipulating the HSEG or RHSEG segmentation hierarchy results) is 

available from http://tco.mfc.nasa.pov/RHSEG/. The package includes a detailed user's 

manual with a more detailed description of HSEG and RHSEG along with a complete 

discussion of program parameters. The user's manual also includes a tutorial describing the 

use of HSEGViewer program. 

Data Sets Analyzed 

We obtained MODIS Terra MOD021KM calibrated radiance data and MOD03 

geolocation data for 12 MODIS granules, as listed in Table 2. Initially we acquired only 

bands 1-7, which represent the primary bands for land studies. Seasonal data sets were 

acquired fiom early 2003 through early 2005. The acquisitions were meant to capture both 

seasonal change and evidence of large chaparral fires that occurred in Southern California in 

fall 2003. We bounded our search with the geographic coordinate spatial search, using 32"N, 

30°N, 117"W and 116"W as our limits. Data sets were selected based on seasonality and 
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, cloud cover criteria over the Southern California region (Figure 1). The seven reflective 

band MODIS data sets were converted fkom swath to georectified grid, firom HDF to binary 

BSQ, uniformly subset so that all 12 data sets were coincident at a 1 .O km2 spatial resolution, 

and centered approximately on the Salton Sea in southern California. Additionally, we 

obtained a more complete set of data for two MODIS granules (Id., A2003301.1825 and 

A2004080.1825). For these we obtained all 36 spectral bands (reflective and emissive) along 

with the cloud mask data (MOD35) and the landsea mask fkom the geolocation data 

(MOD03). 

METHODS 

In this study, RHSEG was run using spclust-wght = 0.1, eight nearest neighbor 

connectivity, and the Global Maximum Merge Threshold (GMMT) convergence criterion. 

Dissimilarity criteria based on vector norms, image mean squared error, and a S A R  (synthetic 

aperture radar) speckle noise criterion were available in the versions of HSEG and RHSEG 

used in this study. In this study, we used the Square Root of Band Sum Mean Squared Error 

dissimilarity criterion, d&,, (Xi, Xi). For image subsets or segments X;: and 4 

where ni (nj) is the number of pixels in image segment 4 (&), uib (ujb) is the mean value for 

the bfh spectral band of image segment X;: (Xj), and B is the number of spectral bands. We 

chose this criterion since it favors the merging of smaller regions into larger ones. The 

derivation of this dissimilarity criterion is provided in Appendix A. Program defaults were 

used for other parameters. The acronyms and notation used throughout this paper are 

summarized in Table 1. 
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Data Analysis with RHSEG 

For most applications, RHSEG produces a hierarchical segmentation set that must be 

analyzed in a post-processing step to select a particular segmentation out of the hierarchy. 

This segmentation can either be from one level of the segmentation hierarchy or a blending 

of segmentations for several levels of the segmentation hierarchy. Either type of 

segmentation can be produced using the HSEGViewer program mentioned earlier. Using the 

HSEGViewer program an analyst exploits visual cues, external knowledge about the scene, 

and intuition to select an appropriate segmentation out of the segmentation hierarchy. An 

automatic, non-interactive approach requires the use of quantitative features to determine the 

appropriate segmentation. Features explored in this study are described in the following 

section. 

Features for Post-Analysis of Segmentation Hierarchies 

Region Features 

A simple region feature that was used in this study was the Maximum Merge 

Threshold (MMTJ encountered by the RHSEG region growing process for merges involving 

region i up until the current iteration. A large value for this feature indicates that the region 

is relatively inhomogeneous. 

The Band Maximum Standard Deviation (BMq) of region (here, region i) was used 

in this study as an indication of the variability of a region at a particular hierarchical 

segmentation level. For regions consisting of two or more pixels, the standard deviation for 

spectral band 6, ab, is: 
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where ni is the number of pixels in the region, xp is a pixel vector (in this case, a pixel vector 

in region x), z p b  is the image data value for the bth spectral band of pixel vector xp, and pib is 

the region mean for the bth spectral band of region i: 

(3) 

The band maximum standard deviation for region i is then defined as: 

BM 0; = max{o, : b = I,z,. . . , B }  

where B is the number of spectral bands. 

Region dissimilarity criteria can be used to indicate the character of a region at a 

specific level in the segmentation hierarchy. In particular, a region dissimilarity criterion that 

was used in this study is the square root of the Band Sum Mean Squared Error, D 2MsE ( X I  ) . 

For region Xi containing ni pixels this is: 

The above region dissimilarity criterion is calculated versus the original image data 

values (xpb). As an alternative, this criterion can be calculated versus another region, such as 

the region at the first (O*) level of the segmentation hierarchy: 

where pi is the mean for the bth spectral band of region X, at hierarchical level 0. 
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Spatial Features 

A number of shape analysis measurements can be used to analyze the spatial 

properties of regions at the individual levels of detail in the segmentation hierarchy. The 

feature measurements considered in this study include the area (number of pixels in the 

region), conva-area (number of pixels in the smallest convex polygon that can contain the 

region), solidity (proportion of the pixels in the convex hull that me also in the region, 

computed as arealconvex-area) and extent, defined as the proportion of the pixels in the 

bounding box (the smallest rectangle containing the region) that are also in the region. A 

major reason for selecting the four spatial-based metrics above was that they are widely 

available as built-in hct ions in several standard software products for remote sensing data 

and image analysis, including Research Systems, Inc.’s ENVI and Mathworks’ Matlab 

packages. 

Spectral Features 

The spatial features in the previous section do not take into account the spectral 

information provided by MODIS and other multi- or hyperspectral data sets. To incorporate 

spectral signatures into automated selection of segmentation levels of detail, we used the 

Spectral Angle Mapper ( S A M )  and the Spectral Information Divergence (SID). While the 

SAM measure is popular and widely available in the remote sensing community, the use of 

SID for measuring spectral similarity in multspectral image data sets is new (Chang 2003). 

Consider two MODIS pixel vectors Xi = ( x i 1 2  xa, 

is the number of spectral channels in the MODIS data. Tjvith the above definitions in mind, 

the SAM between xi and xj is given by: 

. . ., ~ 8 ) ~  and xj = &I, 8 2 ,  . . .) 8 ~ )  T , where B 

sAM(x, ,  x j ) =  cos-l(xi * x j / ~ ~ x i ~ ~ ~ ~ x j ~ ~ )  
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The S A M  measurement is invariant in the multiplication of the input vectors by 

constants and, consequently, is invariant to unknown multiplicative scalings that may arise 

due to differences in illumination, sensor observation angle, etc. In contrast, SID is based on 

the concept of divergence, and measures the discrepancy of probabilistic behaviors between 

two spectral signatures. It is based on a process that models xi and xi as random variables. 

Although this assumption does not necessarily hold true with remotely sensed images, the 

effects are negligible as explored by Chang (2003). If we assume that x i b  and x jb ,  b = 1,2, 

. . ., B, are nonnegative values, which is a valid assumption for imagery data due to the nature 

of radiance and reflectance data, then two probability measures can be respectively defined 

Using the above definitions, the self-information provided by xi for band b is given by I&) = 

-1ogqb. We can fbrther define the relative entropy of xi with respect to Xi, D(xi 11 xj ) by: 

By means of (8), a symmetric measure, referred to as SID, is defined as follows: 

SID(xi,xj)= D(xi 11 x j ) + D ( x j  11 xi) (9) 

SID offers a new look at the spectral similarity between two spectral signatures by making 

use of relative entropy, and accounts for the spectral information provided by each spectral 

signatuse. Using the S A M  and SID defined above; we can define a measure of spectral 

homogeneity for region X. as: 

S(Xi) = (l/ni) 2 Dist(x, , u i )  
X p E X i  
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where ni is the number of pixels in region & xp is a pixel vector (in this case, a pixel vector in 

region &), ui = (p i l ,  pt2, . . ., piB)= is the mean vector of region X,, Dist is either of SAM or 

SID. This measure provides indications of how similar are the spectral signatures of the pixel 

vectors labeled as part of the same region by RHSEG. Since the algorithm may associate 

pixels that are spatially disjoint but spectrally similar, the homogeneity measures should 

theoretically provide more reliable results than those produced by spatial-based metrics such 

as solidity or extent, both of which are addressed above. 

Joint SpectraWSpatial Features 

A combined spectrallspatial approach for feature extraction is based on classic 

mathematical morphology concepts (Soille 2003). Classic morphology utilizes two standard 

operations: erosion and dilation, which are respectively based on the replacement of a pixel 

by the neighbor with the maximum and minimum digital value, where the pixel 

neighborhood is given by a so-called structuring element (SE). The SE is a sliding window 

which is translated over all pixels in the input scene, thus acting as a probe for extracting or 

suppressing specific structures of the image objects by checking that each position of the SE 

fits within those objects. To extend the above two basic operations to multispectral images 

such as those produced by MODIS, we impose an ordering relation in the set of pixel vectors 

lying within an SE, designated by 2, by defining a cumulative distance between one 

particular pixel vector at spatial coordinates (x,y), denoted byJ(x,y), and all the pixel vectors 

in the spatial neighborhood given by 2 (2-neighborhood) as follows (Plaza et al. 2005): 

(1 1) D, Cf c.9 Y>i = 7 7pist[.f(x3 Y), f ( i ,  AI 
i j  
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, where (ij) refers to spatial coordinates in the 2-neighborhood and Dist refers either the SAM 

or SID distance. Based on the distance above, the extended erosion offby 2 selects the Z- 

neighborhood pixel vector that produces the minimum value for Dz: 

(f ez>cx, Y) = { f ( x  + if, Y + j l) ,  (it, j l)  = arg &(i,j) {Dz [ f ( x  + i, Y + j)B) (12) 

where the argmin operator selects the pixel vector that is most similar, spectrally, to all the 

other pixels in the 2-neighborhood. On other hand, the extended dilation offby 2 selects the 

2-neighborhood pixel vector that produces the maximum value for Dz: 

(f 0 ~ ) ( X , Y )  = { f ( x - i ' , ~ - j ' ) ~  (il,jl)=.'gmax(i,j){DzIf(x+i,~ +j)I>) (13) 

where the argmax operator selects the pixel vector that is most spectrally distinct to all the 

other pixels in the 2-neighborhood. Based on the above operations, we defme the 

Morphological Eccentricity Index (MEI) as a measure of spectral/spatial homogeneity at a 

given pixel as follows: 

MWx, Y) = Dist[(f 8 -q& Y), (f @Z)(x, Y)] (14) 

where Dist may refer to either the S A M  or SID distance. For both metrics we use the average 

ME1 value for the pixels contained in region Xi as a measure of its spectralhpatial 

homogeneity the region. 

RESULTS 

Our long-term interest was in monitoring changes in land-use and land-cover. A 

study of this type will be facilitated by an ability to mask out confounding sections of the 

image data covered by land, clouds andor snow and ice. We chose as an initial analysis task 

the generation of a landwater mask because having a good landwater mask made cloud 

mask generation much easier, since clouds can look spectrally different over water than they 

do over land. We chose the generation of snowhce masks as our second task since the 
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analysis techniques involved are similar to, but somewhat simpler than, the general cloud 

mask generation problem. The MODIS standard product landsea mask provided with the 

MOD03 geolocation data product was not applied because that this landsea mask was too 

generalized for our purposes. We also chose not use the MODIS standard product snow/ice 

and cloud masks provided with the MOD35 product. With these masks we were concerned 

about the fine tuning required to set critical thresholds in the production of these products. 

LandNVater Mask Generation 

A quick look at the twelve MODIS data sets showed that none of them were 

completely cloud free. This complicated the task of generating a landwater mask. 

Nonetheless, a landwater mask was generated by the combining the analysis of all twelve 

MODIS data sets. Because of the transient nature of clouds, it was noted that the likelihood 

was high that any particular image location would be cloud-free for at least a small number of 

the images. Accordingly, RHSEG was used to generate segmentation hierarchies for each 

data set and each of these seeentation hierarchies was analyzed to find the super region 

associated with water. (A super region was a combination of individual spatially connected 

regions with similar spectral characteristics that may contain a number of spatially disjoint 

subregions.) Our goal is to find a measure that clearly designates the region at a particular 

segmentation hierarchy level that best characterizes this water super region for all data sets. 

We then will be able to combine the results from all twelve data sets to obtain the desired 

landwater mask. 

Tables 3 (a, b) presents the minirum mean value region at selected hierzirchicd levels 

for each data set. For Table 3a, this information includes the number of pixels, the regon 

MMTi, the region BMq, the region llgMsE (xi) (vs. the original data values), and the region 
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* ~g~~~ (x;) (vs. the finest hierarchical level (level 0)). Table 3b shows the results for the 

spatial, spectral and joint spatiallspectral measures described in the previous section. 

As of version 1.15, RHSEG orders the regions fiom darkest (closest in vector distance 

to the zero vector) to brightest (furthest in vector distance fiom the zero vector). Since for 

MODIS bands 1-7, water usually is the darkest surface type, region 1 at the finest level of the 

segmentation hierarchy (level 0) consistently corresponded to water. This correspondence 

the darkest region to water also usually persisted through the coarsest segmentation hierarchy 

level. However, this was not the case for the March 20,2004 and the June 11,2004 data sets. 

Due to the influence of a large bank of clouds in the March 20,2004 data set, the darkest 

region (region 20) at the coarsest level of the segmentation hierarchy (level 9) corresponded 

to a combination of water and land (Figure lb). For the same reason, the darkest region 

(region 15) at the coarsest level of the segmentation hierarchy (level 13) corresponded to a 

combination of water and land in the June 1 1,2004 data set (Figure IC). 

Table 3a the reports the region MMTj, region BMq, region ~g~~~ (xi), and region 

D gMsE (x; ) all had relatively high values for the combined water and land regions as 

compared to regions that were purely water for both data sets. While these measures trended 

to higher values going from lower to higher hierarchical levels (that is, finer to coarser 

segmentations), the rise in values was much steeper where the region nature changed from 

water only to a combination of water and land. This was especially apparent in the March 20 

data set for the region DgMsE (X:), with a value of 7.452 at hierarchical level 9. This 

measure dropped to well below 0.1 for level 8 of the segmentation hierarchy for the darkest 

region (region 1). From this point, the darkest region (region 1) remained constant fiom 

segmentation hierarchy level 8 down to level 3 and corresponded to water. This effect was 
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' nearly as strong for the June 11 data set where the region D&(X;), had a value of 5.077 

for the combined water and land region. The measure dropped to about 0.3 for level 12 of 

the segmentation hierarchy for region 4 (the darkest region at hierarchical level 12). Region 

4 remained constant from segmentation hierarchy level 12 down to level 4. At these 

hierarchical levels, this was the region that corresponded to water in this scene. The results 

indicated that low values of the region MMTi, region BMo;:, region DgMs (Xi> and region 

DzMsE (Xi") serve as indicators of water, with the most sensitive measure being the region 

D i M s E  (Xi"). All of these measures reflect the homogenous and uniform nature of the water 

regions. 

Table 3b shows the values of the spatial features solidity and extent were relatively 

high for the March 20 data set at hierarchical level 9 (coarsest level), but dropped to very low 

values at the next finer hierarchical level, at which the region consisted solely of water. This 

was the only data set in which this phenomenon was observed. In contrast, the values of the 

spatial features solidity and extent were very high for the June data set at hierarchical level 13 

(coarsest level), and did not change appreciably at the next finer hierarchical levels 

(consisting solely of water). Although it appeared that these measures might be usefbl in 

identifying some regions that changed appreciably from one hierarchical level to the next, 

other measures may be required to identify unidentified regions. 

The values of the spectral homogeneity features S A M  and SID (10) were very low for 

the March 20 and June 11 data at hierarchical levels 9 and 13, respectfully. However, they 

increased to very high values at the next finer hierarchical level, at which the region consisted 

solely of water. Since this trend was not observed for any of the other data sets, it appeared 
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. that this trend is a moderate indicator of the change of the region nature from a combination 

of water and land to water only. 

Similarly, the values of the spatialkpectral homogeneity features S A M  and SID (14) 

were low for the March data set at hierarchical level 9, and for the June 11 data set at 

hierarchical level 13, but rose to very high values at the next finer hierarchical level, at which 

the region consisted solely of water. As with the spectral homogeneity feature, this trend was 

not observed for any of the other data sets with the spatialhpectral homogeneity features 

S A M  and SID. It appeared that both versions of the S A M  and SID features serve as 

moderate indicators of the change of the region nature from a combination of water and land 

to water only. 

In summary, the spectral, spatial and spectralhpatial measures provided, at best, 

moderate indicator for determining at which hierarchical levels the segmentations consisted 

solely of water. However, some of these measures may prove to be more useful when 

looking for more structured objects, such as urban development and agricultural lands. 

We found the region DZMsE (Xi”) to be a very strong indicator of the hierarchical 

level corresponding to the water region. Using this measure as our indicator, we created 

masks for each of the twelve data sets in which the value “1” corresponded to water and the 

value “0” corresponded to other (clouds, snow or land). These twelve masks were added to 

produce the composite mask shown in Figure 2. Inspection of the results showed that sum 

values 0 and 1 definitely corresponded to land and sum values 4 to 12 definitely 

corresponded to water. (Note that a cloud shadow could make a land pixel look like water in 

a particular scene.) Sum values 2 and 3 corresponded to pixels that may be water in some 

scenes and land in others, primarily along ocean and lake coastlines. Table 4 illustrates the 

minimum of the histogram corresponds to a natural threshold point distinguishing water fiom 
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. land, where values equal to or higher than the histogram minimum correspond to water pixels 

(Figure 2). 

Based on this analysis, pixels with sum values of 0 - 1 were set to land (green), pixels 

with sum values 2 - 3 were set to ocean coastlines and lake shorelines (red), and pixels with 

sum values of 4 - 12 were set to water (blue), creating the landwater mask (Figure 3). This 

mask can be visually compared to the MODIS standard product landsea mask (Figure 4). 

Figure 4 illustrates deep and moderately deep ocean water and deep inland water (shades of 

blue), shallow ocean (white), ocean coastlines and lake shorelines (red), shallow inland water 

(turquoise), ephemeral (intermittent) water (gray) and land (green). 

A quantitative comparison of the RHSEG-generated landwater mask to the MODIS 

standard product landsea mask shows that the land and water areas were very similar in both 

cases @e., 600,339 vs. 595,019 km2 for the land masks, and 403,665 vs. 377,244 km2 for the 

water mask, respectively). Specifically, 98.5% of the image pixels labeled as land using 

RHSEG was also labeled as land in the MODIS standard product. For pixels labeled as water 

this figure dropped to 92.1%. 

The above results indicate that the RHSEG generated landwater mask and the 

MODIS standard product landsea mask may contain some relevant differences, especially in 

the water areas. In order to explore these differences more closely, a comparison of the 

RHSEG generated landwater mask and the MODIS standard product landsea mask was 

made over a smaller area, as displayed in Figure 5. Here a 128 x 128 pixel section of data 

containing Lake Mead is shown at full resolution in Figure 5a. The corresponding RHSEG 

generated laidwater mask is displayed in Figure 5b and the corresponding MODIS standard 

product landsea mask is displayed in Figure 5c. The RHSEG generated land/water mask 

provided an estimated surface area of 609 km2 for Lake Mead, while the MODIS standard 
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. product landsea mask indicated a much larger estimated surface area of 771 km2. Further, 

only 59.5% of the pixels associated to the lake by the MODIS standard product were also 

associated to the lake by the RHSEG generated landwater mask. Since Lake Mead was near 

historical low levels during the study period, we believe that the MODIS standard product 

over-estimates Lake Mead’s coverage. Being tailored to the particular study period, we 

believed that the landwater mask generated ftom RHSEG provides a more accurate estimate 

of Lake Mead’s coverage for the study period. 

From the above results, we conclude generally, that the MODIS standard product 

landsea is a more conservative estimate of the landwater distinction with fuzzy categories 

such as ephemeral (intermittent) water and ocean coastlines and lake shorelines. As a result, 

this mask may be too generalized for detailed land cover, land use change monitoring. In 

contrast, the landwater mask generated with RHSEG provides a much crisper delineation of 

the landwater distinction that is tailored specifically to the data sets being analyzed. 

Snow Mask Generation 

Embedded within the MODIS Cloud Mask standard product is a snowhce background 

flag. This flag is set based on a Normalized Snow Difference Index (NSDI) thresholded at a 

preset value (Hall, et al. 1995). NDSI uses the MODIS bands 4 and 6 to form a ratio where 

larger values correspond to snow or ice: 

R4 - R6 

R4 -k R6 
NDSI = 

where R# is the reflectance value for band #. According to Hall, et al, (2002), a pixel in a non- 

densely forested region is mapped as snowhce if the NDSI is L 0.4, the MODIS band 2 

reflectance was > 1 1 %, and the MODIS band 4 reflectance is 2 10%. Application of this 

formula to the March 20,2004 MODIS data set, and masking out water using the RHSEG 
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s generate landwater mask from the previous section (with values 0 through 1 considered to be 

land), produced the snowhce mask with 10,930 pixels were flagged as snowhce (Figure 6a). 

Contrast this with the snowhce background flag within the MODIS Cloud Mask standard 

product with only 5,3 16 pixels were flagged as snowhce (Figure 6b). Clearly, the NDSI 

threshold for the MODIS standard product was adjusted upwards from 0.4 to avoid false 

positives (some clouds are flagged as snowhe). 

Through trial and error we found that a NDSI threshold of 0.68 produced a result with 

5,304 pixels flagged as snow/ice. While very close in the number of pixels flagged, there 

were more than just 12 pixels flagged differently. Actually, there are 1,092 pixels labeled 

differently, with 540 false positives and 552 false negatives. These differences can be 

explained to a large degree by the fact that the MODIS standard product was calculated 

before georeferencing, while our NDSI 0.68 threshold result was calculated after 

georeferencing. Our NDSI 0.68 threshold result looks visually very similar to the MODIS 

standard product shown in Figure 6b. 

When we applied RHSEG to the NDSI feature data fi-om the March 20,2004 data set, 

all negative NDSI values were set to zero and scaled by a factor of 10,000 before converting 

to unsigned short integer for input into RHSEG. Since RHSEG accepts only unsigned byte 

or unsigned short integer input data, and the NDSI feature is floating point, such a scaling 

scheme had to be adopted, since the masked NDSI feature ranged from -0.557 to 0.961. The 

processing mask was augmented to mask out all zero-valued pixels along with the previously 

masked out water pixels and pixels not satisfymg the band 2 and band 4 thresholds. After 

masking, only 37,703 pkds out of 100,404 remained for RHSEG to process. As with the 

landwater mask generation task, RHSEG was run with the d k S E  (Xi ,  X j  ) dissimilarity 

criterion along with spclust-wght = 0.1, eight nearest neighbor connectivity, and the GMMT 
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convergence criterion. Again, our goal is to find a measure that clearly designates the region 

at a particular segmentation hierarchy level that best characterizes the snowhce region. 

The analysis results for the brightest two regions in the RHSEG generated 

segmentation hierarchy is given in Table 5 for our region and spatial features (the spectral 

and joint spectralhpatial features could not be calculated for the single band NSDI feature). 

The brightest region (region 38) containing 12,375 pixels at the coarsest hierarchical level 

(level 9) in the RHSEG output was clearly a mixed region due to the relatively high value 

I/ 
(0.085) for the regionDGiMB (Xi”) (Table 5). This region also has relatively high value for 

the region MMTi and region DgMsE (Xi). The values of the solidity and extent features are 

also highest for this region, but not as strongly as for the other features. 

At hierarchical levels 5-8, the brightest region (region 59) contained 4871 pixels, 

compared to the 5316 pixels in the MODIS standard product. In this case the region 

DgMsE (X: ) is fairly low at 0.10. The values of the region MMTi and region DGMsE(Xi) are 

also significantly lower than they were at hierarchical level 9. Also note that the mean value 

of the brightest region stays well above the 0.68 threshold we deduced above for the brightest 

region for hierarchical levels 0 through 8. These values led to conclude that selecting region 

59 at hierarchical level 8 would be a conservative estimate of the snowhce areas (Figure 6c). 

Comparing this region to the MODIS standard product reveals 1297 differently label pixels. 

Assuming the MODIS standard product was the “truth,” the selected RHSEG region 59 

contained 426 false positives and 871 false negatives. 

Table 5 also shows that the next brightest region (region 55) at hierarchical levels 2 

through 7 contains 2464 pixels. For this region the regionDgMsE (Xp ) fell to a very low 

value of 0.001 at these hierarchical levels. The values of the region MMTj and region 
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DgMsE ( X i )  are also relatively low, and the values of the solidity and extent measures are also 

lower, but not as strongly. The mean value of this region ranged from 0.63 through 0.66, just 

slightly below the previously deduced 0.68 threshold. These values led us to conclude that 

combining region 55 at hierarchical level 7 with the above selected region 59 at hierarchical 

level 8 would provide a somewhat more liberal 7335 pixel estimate of the snowhce areas. 

This combined region is shown as the combination of the yellow and white areas in Figure 

6c. Comparing this combined region to the MODIS standard product reveals 2223 differently 

label pixels. Assuming the MODIS standard product was the “truth,” the selected 

combination of RHSEG regions 55 and 59 contained 2121 false positives and 102 false 

negatives. 

We tried other values of spclust-wght in running RHSEG before settling on a value of 

0.1. A value of 0.01 produced results very similar to that produced with the value 0.1. 

However, with a value of 1 .O, RHSEG produced a brightest region at the coarsest hierarchical 

level consisting of 6572 pixels with a spatial distribution similar to the spclust-wght = 0.1 

results with the 4871 pixel region 59 at hierarchical level 8. However, the next brightest 

region at the next coarsest hierarchical level included cloud pixels from a bright cloud in the 

southeast part of the data set. Such confusion with clouds did not occur in the spclust-wght = 

0.1 results with region 55 at hierarchical level 7. 

To examine the behavior of RHSEG in more detail, we present in Figure 7 a portion 

of the segmentation hierarchy for the spclust-wght = 0.1 results. At hierarchical level 0 there 

were 64 regions ordered fiom darkest to brightest and at level 1 several of these regions were 

merged. In the portion of the segmentation hierarchy shown in Figure 7, region 64 merged 

into region 62, regions 60,57,56,54,53,52,50 and 49 merged into region 55, and regions 

51,48,47 and a number of other regions merged into region 43. The region merges were not 
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. necessarily into the region with the closest mean value due to the influence of spclust-wght. 

For example, region 64’s mean value was closer to that of region 63, but it instead merged 

into region 62 because it was spatially adjacent to region 62. Likewise, region 60 merged 

into region 55 instead of region 6 1 (the closest region in mean value) because it was spatially 

adjacent to region 55. Other such influences of spclust-wght can be found in the structure of 

the segmentation hierarchy. 

This influence of spclust-wght is the reason why the spclust-wght = 0.1 results with 

the selected combination of region 55 and 59 found 7335 snow/ice pixels without confusion 

with clouds; while the going beyond selecting the brightest region with 6572 pixels at the 

coarsest hierarchical level led to confusion with clouds. Since with spclust-wght = 0.1, a 10 

times priority is given to merges between spatially adjacent regions, slightly less bright 

snowhce areas adjacent to brighter snowhce areas were merged into the adjacent brighter 

snowhce areas rather than into nonadjacent cloud areas that may have had more similar 

region mean values. 

Figure 8 provides a more detailed comparison of the snowhce mask detected by 

RHSEG and the MODIS standard product snowhce background flag, along with a view of 

the MODIS data itself. For the most part, the selection of RHSEG region 59 at hierarchical 

level was very similar to the MODIS standard product (Figs. 6b and 8c). The main exception 

to this was the snow field in the lower portion of Figure 8. To produce a snow/ice mask 

similar to the MODIS standard product, we needed to add RHSEG region 55 at hierarchical 

level. 

From this analysis we cannot determine which snowhce mask is more accurate. To 

determine this we would have to work with the MODIS production team to perform studies 

in which we have actual ground truth. We intend to propose such an effort to the MODIS 
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production team using this paper to introduce the team to our approach. Until such a 

definitive study is performed we can only speculate as to the significance of our results. We 

hypothesize that selecting the brightest RHSEG region at the coarsest hierarchical level 

consistent with region coherence (most strongly indicated by low values of the 

regionDg, (Xi"))  will provide a consistent conservative estimate of the snowhe area. A 

more liberal estimate could be obtained by adding a next brighter region. 

CONCLUSIONS 

Here we explored an approach for the automatic generation of land/water and 

snowhce masks from MODIS data utilizing segmentation hierarchies produced by RHSEG, 

the recursive approximation of the hierarchical segmentation algorithm (HSEG). These 

segmentation hierarchies organize the image data in a manner that makes the image's 

information content more accessible for analysis by enabling region-based analysis. Further, 

the segmentation hierarchies provided additional analysis clues through the behavior of the 

image region characteristics over several levels of segmentation detail. 

A main contribution of this paper was the introduction of several region features for 

characterizing the nature of regions in the segmentation hierarchy. A simple region 

dissimilarity measure was seen to be effective in identifjmg water regions and snow/ice 

regions. This measure was the region square root of the Band Sum Mean-Squared Error vs. 

the region mean value at the finest hierarchical level, D & ~ ~  (x: ) . other region feature 

measures were not as consistent or distinctive in such identification. However, we also 

observed that a detailed post-analysis of segmentation hierarchies through the utilization of 

spatial andor spectral metrics provided additional clues that be used for the purpose of 

automatically selecting regions out of the segmentation hierarchy. While these measures 
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. were not as useful for identifying water and snow/ice regions, they may prove to be more 

useful when looking for more structured objects, such as urban development and agricultural 

lands. This constitutes a novel approach to extracting information from multi-temporal 

remotely sensed image data. 

Experimental results presented in this paper explored measures of region 

characteristics for use in the automatic selection of appropriate regions fiom segmentation 

hierarchies corresponding to water, and to snow and ice. We showed how this approach can 

be used to generate a lardwater mask from a set of twelve multi-temporal data sets collected 

by MODIS. We then used similar techniques to generate a snowhce mask for a selected 

MODIS data. The RHSEG generated landwater and snowhce masks were compared with 

similar standard products provided with the MODIS data. Interestingly, we found that our 

RHSEG-generated masks compared very favorably with those available from MODIS. 

Based on our previous knowledge about the seasonal properties of the Lake Mead area, we 

believe that the RHSEG-based approach can provide more accurate land/water estimates for a 

particular study period. We also believe that the RHSEG-based approach can provide more 

complete snow/ice masks without confusion with clouds. However, further experimentation 

with additional data sets with detailed ground truth is required to hlly validate these 

conclusions. 

Our motivation for accurate generation of landwater and snowhce masks is our long 

term goal to use these masks along with similarly generated cloud masks to facilitate the 

monitoring of land-cover and land-use change using multi-spectral remotely sensed imagery. 

As an additional step toward our long term goal, we explored various spectral and region 

features that could be used in the analysis of segmentation hierarchies for land-cover change, 
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and noted the behavior of these measures relative to the landwater and snowhce mask 

generation tasks. 

25 



. REFERENCES 

Beaulieu, J.-M. and M. Goldberg, 1989, “Hierarchy in Picture Segmentation: A Stepwise 

Optimal Approach,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 11(2):150-163. 

Beaulieu, J.-M., 2004, “Utilization of contour criteria in micro-segmentation of S A R  

images,” International Journal of Remote Sensing, 25(17):3497-35 12. 

Chang, C.-I, 2003, Hyperspectral Imaging: Techniques for Spectral Detection and 

Classification, Kluwer AcademicPlenum Publishers: New York. 

Hall, D. R, G. A. Riggs, and V. V. Salomonson, 1995, “Development of methods for 

mapping global snow cover using Moderate Resolution Imaging Spectroradiometer 

data,” Remote Sensing of the Environment, 54: 127-140. 

Hall, D. K., G. A. Eggs, V. V. Salomonson, N. E. DiGirolamo, andK. J. Bayr, 2002, 

“MODIS snow-cover products,’’ Remote Sensing of Environment, 83 : 18 1- 194. 

Plaza, A., P. Martinez, J. Plaza, and R. Pbrez, 2005, ‘’Dimensionality Reduction and 

Classification of Hyperspectral Image Data Using Sequences of Extended 

Morphological Transformations,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 43, no. 3, pp. 466-479. 

26 



. Soille, P., 2003, Morphological Image Analysis: Principles and Applications, 2"' Ed., 

Springer-Verlag: New York. 

Tilton, J. C. and S. C. Cox, 1983, "Segmentation of Remotely Sensed Data using Parallel 

Region Growing," I983 International Geoscience and Remote Sensing Symposium 

(IGARSS'83) Digest, San Francisco, CA, Vol. 1, Section WP-4, paper 9. 

Tilton, J. C., 1998, "Image Segmentation by Region Growing and Spectral Clustering with a 

Natural Convergence Criterion," Proceedings of the 1998 International Geoscience 

and Remote Sensing Symposium, Seattle, WA, pp. 1766-1768. 

r 

27 



* TABLE AND FIGURE CAPTIONS 

Table 1. S m a r y  of Acronyms and Notation. 

Table 2. MODIS Data Sets Studied. All data granules are fi-om the Terra, AM1 Platform, which 

has a 705 Km Sun-Synchronous Near-Polar Circular Orbit with a 10:30am Equatorial Crossing 

in its Descending Node. 

Table 3a. Analysis of the Darkest Region from the Segmentation Hierarchies of each of the 

Twelve MODIS Data Sets using Region Features. 

Table 3b. Analysis of the Darkest Region from the Segmentation Hierarchies of each of the 

Twelve MODIS Data Sets using Spatial, Spectral and SpatiaVSpectral Features. 

Table 4. Histogram of Figure 2. 

Table 5. Analysis of the RHSEG Segmentation Hierarchy of the Brightest Region and Next 

Brightest Region for the Selection of the Hierarchical Level Corresponding to Snow and Ice. 

Figure 1. Four of the twelve MODIS data sets utilized in the study. Reflective bands 7,2 and 1 

are displayed as red, green and blue, respectively. (a) The October 28,2003 image shows smoke 

wafting over the ocean from large chaparral fires along the southern California coast. (b) The 

March 20,2004 image shows a large bank of clouds over most of the ocean and some snow in 

the mountains in the north central and north east areas. (c) The June 11 , 2004 image shows a 

large bank of clouds over the south west ocean area. (d) The February 28,2005 image shows a 

minor amount of haze over the ocean and snow in the mountains in the north central and north 

east areas. This data set is also cut-off over a part of the ocean in the southwest corner ofthe 

image. 
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Figure 2. Sum of the twelve individual RHSEG generated water masks from the multi-temporal 

data set. Even though some areas of the ocean look fairly dark, the sum value at those locations 

is still high enough to indicate water (see Figure 3). 

Figure 3. Landwater mask created from Figure 2 by setting values 0-1 to land (green), 

values 2-3 to ocean coastlines and lake shorelines (red), and values 4-12 as water (blue). 

Figure 4. MODIS standard landsea mask product. Various shades of blue are deep and 

moderately deep ocean water and deep inland water, white is shallow ocean, red is 

ocean coastlines and lake shorelines, turquoise is shallow inland water, gray is 

ephemeral (intermittent) water and green is land. 

Figure 5.  Comparison of a portion of the ladwater mask generated from RHSEG with the 

landhea mask from the MODIS standard product MOD3 for Lake Mead, NV. Since Lake Mead 

was near historical low levels during the study period, the MODIS standard product over- 

estimates Lake Mead’s coverage. Being tailored to the particular study period, the ladwater 

mask generated from RHSEG is provides a more accurate estimate of Lake Mead’s coverage for 

the study period (a) October 28,2003 MODIS image over Lake Mead, (b) Landwater mask 

generated from RHSEG, and (c) Land/sea mask from MODIS standard product MOD3. 

Figure 6 .  Snow/ice areas designated in yellow as detected by (a) thresholding NDSI at 

0.4, (b) from the MODIS standard product, and (c) detected by RHSEG by selecting the 

brightest region at the second coarsest hierarchical level. The white areas designate 

additions to the snow/ice mask found by also selecting the second brightest region at the 

third coarsest hierarchical level. 
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I Figure 7. A portion of the segmentation hierarchy for the RHSEG spclust-wght = 0.1 results for 

the snow/mask generation task. At each node in the segmentation hierarchy is labeled with 

either the region label alone (unchanged), or with the region label, number of pixels and region 

mean (1abel:pixels:mean). The arrows indicate the merging hierarchy. It is significant to note 

that regions do not necessarily merge with the most similar region in mean value. With 

spcZust-wght = 0.1, spatial connectivity influences merge behavior. 

Figure 8. A detailed comparison of the snowhe mask detected by (a) MODIS composite image 

(bands 6,4,2), (b) RHSEG, and (c) the MODIS standard snowhce product. The yellow area, 

obtained by selecting the brightest region at the second coarsest hierarchical level, was very 

similar to the snowhce mask provided by the MODIS standard product. An exception to this was 

the snow field in the lower right. Here we need to add RHSEG region 55 at hierarchical level 7 

(the white area) to obtain a snow/ice mask similar to the MODIS standard product. 
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APPENDIX A 

The square root of Band Sum Mean Squared Error dissimilarity function is based on 

minimizing the increase of mean squared error (MSE) between the region mean image and 

the original image data. The sample estimate of the MSE for the segmentation of band b of 

the image Xinto R disjoint subsets (regions) XI, X2, . . ., XR is given by: 

where N is the total number of pixels in the image data set and 

(A- 1 a) 

(A- 1 b) 

is the MSE contribution for band b from data subset or region X,.. Here, xp is a pixel vector 

(in this case, a pixel vector in region X,), ,@b is the image data value for the b* spectral band 

of the pixel vector, xp, and pib is the mean for spectral band b of data region Xi. A 

dissimilarity h c t i o n  based on a measure of the increase in MSE due to the merge of regions 

x. and 4 is given by: 

(A-2a) 

where 

AMs&&&) = MSEb(&U.) - MSEb(&) - MSEb(4) . (A-2b) 

BSMSE refers to Band Sum MSE. 

Using (A-lb) and exchanging the order of summation, (A-2b) can be manipulated to 

produce an efficient dissimilarity fhction based on aggregated region features: 

mSEb(&&) = 
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(algebraic manipulations) 

%bib - p i j b )  + n j b j b  -&b) ' 

2 2 
(A-3a) 

where ,ugh is the mean value for the bth spectral band of the mean vector, uq, of region 

represented by2& = X-Uq, and nj (nj) is the number of pixels in region Xj (4). 

Since 

Combining (A-2a) and (A-3c), 

(A-3b) 

(A-3~) 

(A-4) 

The dimensionality of the d,,, (Xi, X )dissimilarity criterion is equal to the square 

of the dimensionality of the image pixel values, while the dimensionality of the vector norm 

based dissimilarity criteria is equal to the dimensionality of the image pixel values. To keep 
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t the dissimilarity criteria dimensionality consistent, HSEG and RHSEG use the square root of 

the dssMsE dissimilarity criterion. Thus, the square root of Band Sum Mean Squared Error 

criterion, d&= (Xi , X j ) ,  is: 

33 



TABLES 

SE 
SID 

TABLE 1. SUMMARY OF ACRONYMS AND NOTATION. 

Structuring Element 
Spectral Information Divergence 

gTOW 

HDF 
HSEG Hierarchical JG& 

. ." 
uiib 
rr L 

S A M  I Spectral Angle Mapper 
S A R  I Synthetic Aperture Radar 

Mean value for the b" spectral band of the union of regions i and j (A-3b) 
Standard deviation for sDectral band b of region i (2) 
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Granule name Date 

A200303 1.18 15 3 1 JAN 2003 

A2003 109.1825 19 APR 2003 

A200322 1.1825 09 AUG 2003 

Notes 

Winter 

spring 

Summer 
~ 

A2003294.1820 21 OCT 2003 Pre-fire 

A2003301.1825 28 OCT 2003 Fire 

A2003322.1845 18 NOV 2003 Post-fire 

I I A2004268.1850 I 24SEP2004 I Summer 

A2004032.1825 

A2004080.1825 

A2004 163.1855 

01 FEB 2004 Winter 

20 MAR 2004 spring 

11 JCTN 2004 Summer 

35 

A2004334.1835 

A2005059.1820 

29 NOV 2004 Winter 

28 FEB 2005 spring 



1 TABLE 3A. ANALYSIS OF THE DARKEST REGION FROM THE SEGMENTATION HIERARCHJES OF EACH 
OF THE TWELVE MODIS DATA SETS USING REGION FEATURES. 

Data Set 

31 JAN 
2003 

MMTf 

3 6-9 372536 245.9 
3 4-5 368493 180.9 
3 2-3 269463 84.7 

Number Hier- 

archical of Pixels Levels 
Region 
Label 

Region 

D L ( X I )  
0.60 1 
0.441 
0.256 

2003 I 1 I 1-5 I 171688 I 40.4 

Region 

D L  (49 
0.279 
0.250 
0.120 

19 APR 

2003 I 1 I 1-8 I 232608 I 30.9 

1 0-1 48808 15.2 
1 6-9 278756 221.3 

09 AUG 
1 0 105167 I 16.4 
1 9-1 1 352823 I 290.7 

1 
21OCT I 1 

0 204260 1 16.8 
6-12 238404 I 117.4 

Region 
BMa, 

0.280 
0.247 
0.182 
0.085 
0.257 
0.092 
0.056 
0.333 
0.049 
0.047 
0.140 
0.102 
0.068 
0.263 
0.143 
0.089 
0.150 
0.068 
0.035 
0.165 
0.131 
0.073 
0.698 
0.152 
0.075 
0.642 
0.225 
0.138 
0.028 
0.082 
0.126 
0.064 
0.1 17 
0.097 
0.066 
0.037 
0.187 
0.143 
0.047 

2003 

28 OCT 
2003 

18 NOV 
2003 

01 FEB 
2004 

20 MAR 
2004 

11 JUN 
2004 

24 SEP 
2004 

1 2-5 226660 40.3 
1 0-1 134909 21.0 
2 7-8 398465 221.2 
2 3 -6 202587 65.6 
1 0-2 45386 13.8 
1 5-9 331974 138.3 
1 1-4 3 12726 31.8 
1 0 17008 1 4.8 
2 3-10 286303 113.3 
2 1-2 25 022 1 55.9 
1 0 845 18 19.4 

20 9 688461 821.9 
1 3-8 89699 78.3 
1 0-2 59152 13.7 
15 13 501835 703.1 
4 5-12 124884 125.9 
2 1-4 62398 42.3 
1 0 26790 0.0 
3 2-8 355922 59.4 
1 1 4456 1 26.0 

0.181 I 0.006 

0.230 
0.197 
0.303 
0.143 
0.078 
0.3 17 
0.205 
0.168 
1.443 
0.377 
0.182 
1.269 
0.473 
0.3 19 

0.104 I 0.001 

0.074 
0.000 
0.012 
0.003 
0.000 
0.048 
0.024 
0.000 
7.452 
0.035 
0.000 
5.077 
0.302 
0.038 

0.158 I 0.005 

29 NOV 

0.151 1 0":;:; 
0.467 

1 0 40352 11.1 
1 3-13 389655 82.6 

2004 

28 FEB 
2005 

0.049 I 0.000 
0.182 I 0.044 

1 2 383441 61.4 
1 1 375235 39.0 
1 0 215663 14.2 
3 7-1 1 286362 148.3 
3 2-6 210300 56.5 
1 0-1 37718 0.0 

0.194 I 0.002 

0.184 0.005 
0.142 0.003 
0.070 0.000 

0.209 0.070 
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TABLE 3B. ANALYSIS OF THE DARKEST REGION FROM THE SEGMENTATION HIERARCHIES OF EACH 
OF THE TWELVE MODIS DATA SETS USING SPATIAL, SPECTRAL AND SPATIAL/SPECTRAL 

Region 
Label 

3 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 

20 
1 
1 
15 
4 
2 
1 
3 
1 
1 
1 
1 
1 
1 
3 
3 
1 

FEATURES. 

Data Set 
Hier- 

archical 
Levels 

6-9 
4-5 
2-3 
0-1 
6-9 
1-5 
0 

9-1 1 
1-8 
0 

6-12 
2-5 
0- 1 
7-8 
3 -6 
0-2 
5-9 
1-4 
0 

3-10 
1-2 
0 
9 

3 -8 
0-2 
13 

5-12 
1-4 
0 

2-8 
1 
0 

3-13 
2 
1 
0 

7-1 1 
2-6 
0-1 

09 AUG 
2003 

21 OCT 
2003 

28 OCT 
2003 

18 NOV 
2003 

01 FEB 
2004 

20 MAR 
2004 

11 JUN 
2004 

24 SEP 
2004 

29 NOV 
2004 

28 FEB 
2005 

solidity 

0.816 
0.785 
0.678 
0.723 
0.784 
0.798 
0.756 
0.892 
0.761 
0.776 
0.725 
0.718 
0.696 
0.944 
0.803 
0.724 
0.889 
0.862 
0.789 
0.777 
0.735 
0.724 
0.622 
0.385 
0.394 
0.612 
0.645 
0.699 
0.678 
0.868 
0.733 
0.72 1 
0.950 
0.938 
0.934 
0.824 
0.789 
0.615 
0.489 

extent 

0.653 
0.594 
0.499 
0.589 
0.729 
0.740 
0.717 
0.827 
0.742 
0.754 
0.592 
0.580 
0.548 
0.885 
0.712 
0.643 
0.828 
0.813 
0.698 
0.701 
0.640 
0.623 
0.567 
0.343 
0.358 
0.684 
0.712 
0.723 
0.702 
0.809 
0.649 
0.636 
0.829 
0.813 
0.802 
0.695 
0.671 
0.566 
0.508 

Spectral 
Homo 
S A M  
0.986 
0.971 
0.925 
0.962 
0.981 
0.978 
0.965 
0.974 
0.95 1 
0.948 
0.928 
0.917 
0.925 
0.934 
0.912 
0.909 
0.934 
0.928 
0.932 
0.953 
0.941 
0.932 
0.589 
0.875 
0.882 
0.574 
0.941 
0.956 
0.974 
0.95 1 
0.971 
0.967 
0.972 
0.973 
0.971 
0.964 
0.952 
0.948 
0.93 1 

meity 
SID 

0.958 
0.959 
0.912 
0.945 
0.972 
0.969 
0.958 
0.962 
0.942 
0.93 1 
0.918 
0.906 
0.916 
0.919 
0.906 
0.901 
0.925 
0.917 
0.920 
0.941 
0.928 
0.921 
0.561 
0.853 
0.874 
0.562 
0.933 
0.940 
0.972 
0.946 
0.962 
0.954 
0.969 
0.968 
0.962 
0.956 
0.940 
0.942 
0.929 

SpatiaYSpectral 
Homc 
S A M  
0.891 
0.878 
0.823 
0.837 
0.903 
0.925 
0.912 
0.938 
0.890 
0.887 
0.834 
0.823 
0.794 
0.933 
0.883 
0.824 
0.880 
0.871 
0.801 
0.876 
0.823 
0.812 
0.589 
0.776 
0.79 1 
0.625 
0.923 
0.919 
0.912 
0.932 
0.845 
0.823 
0.942 
0.93 1 
0.925 
0.909 
0.93 1 
0.884 
0.849 

tneity 
SID 

0.873 
0.865 
0.819 
0.824 
0.891 
0.909 
0.901 
0.926 
0.881 
0.874 
0.899 
0.81 1 
0.785 
0.928 
0.865 
0.817 
0.779 
0.865 
0.794 
0.867 
0.808 
0.807 
0.568 
0.765 
0.782 
0.612 
0.915 
0.908 
0.903 
0.920 
0.826 
0.810 
0.930 
0.924 
0.917 
0.900 
0.920 
0.872 
0.830 
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TABLE 4. HISTOGRAM OF FIGURE 2. 

TABLE 5. ANALYSIS OF THE RHSEG SEGMENTATION HIERARCHY OF THE BRIGHTEST REGION AND 
NEXT BRIGHTEST REGION FOR THE SELECTION OF THE HIERARCHICAL LEVEL CORRESPONDING TO 
SNOW AND ICE. 

38 9 I 12375 I 0.63 I 17.0 

3624 0.79 2.23 
62 1-3 555 0.88 0.60 
64 170 0.92 0.00 

I i i 

0.188 0.085 0.816 0.692 

I 1 1 

0.188 0.085 0.798 0.658 

0.125 0.025 0.734 0.526 
0.080 0.001 0.699 0.492 
0.074 0.001 0.694 I 0.487 
0.065 0.000 0.718 I 0.495 
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FIGURES 

Figure 1. Four of the twelve MODIS data sets utilized in the study. Reflective bands 7,2 and 1 
are displayed as red, green and blue, respectively. (a) The October 28,2003 image shows smoke 
wafting over the ocean from large chaparral fires along the southern California coast. (b) The 
March 20,2004 image shows a large bank of clouds over most of the ocean and some snow in 
the mountains in the north central and north east areas. (c) The June 11,2004 image shows a 
large bank of clouds over the south west ocean area. (d) The February 28,2005 image shows a 
minor amount of haze over the ocean and snow in the mountains in the north central and north 
east areas. This data set is also cut-off over a part of the ocean in the southwest corner of the 
image. 
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Figure 2. Sum of the twelve individual RHSEG generated water masks fiom 
the multi-temporal data set. Even though some areas of the ocean look fairly 
dark, the sum value at those locations is still high enough to indicate water (see 
Figure 3). 
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Figure 3. Landwater mask created from Figure 2 by setting values 0-1 to land 
(green), values 2-3 to ocean coastlines and lake shorelines (red), and values 4- 
12 as water (blue). 



Figure 4. MODIS standard landlsea mask product. Various shades of blue are 
deep and moderately deep ocean water and deep inland water, white is shallow 
ocean, red is ocean coastlines and lake shorelines, turquoise is shallow inland 
water, g a y  is ephemeral (intermittent) water and green is land. 
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Figure 5. Comparison of a portion of the landwater mask generated fi-om RHSEG with the 
landsea mask fi-om the MODIS standard product MOD3 for Lake Mead, NV. Since Lake Mead 
was near historical low levels during the study period, the MODIS standard product over- 
estimates Lake Mead’s coverage. Being tailored to the particular study period, the landwater 
mask generated from RHSEG is provides a more accurate estimate of Lake Mead’s coverage for 
the study period (a) October 28,2003 MODIS image over Lake Mead, (b) Landwater mask 
generated from RHSEG, and (c) Landsea mask from MODIS standard product MOD3. 
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’ Hierarchical Hierarchical Hierarchical Hierarchical Hierarchical Hierarchical 
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 

Fi’igure 7. A portion of the segmentation hierarchy for the RHSEG spclz;st-wght = 0.1 results for 
the snow/mask generation task. At each node in the segmentation hierarchy is labeled with 
either the region label alone (unchanged), or with the region label, number of pixels and region 
mean (1abel:pixels:mean). The arrows indicate the merging hierarchy. It is significant to note 
that regions do not necessarily merge with the most similar region in mean value. With 
spclust - wght = 0.1, spatial connectivity influences merge behavior. 
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