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Abstract

A new damage model based on a micromechanical analysis of cracked [±θ/90n]s
laminates subjected to multiaxial loads is proposed. The model predicts the onset
and accumulation of transverse matrix cracks in uniformly stressed laminates, the
effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure
of the laminate. The model also accounts for the effect of the ply thickness on the
ply strength. Predictions relating the elastic properties of several laminates and
multiaxial loads are presented.

Key words: Failure criteria, Micromechanics, Damage Mechanics.

1 Introduction

The aerospace industry is committed to improve the performance of aircraft
whilst reducing emissions and weight. Such a goal can be achieved by the use
of advanced polymer-based composite materials, that have excellent proper-
ties for aerospace applications, such as low density, and fatigue and corrosion
resistance.

The design procedure used for advanced composite structures relies on a
’building-block’ approach [1], where a large number of experimental tests are
performed throughout the product development process. The use of improved
analytical or numerical models in the prediction of the mechanical behavior
of composite structures can significantly reduce the cost of such structures.
Such models should predict the onset of material degradation, the effect of the



non-critical damage mechanisms on the stiffness of the laminate, and ultimate
structural failure.

Strength-based failure criteria are commonly used to predict failure in com-
posite materials [2]-[7]. Failure criteria predict the onset of the several damage
mechanisms occurring in composites and, depending on the laminate, geome-
try and loading conditions, may also predict structural collapse.

In multidirectional composite laminates, damage accumulates during the load-
ing process. Final failure occurs as a result of damage accumulation and stress
re-distribution. The ultimate failure load is higher than the initial damage
predicted by strength-based failure criteria. Furthermore, stress- or strain-
based failure criteria cannot represent size effects that occur in quasi-brittle
materials [8].

Simplified models, such as the ply discount method where some scalar compo-
nents of the stiffness tensor are reduced to approximately zero when damage is
predicted, are often used by the industry to predict ultimate laminate failure.
However, these methods cannot represent with satisfactory accuracy the pro-
gressive reduction of the stiffness of a laminate as a result of the accumulation
of matrix cracks.

Constitutive laws based on Continuum Damage Mechanics (CDM) have been
proposed to predict the material response, from the onset of damage up to final
collapse [9]-[14]. Although the existing CDM models can accurately predict the
evolution of damage, they usually rely on fitting parameters that need to be
measured at laminate level, such as the critical values of thermodynamic forces
[14].

Three-dimensional models based on CDM use material properties measured
at ply level. Damage mechanisms such as transverse matrix cracks are rep-
resented by strain-softening constitutive models and bands of localized de-
formation. The implementation of strain-softening models in finite element
models may cause convergence difficulties during the iterative solution proce-
dure. Furthermore, strain-softening models require regularization techniques
to provide mesh-independent solutions [15,16].

Alternative methods based on the combination of elastic analysis of cracked
plies and finite Fracture Mechanics provide the basis for an accurate repre-
sentation of the response of composite materials [17]-[30]. Micromechanical
models have been developed to predict the initiation and evolution of trans-
verse matrix cracks under either in-plane shear or transverse tension. Gener-
alizations of these models are required for the more usual case of multiaxial
loading.
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In order to predict ultimate failure, a micromechanical model needs to be used
in combination with a fiber failure criterion. Furthermore, a general method-
ology to predict laminate strength should be able to predict matrix cracking
under high values of transverse compression. These damage mechanisms usu-
ally correspond to the final failure of laminates under uniform states of stress
[6].

The objective of this work is to define a new damage model based on microme-
chanical models of transverse matrix cracks to predict the onset and evolution
of transverse matrix cracks under multiaxial loading. A new constitutive model
is derived based on the thermodynamics of irreversible processes. Continuum
Damage Mechanics provides a rigorous framework to define the constitutive
model and to develop the corresponding computational implementation. The
model proposed herein represents transverse matrix cracks as distributed dam-
age and does not require any regularization to yield mesh-independent results
when implemented in finite element models. Furthermore, the model is able
to predict the onset and propagation of matrix transverse cracks under multi-
axial loading as well as the final failure of uniformly stressed laminates where
a periodic distribution of transverse matrix cracks can be assumed.

2 Micromechanical model of transverse matrix cracks under mul-
tiaxial loading

The proposed continuum damage model is based on two major components: a
set of stress based failure criteria and a micromechanical model of transverse
matrix cracking in multidirectional laminates.

The failure criteria define the onset of transverse matrix cracking, i.e. the
activation of the damage variables. A micromechanical model of transverse
matrix cracks is required to define the evolution of the damage variables.

Several micromechanical models of transverse matrix cracks that have been
proposed in the literature [19,30] can be used within the framework devel-
oped here. The micromechanical model proposed by Tan and Nuismer [17,18]
accounts for the effects of the adjoining plies on the homogenized elastic prop-
erties of a cracked ply. This micromechanical model is the basis of the develop-
ments presented in this work. The models are considered as micromechanical
in the sense that they are based on a boundary value problem that explicitly
represents transverse matrix cracks. However, the fibers and the matrix are
not represented explicitly.
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Using the assumption of generalized plane strain, Tan and Nuismer [17,18]
developed a model able to relate the density of transverse matrix cracks in a
central 90o ply to the homogenized elastic properties of that ply. The model
developed by Tan and Nuismer was used for the prediction of the evolution
of transverse matrix cracks under either in-plane shear or transverse tensile
stresses.

The laminates under investigation are symmetric and balanced with a [±θ/90n]s
layup containing a periodic distribution of transverse matrix cracks, as shown
in Figure 1. The micromechanical analysis of a balanced symmetrical laminate
requires the division of the laminate in two sub-laminates: the 90◦ layers in
the middle layer (sublaminate 1), and the outer plies (sublaminate 2).
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Fig. 1. One-quarter of the laminate.

Sublaminate 1 is taken as transversely isotropic. The outer layers, sublami-
nate 2, may contain several layers with different fiber orientations but must
be orthotropic in the laminate global system (x, y and z coordinates). The
expressions for the compliance and stiffness tensors for the laminate, sublam-
inate 1, and sublaminate 2 are shown in Appendix A. In what follows, the
superscripts (1) and (2) corresponds to the sublaminate 1 and 2, respectively.
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2.1 Damage dependent constitutive tensor

The stiffness tensor Ā of the balanced and symmetric laminate shown in Figure
1 can be written as a function of one-half of the distance between transverse
matrix cracks (L) in sublaminate 1:

Ā(L) =




Ā(L)11 Ā(L)12 0

Ā(L)21 Ā(L)22 0

0 0 Ā(L)66




(1)

where the terms Āij(L), i, j = 1, 2, 6 are obtained from the Tan and Nuismer
model [18] which is summarized in Appendix A.

The undamaged stiffness matrix Q̄ of the laminate is obtained from lamination
theory using the undamaged stiffness matrix of sublaminate 1, Q̄(1), and the
stiffness matrix of sublaminate 2, Q̄(2). Therefore,

Q
(1)
ij =

1

h(1)

(
h̄Q̄ij − h(2)Q

(2)
ij

)
(2)

where h̄ = h(1) + h(2).

Assuming that the degradation due to the transverse matrix cracks only occur
in sublaminate 1, the damaged stiffness tensor of laminate 1 is given as:

Ā
(1)
ij (L) =

1

h(1)

(
h̄Āij(L)− h(2)Q

(2)
ij

)
(3)

where Ā
(1)
ij (L) (i, j = 1, 2, 6) are the scalar components of the stiffness tensor

of sublaminate 1. These components are a function of the distance between
transverse matrix cracks (L, defined in Figure 1).

Having defined Ā
(1)
ij (L), it is possible to calculate the effective transverse mod-

ulus, Poisson ratio, and shear modulus of the 90◦ ply:

Ē
(1)
2 (L) = Ē(1)

x (L) = Ā
(1)
11 (L)−

[
Ā

(1)
12 (L)

]2

Ā
(1)
22 (L)

(4)

ῡ
(1)
21 (L) = ῡ(1)

xy (L) =
Ā

(1)
12 (L)

Ā
(1)
22 (L)

(5)

Ḡ
(1)
12 (L) = Ḡ(1)

xy (L) = Ā
(1)
66 (L) (6)
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One noticeable feature of this model is that the degradation of the transverse
modulus is equal to the degradation of the minor Poisson ratio:

ῡ
(1)
21 (L)

Ē
(1)
2 (L)

=
υ21

E2

(7)

Therefore, the quotient υ21/E2 is not a function of damage. This observation
is in agreement with several other models, such as the ones proposed by Laws
et al. [23,24], and Nguyen [25].

From equation (7) it can be concluded that the plane stress compliance ten-
sor of the damaged sublaminate 1, H(1), only contains two components that
depend on the density of transverse matrix cracks: H

(1)
22 (L) and H

(1)
66 (L). The

tensor H(1), is established as a function of the spacing of transverse matrix
cracks, L, as:

H(1)=




1

E1

−υ21

E2

0

−υ12

E1

H
(1)
22 (L) 0

0 0 H
(1)
66 (L)




(8)

where:

H
(1)
22 (L) =

1

Ē
(1)
2 (L)

=
Ā

(1)
22 (L)

Ā
(1)
11 (L)Ā

(1)
22 (L)−

[
Ā

(1)
12 (L)

]2 (9)

H
(1)
66 (L) =

1

Ḡ
(1)
12 (L)

=
1

Ā
(1)
66 (L)

(10)

The evolution of the laminate stiffness as a function of the density crack
β = 1/(2L) is shown in Figure 2 for a [±25/903]s laminate with the material
properties shown in Table 1. The relation between the homogenized elastic
properties of the cracked ply (sublaminate 1) and β is shown in Figure 3.

Table 1
Elastic properties of typical carbon/epoxy composite.

E1 (GPa) E2 (GPa) G12 (GPa) υ12

163.4 11.9 6.2 0.30
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Fig. 2. Laminate stiffness as a function of the matrix crack density in the 90◦ ply.

Fig. 3. Effective elastic properties of the 90◦ ply as a function of the matrix crack
density.

Figures 2 and 3 show that the Young modulus of the laminate, Ex, and the
Young modulus of sublaminate 1, E1, are not affected by the presence of
transverse matrix cracks. Furthermore, the curves E2(β)/E2 and υ21(β)/υ21

are coincident (Figure 3), as a result of equation (7).
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2.2 Onset of matrix transverse cracks under multiaxial loading

The onset of transverse matrix cracking in a ply under the combined effect
of in-plane shear stresses and transverse tensile stresses needs to be predicted
using an appropriate failure criterion. The failure criterion should be estab-
lished in terms of the actual strengths of a ply when it is embedded in a
multidirectional laminate (in-situ strengths).

2.2.1 In-situ strengths

A methodology to predict the onset of matrix transverse cracking must be
able to predict the in-situ strengths of a ply. Both the transverse tensile and
in-plane shear strengths of a ply embedded in a multidirectional laminate
are higher that the corresponding values measured in unidirectional laminates
[31].

Models based on elastic analysis of the cracked laminate shown in Figure 1
have been proposed to predict the in-situ strengths. Such an approach is only
appropriate for the strength prediction of thin embedded plies. For a thin
ply, it can be assumed that the defects at the micromechanical level can be
represented as cracks that have a length equal to the ply thickness and can
only propagate in the direction of the fibers [32].

However, for a thick ply the length of the ’effective crack’ is smaller than the
ply thickness and propagates in a first phase along the thickness direction [32].
Therefore, a methodology to predict the onset of matrix transverse cracking
based on the cracked ply model represented in Figure 1 is not appropriate for
thick plies.

Instead, the thick ply model described in [32] is used. The tensile transverse
in-situ strengths of sublaminate (1) is [32]:

For a thin embedded ply: YT =

√
8GIc

πtΛo
22

(11)

For a thick ply: YT = 1.12
√

2Y ud
T (12)

where Y ud
T is the tensile transverse strength measured in a unidirectional test

specimen, t is the thickness of sublaminate 1, GIc is the mode I intralaminar
fracture toughness, and Λ◦22 is defined as:
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Λ◦22 = 2

(
1

E2

− υ2
21

E1

)
(13)

The in-situ shear strengths are obtained as [31]:

SL =

√√√√(1 + χφG2
12)

1/2 − 1

3χG12

(14)

where χ is the shear response factor defined in [31], and the parameter φ is
calculated according to the configuration of the ply:

For a thick ply: φ =
12

(
Sud

L

)2

G12

+ 18χ
(
Sud

L

)4
(15)

For a thin ply: φ =
48GIIc

πt
(16)

where Sud
L is the shear strength measured using an unidirectional test specimen

and GIIc is the mode II fracture toughness.

2.2.2 Failure criterion for the prediction of transverse cracking under multi-
axial loading

In general, a ply represented by sublaminate 1 in Figure 1 is subjected to
transverse tensile stresses and in-plane shear stresses. Under pure in-plane
shear or pure transverse tension, the onset of transverse matrix cracking is
predicted by comparing the components of the stress tensor with the respective
in-situ strengths (defined in the previous section).

Under multiaxial loading, it is necessary to use a failure criterion to predict
the onset of matrix cracking. The LaRC04 [4,5] failure criteria are a function
of the components of the stress tensor and in-situ strengths. For transverse
tension, the criterion used is:

(1− g)
σ22

YT

+ g
(

σ22

YT

)2

+
(

σ12

SL

)2

− 1 ≤ 0 with σ22 ≥ 0 (17)

where g = GIc/GIIc. GIIc is the mode II component of the fracture toughness
associated with matrix transverse cracking.
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Under moderate values of transverse compression, the crack plane is parallel
to the laminate thickness direction. The LaRC04 failure criterion is:

1

SL

〈
|σ12|+ ηLσ22

〉
− 1 ≤ 0 with σ22 < 0 (18)

where ηL is the coefficient of longitudinal influence defined in [4,5].

2.3 Evolution of matrix transverse cracks under multiaxial loading

To predict laminate failure under general loading, it is necessary to know how
the density of transverse matrix cracks evolves in a ply subjected to combined
in-plane shear and transverse tensile stresses. The evolution law is derived
from the micromechanical model presented in this section.

To define the damage evolution law, it is necessary to relate the applied stress
or strain state to the density of transverse matrix cracks. This relation is
obtained from a Fracture Mechanics analysis of cracked plies combined with
the definition of the damaged constitutive tensor.

2.3.1 Transverse tension

Tan and Nuismer [18] obtained a closed-form expression that defines the evolu-
tion of transverse matrix cracks under uniaxial stress states (either transverse
tension or in-plane shear).

To predict failure under multiaxial loading, i.e. when the lamina is simultane-
ously under tensile and in-plane shear strains, εxx and γxy respectively, it is
necessary to derive a relation between the density of transverse matrix cracks
and the applied multiaxial strain state. It is assumed that the relation between
the tensile and shear strains is constant throughout the loading history:

κ =
γxy

εxx

with εxx > 0 (19)

where κ is the multiaxial strain ratio.

Consider a ply with crack spacing L, as shown in Figure 4 a).

10



2L

a) Crack spacing 2L

L

b) Crack spacing L

L

Fig. 4. Progression of transverse matrix cracks.

The strain energy in a laminate cell of length 2L subjected to transverse
tension and in-plane shear just prior to fracture, U2L, can be established as a
function of the strain tensor and of the crack spacing as:

U2L = 2hLb
[
Ex(L)ε2

xx + A66(L)γ2
xy

]
(20)

where Ex(L) is the axial stiffness of the laminate with a crack spacing of 2L
and b is the specimen width; A66(L) is the laminate effective shear stiffness cor-
responding to a crack spacing of 2L, 2h and 2L are the laminate thickness and
the distance between two consecutive transverse matrix cracks, respectively.

After the propagation of transverse matrix cracks, Figure 4 b), the strain
energy in the original unit cell of length 2L is:

UL = 2hLb
[
Ex

(
L

2

)
ε2

xx + A66

(
L

2

)
γ2

xy

]
(21)

where Ex(L/2) and A66(L/2) are respectively the axial stiffness and the lam-
inate effective shear stiffness corresponding to a crack density defined by L.

The energy required to generate a new matrix crack in a ply equals the loss of
strain energy of the laminate [18]. Therefore the difference between equation
(20) and equation (21) is equal to the energy released by the sublaminate 1:

∆U = U2L − UL =

= 2hLb
{[

Ex(L)− Ex

(
L

2

)]
ε2

xx +
[
A66(L)− A66

(
L

2

)]
γ2

xy

}
(22)

or:

∆U = 2h(1)bGc = 2h(1)bGI + 2h(1)bGII (23)

11



where Gc is the mixed-mode fracture toughness of sublaminate 1 under tensile
(mode I) and shear (mode II) loading. From (22) and (23):

[
Ex(L)− Ex

(
L

2

)]
ε2

xx +
[
A66(L)− A66

(
L

2

)]
γ2

xy =
h(1)Gc

hL
(24)

Using the definition of κ given in (19), equation (24) can be re-written as a
function of the strains:

{(
Ex(L)− Ex

(
L

2

))
+ κ2

[
A66(L)− A66

(
L

2

)]}
ε2

xx =
h(1)Gc

hL
(25)

or:

{
1

κ2

[
Ex(L)− Ex

(
L

2

)]
+

[
A66(L)− A66

(
L

2

)]}
γ2

xy =
h(1)Gc

hL
(26)

The relations between normal and shear strains, and the crack density are
obtained as:

εxx =

√√√√√
h(1)Gc

hL

1[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (27)

γxy =

√√√√√
h(1)Gc

hL

κ2

[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] = κεxx (28)

Equations (27) and (28), are established as a function of the mixed-mode
fracture toughness Gc that needs to be defined.

The mixed-mode fracture toughness is defined in terms of the mode I and
mode II components as:

Gc = GI + GII (29)

From (29) and (24):

12



h(1)Gc

hL
=

h(1)GI

hL
+

h(1)GII

hL
= (30)

=
[
Ex(L)− Ex

(
L

2

)]
ε2

xx +
[
A66(L)− A66

(
L

2

)]
γ2

xy (31)

and:

h(1)GI

hL
=

[
Ex(L)− Ex

(
L

2

)]
ε2

xx (32)

h(1)GII

hL
=

[
A66(L)− A66

(
L

2

)]
γ2

xy (33)

Dividing equations (32) and (33) by (25) and (26) respectively:

AI =
GI

Gc

=

[
Ex(L)− Ex

(
L
2

)]
[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (34)

AII =
GII

Gc

=
κ2

[
A66(L)− A66

(
L
2

)]
[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (35)

AI and AII are the ratios between the mode I and mode II components of
the energy release rate and the mixed-mode fracture toughness; AI and AII

can be obtained as a function of the crack density and of the multiaxial strain
ratio κ.

Taking into account that the energy release rate under mixed-mode loading is
the sum of the mode I and mode II energy release rates, equation (29) can be
established as:

1 =
GI

Gc

+
GII

Gc

(36)

1 = AI + AII (37)

The criterion proposed by Hahn [33] for the prediction of transverse matrix
cracking under transverse tensile and in-plane shear loads is used:

(1− g)

√
GIIc

GIc

+ g
GI

GIc

+
GII

GIIc

= 1 (38)

Substituting equations (34) and (35) into (38) gives:

13



(1− g)

√
AIGc

GIc

+ g
AIGc

GIc

+
AIIGc

GIIc

= 1 (39)

or:

(1− g)

√
AIGc

GIc

+ g
AIGc

GIc

+
(1− AI) Gc

GIIc

= 1 (40)

The positive real solution of (40) is:

Gc = GIIc +
AI

2

(GIc −GIIc)
2

GIc


1−

√√√√1 +
4

AI

GIcGIIc

(GIc −GIIc)
2


 (41)

where AI , which is given by equations (34), depends on the density of trans-
verse matrix cracks, β, and on the multiaxial strain ratio, κ (equation (19)).

Figures 5 and 6 show respectively the relation between the crack density β
and εxx and γxy for different multiaxial strain ratios. A [±25/903]s laminate
with the elastic properties shown in Table 1 is used in the predictions.

Fig. 5. Relation between applied strain (εxx and κ) and density of matrix cracks.
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Fig. 6. Relation between applied strain (γxy and κ) and density of matrix cracks.

The effects of multiaxial strain states on the crack density are clearly shown in
Figures 5 and 6. It can be observed in Figure 5 that the density of transverse
matrix cracks increases with the multiaxial strain ratio for a fixed value of εxx.

2.3.2 Transverse compression

Transverse matrix cracks created by a combination of transverse compression
and in-plane shear close under the effect of the compressive transverse stress.
When a crack closes, its faces can transmit normal tractions but shear tractions
may cause slippage between the crack faces. Therefore, it can be assumed that
transverse matrix cracks only affect the shear stiffness of a laminate.

Following the procedure described in the previous section, the energy released
by the sublaminate 1 is:

∆U = 2hLbγ2
xy

[
A66(L)− A66

(
L

2

)]
= 2h(1)bGIIc (42)

The relation between the shear strain and the crack density is obtained as:
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γxy =

√√√√√
h(1)GIIc

hL
[
A66(L)− A66

(
L
2

)] (43)

3 Micromechanics-based damage model

3.1 Constitutive model

A damage model able to represent the onset and accumulation of a periodic
distribution of transverse matrix cracks should yield a compliance tensor sim-
ilar to the one obtained from the micromechanical model, equation (8). An
appropriate damage model can be developed by defining the Gibbs free energy
per unit volume, ΨG, as:

ΨG =
1

2
σ : H : σ+∆Tα : σ + ∆Mβ : σ (44)

or, in the expanded form, as:

ΨG =
1

2

[
σ2

11

E1

+
σ2

22

(1− d2) E2

+
σ2

12

(1− d6) G12

−
(

υ21

E2

+
υ12

E1

)
σ11σ22

]
+

+ (α11σ11 + α22σ22) ∆T + (β11σ11 + β22σ22)∆M (45)

where E1, E2, υ12, υ21 and G12 are the in-plane elastic orthotropic properties
of a unidirectional lamina. The subscript 1 denotes the longitudinal (fiber)
direction and 2 denotes the transverse (matrix) direction. d2 and d6 are dam-
age variables associated with transverse matrix cracking. α11 and α22 are the
coefficients of thermal expansion in the longitudinal and transverse directions,
respectively. β11 and β22 are the coefficients of hygroscopic expansion in the
longitudinal and transverse directions, respectively. ∆T and ∆M are respec-
tively the changes in temperature and moisture content from the stress-free
state.

The proposed model distinguishes between active (d2+) and passive damage
(d2−) variables, corresponding to the opening or closure of transverse matrix
cracks under load reversal respectively. The determination of the active dam-
age variable can be accounted by the following equation:
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d2 = d2+
〈σ22〉
|σ22| + d2−

〈−σ22〉
|σ22| (46)

where the McCauley operator 〈x〉 is defined as 〈x〉 := 1
2
(x + |x|).

The damage variables d2 and d6 can be related to the density of transverse
matrix cracks using the micromechanical model previously described.

The constitutive model is obtained from the derivative of the Gibbs free energy
with respect to the stress tensor:

ε =
∂ΨG

∂σ
= H : σ+∆Tα + ∆Mβ (47)

where the compliance tensor H is defined as:

H =
∂2ΨG

∂σ2
=




1

E1

−υ21

E2

0

−υ12

E1

1

(1− d2) E2

0

0 0
1

(1− d6) G12




(48)

The compliance tensor is established in terms of the damage variables is similar
to the compliance tensor derived in the micromechanical model. It is important
to note that the damage variables are applied to the H22 and H66 components
of the compliance matrix because the micromechanical model results indicates
that υ21(β)/E2(β) = υ21/E2 is independent of damage (Figure 3).

Using the stiffness tensor C = H−1, it is possible to re-write equation (47) as:

σ = C : (ε−∆Tα−∆Mβ) (49)

with:

C =
1

Λ




E1 (1− d2) E2υ12 0

(1− d2) E1υ21 (1− d2) E2 0

0 0 Λ (1− d6) G12




(50)

and Λ = 1− υ21υ12(1− d2).
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In the context of Continuum Damage Mechanics it is necessary to relate the
effective stress tensor, σ̃, used in the damage activation and evolution functions
to the the nominal stress tensor σ. The relation between the effective and
nominal stress tensors is established in the proposed model using the Principle
of Strain Equivalence [34]:

σ̃ = M : σ (51)

where the damage operator, M, can be obtained from equations (48) and (50):

M = C|di=0 : H =




1
υ12d2

(1− d2) (1− υ21υ12)
0

0
1− υ21υ12 + υ21υ12d2

(1− d2) (1− υ21υ12)
0

0 0
1

1− d6




(52)

Using (8) and (48) the damage variables d2 and d6 can be expressed in terms
of the crack density β as:

d2+ = 1− 1

E2H22 (β)
(53)

d6 = 1− 1

G12H66 (β)
(54)

The functions H22 (β) and H66 (β) are obtained from equations (9) and (10)
with β = 1/(2L).

It can be shown that the damage variables are defined between zero, when
crack spacing tends to infinity, and one, when the crack spacing tends to zero.
The relation between the density of transverse matrix cracks β and the damage
variables d2 and d6 is shown in Figure 7.
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Fig. 7. Relation between the damage variables d2 and d6 and density of transverse
matrix cracks.

The condition of positive energy dissipation is established as a function of
the thermodynamic forces, Y, and as a function of the time derivative of the
damage variables, ḋ, and it is given by:

Ξ = Y · ḋ =
∂ΨG

∂d
· ḋ ≥ 0

or

Ξ =
σ2

22

2 (1− d2+)2 E2

ḋ2+ +
σ2

12

2 (1− d6)
2 G12

ḋ6≥0 (55)

where Ξ is the rate of energy dissipation per unit volume.

The rate of dissipation can be established in terms of micromechanical vari-
ables by using equations (46-54):

1

(1− d2+)2 E2

= [H22 (β)]2 E2 (56)

1

(1− d6)
2 G12

= [H66 (β)]2 G12 (57)

The time derivatives of the damage variables are:
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ḋ2+ =
1

[H22 (β)]2 E2

∂H22 (β)

∂β
β̇ (58)

ḋ6 =
1

[H66 (β)]2 G12

∂H66 (β)

∂β
β̇ (59)

Therefore, the rate of energy dissipated is:

Ξ =
σ2

22

2

∂H22 (β)

∂β
β̇ +

σ2
12

2

∂H66 (β)

∂β
β̇≥0 (60)

Taking into account that ∂H22(β)
∂β

≥0 and ∂H66(β)
∂β

≥0, the time derivative of β
must be greater than or equal to zero in order to assure positive dissipation,
i.e., β̇≥0. Therefore, the condition of positive dissipation, when interpreted
from a micromechanical point of view, establishes that the density of trans-
verse matrix cracks can only increase or remain constant.

3.1.1 Damage activation functions

Transverse matrix cracks are predicted using two scalar functions, Fk (k =
2+, 2−), established in terms of the effective stress tensor σ̃t, and of the dam-
age threshold value, rt:

Fk := φk

(
σ̃t

)
− rt ≤ 0 (61)

where t is the current time. The initial threshold value, r◦, is equal to 1, and
the following condition must be satisfied in order to fulfill the Second Principle
of Thermodynamics:

ṙ ≥ 0 (62)

Damage onset occurs when any of the functions φk (σ̃t) reaches the initial
damage threshold value of 1. The functions φk (σ̃t) used to predict transverse
matrix cracking are based on the LaRC04 failure criteria previously proposed
by the authors [4,5].

The damage activation functions are used to predict the onset of transverse
matrix cracks lying in ply thickness direction, as shown in Figure 1.
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Transverse matrix cracks lying in the direction of the ply thickness occur
under transverse tension (σ22 ≥ 0), or under moderate values of transverse
compression and in-plane shear (σ22 < 0).

For high values of transverse compression, the matrix fractures lie along a
plane that is inclined at an angle α to the direction of the ply thickness, as
shown in Figure 8.

a

s
22

s
22

Delamination

Fig. 8. Matrix crack in a created by high in-plane compressive transverse stress.

Inclined fracture planes caused by transverse compression induce delamination
between the plies. This damage mechanism is usually catastrophic in uniformly
stressed composites where local redistribution to more lightly loaded regions
of the structure cannot occur [6]. Therefore, laminate failure can be assumed
to occur when matrix cracking under high values of transverse compression is
predicted.

The damage activation function used to predict matrix cracking under trans-
verse tension (σ̃t

22 ≥ 0) and in-plane shear is defined as:

F2+ := φ2+

(
σ̃t

)
− rt ≤ 0 (63)

with:

φ2+

(
σ̃t

)
=

√√√√(1− g)
σ̃t

22

YT

+ g

(
σ̃t

22

YT

)2

+

(
σ̃t

12

SL

)2

(64)

The damage activation function used to predict matrix cracking with α = 0◦

under moderate values of transverse compression (σ̃t
22 < 0) and in-plane shear

is defined as:

F2- := φ2-

(
σ̃t

)
− rt ≤ 0 (65)
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with:

φ2-

(
σ̃t

)
=

α=0o

1

SL

〈∣∣∣σ̃t
12

∣∣∣ + ηLσ̃t
22

〉
(66)

The equations proposed can accurately predict transverse matrix transverse
cracking. The failure envelope, or initial elastic limit, predicted using equations
(63) and (65), and the corresponding experimental data are shown in Figure
9.

Fig. 9. Comparison between predictions and experimental data [36] and definition
of ply or laminate failure domains.

Figure 9 also shows the domain of validity of the model: the damage model is
only defined for fracture angles α = 0◦. For α > 0◦ the laminate is assumed
to fail.
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3.1.2 Damage evolution functions

Using the principle of strain equivalence, the effective stress tensor can be
written as a function of the strain and undamaged stiffness tensors:

σ̃ = Co: ε (67)

The strain tensor is established in terms of the density of transverse cracks
and the multiaxial strain ratio κ, equations (27-28). Therefore, all terms in
the damage threshold functions can be formulated as a function of the density
of transverse matrix cracks and of the the multiaxial strain ratio:

Fk = f(βt, κt) (68)

For a given state of strain at time t the multiaxial strain ratio is a dependent
variable that can be easily defined using equation (19) in material coordinates:

κt =
γt

12

εt
11

(69)

The density of transverse matrix cracks is a state variable. Therefore, it is
necessary to define an evolution law subjected to thermodynamic restrictions.

The first condition to be satisfied is the requirement of positive dissipation. As
demonstrated by equations (56)-(60), the condition of positive dissipation is
satisfied when the evolution of the state variable β is defined by a monotonic
increasing function:

β̇ ≥ 0 (70)

Furthermore, it is necessary to define the conditions for the evolution of the
elastic domain:

Fk(σ̃
t, βt) ≤ 0 (71)

β̇Fk(σ̃
t, βt) = 0 (72)

Equations (70)-(72) are the Kuhn-Tucker conditions which ensure a consistent
evolution of damage during loading and load reversals.

The evolution laws of the state variables are defined as:
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·
σ̃ =

∂σ̃

∂ε
: ε̇ =

∂σ̃

∂ε
:

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
= Co :

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
(73)

ṙ =
∂r

∂β
β̇ +

∂r

∂κ
κ̇ (74)

For a given loading state, the damage consistency condition must be applied
to define the evolution of the internal variables. The consistency condition is
defined as:

Fk = 0 ⇒ Ḟk =
∂Fk

∂σ̃
:
·
σ̃ +

∂Fk

∂r
ṙ = 0 (75)

From (63) and (65):
∂Fk

∂r
= −1 (76)

Using (76) in (75):

Ḟk =
∂Fk

∂σ̃
:
·
σ̃ − ṙ =

∂Fk

∂σ̃
: Co : ε̇− ṙ = 0 (77)

Using equations (73) and (74) in (77):

Ḟk =
∂Fk

∂σ̃
: Co :

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
−

(
∂r

∂β
β̇ +

∂r

∂κ
κ̇

)
= 0 (78)

Taking into account that the micromechanical model proposed assumes a con-
stant loading ratio, κ̇ = 0:

Ḟk =
∂Fk

∂σ̃
:

(
Co :

∂ε

∂β
− ∂r

∂β

)
β̇ = 0 (79)

The density of of transverse matrix cracks, β, is calculated from the integra-
tion of equation (79) using a numerical method, such as the return-mapping
algorithm.

For damage evolution under transverse tension, the values of ∂Fk/∂σ̃ can be
obtained from (63):

∂F2+

∂σ̃11

= 0 (80)
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∂F2+

∂σ̃22

=
1

φ2+

(
1− g

2

1

YT

+ g
σ̃22

(YT)2

)
(81)

∂F2+

∂σ̃12

=
1

φ2+

σ̃12

(SL)2 (82)

and for damage evolution under transverse compression (65):

∂F2-

∂σ̃11

= 0 (83)

∂F2-

∂σ̃22

=
ηL

SL

(84)

∂F2-

∂σ̃12

=





1
SL

σ̃12 if σ̃12 ≥ 0

−1
SL

σ̃12 if σ̃12 < 0





=
1

SL

|σ̃12| (85)

Figure 10 represents the evolution of the elastic domain for different values of
the crack density β using a ply with the material properties shown in Table 1.

Fig. 10. Predicted evolution of the elastic domain as a function of crack density β.
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4 Prediction of laminate failure

In the presence of stress concentrations the onset of fiber localized failure
does not cause immediate structural collapse. Experimental results [37,38]
have shown that structural collapse is caused by the the progression of fiber
fracture. Therefore, it is necessary to use a damage model that accounts for
the stress re-distributions caused by fiber fractures.

The model proposed here assumes that for uniformly stressed laminates the
onset of fiber fracture and delamination caused by high compressive trans-
verse stresses triggers structural collapse. Therefore, laminate final failure is
predicted when fiber failure or matrix cracking with α 6= 0◦ occurs.

4.1 Fiber failure

The criterion for fiber fracture under longitudinal tension (σ11 ≥ 0) is defined
as [4,5]:

FI1+ :=
σ11

XT

− 1 ≤ 0 (86)

where XT is the ply tensile strength in the longitudinal direction.

The LaRC03 failure criterion for fiber kinking under longitudinal compression
(σ11 < 0) is a function of the components of the stress tensor in a frame

representing the fiber misalignment, σ
(m)
ij [4,5]:

σ
(m)
11 = σ11 cos2 ϕ + σ22 sin2 ϕ + 2 |σ12| sin ϕ cos ϕ

σ
(m)
22 = σ11 sin2 ϕ + σ22 cos2 ϕ− 2 |σ12| sin ϕ cos ϕ

σ
(m)
12 = −σ11 sin ϕ cos ϕ + σ22 sin ϕ cos ϕ + |σ12|

(
cos2 ϕ− sin2 ϕ

)
(87)

where the fiber misalignment angle ϕ is defined as [4]:

ϕ =
|σ12|+ (G12 −XC) ϕc

G12 + σ11 − σ22

(88)
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where

ϕc = tan−1




1−
√

1− 4
(

SL

XC
+ ηL

) (
SL

XC

)

2
(

SL

XC
+ ηL

)


 (89)

and where XC is the ply compressive strength in the longitudinal direction.

Depending on the sign of the in-plane transverse stress σ
(m)
22 , the criteria for

fiber kinking (σ11 < 0) are:

FI1- :=

〈∣∣∣σ(m)
12

∣∣∣ + ηLσ
(m)
22

SL

〉
− 1 ≤ 0, σ

(m)
22 < 0 (90)

or

FI1- := (1− g)
σ

(m)
12

YT

+ g


σ

(m)
12

YT




2

+


σ

(m)
12

SL




2

− 1 ≤ 0, σ
(m)
22 ≥ 0 (91)

4.2 Matrix failure with α 6= 0◦

The failure criteria for matrix cracking under transverse compression (σ22 < 0)
and in-plane shear and α 6= 0◦ are defined as [4,5]:

FI2- :=

(
τT
e

ST

)2

+

(
τL
e

SL

)2

− 1 ≤ 0, σ11 ≥ −YC (92)

FI2- :=

(
τ (m)T
e

ST

)2

+

(
τ (m)L
e

SL

)2

− 1 ≤ 0, σ11 < −YC (93)

where the effective shear stresses in the fracture plane are defined as:

τT
e =

〈∣∣∣τT
∣∣∣ + ηT σn cos θ

〉

τL
e =

〈∣∣∣τL
∣∣∣ + ηLσn sin θ

〉 (94)

where θ = tan−1
( −|σ12|

σ22 sin α

)
. The components of the stress tensor on the fracture

plane are given by [4,5]:
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σn = σ22 cos2 α

τT = −σ22 sin α cos α

τL = σ12 cos α

(95)

The terms τmT
e and τmL

e are calculated from equations (94)-(95) using the
relevant components of the stress tensor established in a frame representing the
fiber misalignment, equation (87). The angle α is determined by maximizing
the failure index FI2− (92-93) using a simple iterative procedure.

The coefficients of transverse and longitudinal influence, ηT and ηL respec-
tively, are [4,5]:

ηT =
−1

tan 2α0

(96)

ηL = − SL cos 2α0

YC cos2 α0

(97)

with α0 ≈ 53◦. YC is the ply compressive strength in the transverse direction.

5 Examples

The present damage model can be used in combination with classical lamina-
tion theory using stand-alone codes. Alternatively, the damage model can be
implemented as a constitutive subroutine for the Finite Element Method.

The damage model was implemented using a commercial symbolic computing
software. The model was verified by calculating the response of several glass-
epoxy laminates under uniaxial and multiaxial loads: [±45/904]s, [02/904]s,
[02/902]s and [02/90]s.

In all calculations performed, the ply thickness was taken as 0.144mm and the
temperature difference from the stress free condition -100◦C. The coefficients
of thermal expansion in the longitudinal and transverse directions are α11 =
7.43×10−6/◦C and α22 = 22.4×10−6/◦C, respectively. The remaining material
properties used are shown in Tables 2 and 3.
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Table 2
Elastic properties of glass-epoxy [20]

E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) υ12 υ23 χ (10−8MPa−3)

44.7 12.8 5.8 4.5 0.30 0.42 2.0

Table 3
Strengths and fracture toughnesses of glass-epoxy [20].

Yud
T (MPa) Sud

L (MPa) GIc (N/mm−1) GIIc (N/mm−1)

40.0 73.0 0.20 0.40

The predicted response of [±40/904]s and [02/904]s, is shown in Figure 11 for
two values of the multiaxial strain ratio: κ = 0 and κ = 10.

Fig. 11. Relation between laminate modulus and applied strain for [±45/904]s and
[02/904]s laminates.

Figure 11 shows that the rate of degradation of the elastic properties of the
laminate is higher when the axial stiffness of the outer sublaminate decreases.
The effect of multiaxial loading is also clear in Figure 11: as expected, the
application of shear strains leads to a reduction of the extension corresponding
to the onset of transverse matrix cracks and to a higher rate of degradation
of the elastic properties of the laminate.
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Figure 12 compares the response of [02/904]s, [02/902]s and [02/90]s laminates
for κ = 0 and κ = 2.

Fig. 12. Relation between laminate modulus and applied strain for [02/904]s,
[02/902]s and [02/90]s laminates.

The in-situ effect is shown in Figure 12. For κ = 0, the strain corresponding
to the onset of matrix cracking of the [02/90]s laminate is 1.9 and 1.3 times
higher than the ones of the [02/904]s and [02/902]s laminates respectively.
Furthermore, the strain at the onset of matrix cracking of the [02/90]s is 2.7
times higher than the ultimate transverse strain measured in an unidirectional
test specimen.

The laminate modulus calculated using the proposed model and the ply dis-
count method is shown in Figure 13 for a [02/904]s laminate. The ply discount
method assumes that E2 ≈ 0 and G12 ≈ 0 as soon as the failure criterion is
satisfied.
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Fig. 13. Laminate modulus calculated using the damage model and the ply-discount
method.

It can be observed in Figure 13 that the response of the modulus of the
laminate obtained using the ply-discount method is a step-function that does
not accurately represent the progressive degradation of the laminate.

6 Conclusions

A new, micromechanics-based, continuum damage model able to simulate the
onset and propagation of transverse matrix cracks and final laminate failure
is proposed. The model is applicable to [±θ/90n]s laminates, under multiaxial
loading and uniform stresses or small stress gradients.

The model uses ply properties and does not require any tests performed at
laminate level to identify damage onset and evolution functions. The onset
of damage is predicted using failure criteria and damage evolution laws are
established from the micromechanical analysis of cracked plies.
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The model can be used in Finite Element analysis, and the results are inde-
pendent of the mesh refinement because the constitutive model does not result
in strain-softening. The onset and accumulation of transverse matrix cracks
are represented as a distributed damage mechanism. The onset of localization,
which is triggered by either fiber fracture or matrix cracking with α 6= 0, is
assumed to cause a structural collapse.

The predictions show that the rate of degradation of the elastic properties
increases when the stiffness of the outer sublaminate decreases. Decreasing
the thickness of the 90◦ plies also increases the degradation rate.
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[16] Jirásek, M. Modeling of localized damage and fracture in quasibrittle materials.
Lecture Notes in Physics 568, ed. P.A. Vermeer et al. 2001; pp. 17-29.

[17] Nuismer, R. J. and Tan, S. C. Constitutive Relations of a Cracked Composite
Lamina. Journal of Composite Materials. 1988; 22:306-321.

[18] Tan, S. C. and Nuismer, R. J. A Theory for Progressive Matrix Cracking in
Composite Laminates. Journal of Composite Materials. 1989; 23:1029-1047.

[19] Berglund, L. A.; Varna, J., and Yuan, J. Effect of intralaminar toughness
on the transverse cracking strain in cross-ply laminates. Advanced Composite
Materials. 1991; 1(3):225-234.

[20] Joffe, R.; Krasnikovs, A., and Varna, J. COD-based simulation of transverse
cracking and stiffness reduction in (S/90n)s laminates . Composites Science
and Technology. 2001; 61:637-656.

[21] Joffe, R. and Varna, J. Analytical modeling of stiffness reduction in symmetric
and balanced laminates due to cracks in 90 layers. Composites Science and
Technology. 1999; 59:1641-1652.

[22] Varna, J.; Joffe, R., and Talreja, R. A synergistic damage-mechanics analysis
of transverse cracking in (±θ/904)s laminates. Composites Science and
Technology. 2001; 61:657-665.

[23] Dvorak, G. J.; Laws, N., and Hejazi, M. Analysis of progressive matrix cracking
in composite laminates I. thermoelastic properties of a ply with cracks. Journal
of Composite Materials. 1985; 19:216-234.

[24] Laws, N.; Dvorak, G. J., and Hejazi, M. Stiffness changes in unidirectional
composites caused by crack systems. Mechanics of Materials. 1983; 2:123-137.

[25] Nguyen, B. N. A three-dimensional modeling of transverse matrix cracking in
laminated composites. Key Engineering Materials. 1997; 127-131:1117-1126.

[26] Schoeppner, G. A. and Pagano, N. J. 3-D thermoelastic moduli and saturation
crack density for cross-ply laminates with transverse cracks. International
Journal of Damage Mechanics. 1999; 8:1-37.

[27] Hashin, Z. Analysis of cracked laminates: a variational approach. Mechanics of
Materials. 1985; 4:121-136.

[28] Highsmith, A. L. and Reifsnider, K. L. Stiffness-reduction mechanisms in
composite laminates. Damage in Composite Materials. American Society for
Testing and Materials; 1982; pp. 103-117.

34



[29] Hashin, Z. Analysis of stiffness reduction of cracked cross-ply laminates.
Engineering Fracture Mechanics. 1986; 25(5/6):771-778.

[30] McCartney, L. N.; Schoeppner, G. A., and Becker, W. Comparison of models
for transverse ply cracks in composite laminates. Composites Science and
Technology. 2000; 60:2347-2359.

[31] Camanho, P. P.; Dávila, C. G.; Pinho, S. T.; Iannucci, L., and Robinson, P.
Prediction of in situ strengths and transverse matrix cracking in composites
under transverse tension and in-plane shear. Composites-Part A. 2006; 37:165-
176.

[32] Dvorak, G. J. and Laws, N. Analysis of first ply failure in composite laminates.
Engineering Fracture Mechanics. 1986; 25(5/6):763-770.

[33] Hahn, H. T. A mixed-mode fracture criterion for composite materials.
Composites Technology Review. 1983; 5:26-29.

[34] Lemaitre, J. A Course on Damage Mechanics. Springer, 1996.

[35] Soden, P. D.; Hinton, M. J., and Kaddour, A. S. Lamina properties, lay-up
configurations and loading conditions for a range of fibre-reinforced composite
laminates. Composites Science and Technology. 1998; 58:1011-1022.

[36] Swanson, S. R. A micro-mechanical model for in-situ compression strength of
fiber composite laminates, Transactions of the American Society of Mechanical
Engineers, Series H, Journal of Engineering Materials and Technology. 1992;
114:8-12.

[37] Camanho, P. P.; Bowron, S., and Matthews, F. L. Failure mechanisms in bolted
CFRP. Journal of Reinforced Plastics and Composites. 1998; 17:205-233.

[38] Camanho, P. P. Application of numerical methods to the strength prediction
of mechanically fastened joints in composite laminates. PhD Thesis, Centre for
Composite Materials, Department of Aeronautics, Imperial College London,
U.K.; 1999.

[39] Maple 8 Users Manual. Waterloo Maple Inc., Canada, 1981.

35



Appendix A: Laminate constitutive model

The plane stress constitutive equation of a laminate is:

ε = Q̄−1σ̄ (A-1)

where the barred parameters denote a quantity that is not a function of the
thickness coordinate.

The laminate stiffness Q̄ matrix can be obtained from the stiffness and thick-
ness of the individual plies applying the classical in-plane laminate theory:

Q̄ =
1

h̄

n∑

k=1

h(k)Q̄(k) (A-2)

where h̄ is the total laminate thickness, h(k) are the thickness of the kth ply and
Q̄

(k)
is the stiffness of the each kth ply in global laminate coordinate system

(see Figure 1)

For a balanced symmetrical laminate the matrix Q̄ is defined as:

Q̄ =




Q̄11 Q̄12 0

Q̄21 Q̄22 0

0 0 Q̄66




(A-3)

The stiffness of a laminate composed by two sublaminates is obtained as:

Q̄ =
1

2h̄

(
2h(1)Q̄(1) + 2h(2)Q̄(2)

)
=

1

h̄

(
h(1)Q̄(1) + h(2)Q̄(2)

)
(A-4)

For a balanced, symmetric laminate, the laminate stiffness depends on the
distance between two consecutive longitudinal cracks (L):

Ā(L) =




Ā(L)11 Ā(L)12 0

Ā(L)21 Ā(L)22 0

0 0 Ā(l)66




(A-5)

where Āij(L), i, j = 1, 2 are the average laminate stiffness:
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Ā11(L) =
h(1)Q

(1)
11 + h(2)Q

(2)
11

β2h̄
(A-6)

Ā12(L) =
β1h

(1)Q
(1)
12 + β2h

(2)Q
(2)
12

β2h̄
(A-7)

Ā22(L) =
h(1)Q

(1)
22 + h(2)Q

(2)
22

h̄
−

(
β2 − β1

β2

)
h(1)

(
Q

(1)
12

)2

h̄Q
(1)
11

(A-8)

Ā66(L) is the laminate shear stiffness calculated as:

Ā66(l) =
h(1)Q

(1)
66 + h(2)Q

(2)
66

β4h̄
(A-9)

The superscript (1) and (2) denote ply 1 and ply 2 respectively and Q
(k)
ij , i, j =

1, 2, 6 are the undamaged lamina stiffness along the laminate axes.

The parameters β1 and β2 can be calculated as [18]:

β1 = 1− tanh α1L

α1L
(A-10)

β2 = 1 +


h(1)Q

(1)
11

h(2)Q
(2)
11


 tanh α1L

α1L
(A-11)

with α1:

(α1)
2 =

3C
(1)
55 C

(2)
55

h(1)C
(1)
55 + h(2)C

(2)
55


h(1)Q

(1)
11 + h(2)Q

(2)
11

h(1)h(2)Q
(1)
11 Q

(2)
11


 (A-12)

where C
(k)
55 is the lamina stiffness in the lamina axes.

The parameter β4 is be calculated as:

β4 = 1 +


h(1)Q

(1)
66

h(2)Q
(2)
66


 tanh α2L

α2L
(A-13)

with α2:
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(α2)
2 =

3C
(1)
44 C

(2)
44

h(1)C
(1)
44 + h(2)C

(2)
44


h(1)Q

(1)
66 + h(2)Q

(2)
66

h(1)h(2)Q
(1)
66 Q

(2)
66


 (A-14)

where C
(k)
44 is the lamina stiffness in the lamina axes.

The relation between the longitudinal modulus Ex, the Poisson ratio υxy and
the shear modulus Gxy and the crack density is obtained Āij(L), i, j = 1, 2, 6.

After the definition of Āij(L), i, j = 1, 2, 6 it is possible to calculate the en-
gineering constants of the laminate. The longitudinal modulus, Ex(L), of the
quarter cell under plane stress is:

Ēx(L) = Ā11(L)−
[
Ā12(L)

]2

Ā22(L)
(A-15)

The Poisson ration of the laminate is:

ῡxy(L) =
Ā12(L)

Ā22(L)
(A-16)

The shear stiffness of the laminate, Ḡxy(L), is obtained as:

Ḡxy(L) = Ā66(L) (A-17)
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