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Abstract. High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and 
other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion 
etching (DRIE) of low aspect ratio (AR ≤1) deep (>100 µm) trenches in SiC has been reported. 
However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio 
features because such simple etch-only processes provide insufficient control over sidewall 
roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate 
(TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An 
optimized TMEP process was used to etch high aspect ratio (AR >5) deep (>100 µm) trenches in 
6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.  

Introduction 
Microengines and other power MEMS frequently utilize silicon (Si) because the required high 
aspect ratio microstructures can be readily fabricated in Si using a time-multiplexed etch-passivate 
(TMEP) process (or Bosch process) [1,2]. Silicon, however, undergoes creep at relatively low 
temperatures, which limits operating temperatures and microengine power. Silicon carbide has 
superior mechanical properties at elevated temperatures, but micromachining methods for SiC are 
not yet well-developed. We investigated the TMEP process for the fabrication of high aspect ratio 
SiC microstructures because of the limitations of existing etch-only DRIE processes for SiC. An 
inductively coupled plasma (ICP) etch-only process using SF6 and Ar has been used at NASA 
Glenn to etch low aspect ratio structures to depths of several hundred µm. This process, which is 
described fully in [3], has the advantage of providing residue-free deep etches, but is not suitable 
for high aspect ratio features because it produces rough sidewalls and a re-entrant profile. Fluorine 
plasma etching of SiC is inherently anisotropic, because ion bombardment is required to achieve an 
appreciable etch rate. However, the etch rate in the absence of ion bombardment is sufficient to 
cause roughening of the sidewalls when deep etching. To protect the sidewalls, we have adopted a 
modified TMEP process, which alternates etching with conformal deposition of an etch-inhibiting 
polymer. The polymer is quickly removed from the horizontal surfaces at the beginning of each ion-
assisted etch step but is longer-lived on the sidewalls. In addition, the TMEP process can provide 
improved control over the sidewall slope by decoupling etching and passivation, the relative 
balance of which determines the slope.  

Experimental 
 The TMEP experiments were performed in a STS Multiplex ICP etcher, using SF6 for etching and 
C4F8 for passivation. The samples were n-type, off-axis, Si-face 6H-SiC, with a resistivity of 0.065 
Ω-cm. An etch mask patterned with various width trenches was produced by selective 
electroplating of Ni to a thickness of approximately 5 µm. Design of experiments (DOE) was used 
to optimize the TMEP process for maximum etch rate, sidewall slope, and smoothness. The study 
was focused on three parameters known to strongly influence the etch characteristics of interest: 
platen power during the etch step, pressure (which was the same during both steps to enhance 
stability), and duration of the passivation step [1]. Coil power was fixed at the maximum generator 
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output, 1000 W, to maximize the plasma density. The duration of the etch step was fixed at 30 s, the 
maximum value permitted by the ICP control software, to obtain appreciable etching of SiC during 
each step. Etches were performed using low and high values of etch-step platen power (50 and 100 
W), pressure (7 and 17 mT), and passivation-step duration (9 and 17 s). The 23 full factorial design 
was augmented with five repetitions of center point conditions (75 W, 12 mT, 13 s) to provide a 
measure of process stability and variability. To enable automated handling by the ICP, the SiC 
samples (8 were fabricated from each 50-mm wafer) were mounted on 100-mm Si carrier wafers 
using photoresist as an adhesive. Prior to each etch, the sample surface was cleaned using a 10-min 
Ar sputter etch, then removed from the chamber while the chamber walls were conditioned by 
depositing polymer for 3 min. Etch time was 10 hrs to provide etch depths on the order of  
100 µm. Etch depth was measured using surface profilometry and optical microscopy, and sidewall 
slope was measured via optical microscopy of cross-sectioned etch specimens.   

Results and Discussion 

SiC Etch Rate. Etch rate was found to be most strongly influenced by platen power and passivation 
time (etch rate was increased by decreasing passivation time or increasing platen power), while 
pressure was found to have a lesser effect. Figure 1 shows the SiC etch rate as a function of platen 
power and pressure, for a 9-s passivation time. The peak etch rate of 0.24 µm/min was obtained at 
100-W platen power and 7-mT pressure. At this power and passivation time, increasing pressure to 
17 mT reduced the etch rate slightly, from 0.24 to 0.22 µm/min. For comparison, the rate when 
etching at 100-W platen power and 17-mT pressure was 0.39 µm/min when no passivation step was 
used. Increasing the passivation time from 9 to 17 s, at 100-W platen power and 7-mT pressure, 
reduced the etch rate by 29%, to 0.17 µm/min. This etch rate reduction can be largely attributed to 
the 21% reduction in the proportion of process time devoted to etching.  
 

While an increase in platen power increases the etch rate (by increasing the energy with which ions 
bombard the SiC surface), it has a negative impact on selectivity, which determines the etch depth 
that can be achieved for a given mask thickness (as noted in the next section, platen power also has 
a significant impact on anisotropy). In a separate experiment, using 200-nm-thick evaporated Ni 
masks, the selectivity to the Ni mask (i.e., ratio of SiC and Ni etch rates) was found to be reduced 
from 120 to 65 when platen power was increased from 50 to 100 W, at 17-mT pressure and 17-s 
passivation time. Of the three parameters studied, pressure had the least significant effect on etch 
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Fig. 1 - SiC etch rate as a function of platen power and pressure with a 9-s passivation time: 
(a) response surface and experimental data points; (b) contour plot of response surface. 

Etch rate in µm/min 



 
 

 

rate, probably because pressure affects etch rate through competing mechanisms. An increase in 
pressure reduces the plasma density, which has a negative impact on etch rate by reducing the flux 
of ions to the substrate. At the same time, an increase in pressure causes effects that tend to increase 
the etch rate; e.g., the flux of fluorine species to the substrate increases, as does the energy with 
which ions bombard the substrate (for a fixed platen power). 
 
Anisotropy. Figure 2 shows the profile of trenches etched at the highest etch rate conditions (high 
platen power, low pressure, and low passivation time). Under these highest rate conditions, 
sidewalls were rougher than for samples etched using some lower rate processes. Figure 3 shows 

the variation of sidewall angle as a function of 
pressure and platen power for a 17-s 
passivation step. Higher pressure and platen 
power during etching resulted in more vertical 
sidewalls, with both variables appearing to 
have equal effects. Increased platen power 
causes an increase in ion directionality, 
resulting in greater anisotropy of features. In 
the range of pressures studied, increasing 
pressure causes the sidewall slope to increase. 
However it can be expected that at a critical 
value, anisotropy will decrease at high 

pressures even with increasing platen power. Passivation time did not strongly influence sidewall 
angle, however, a longer passivation step did produce significantly smoother sidewalls, as shown in 
Fig. 4, which compares samples etched with 9-s and 17-s passivation times at high platen power 
and pressure (100 W, 17 mT). At these conditions for maximum anisotropy, the slope was identical, 
89.0°, for both passivation times.  
 

 
An optimized TMEP process was used to etch micro-scale turbine blades, shown in Fig. 5. High 

platen power, pressure and passivation time (100 W, 17 mT, 17 s) were employed since these 
conditions provide maximum sidewall slope and smoothness, with an acceptable 0.17-µm/min etch 
rate. If somewhat rougher sidewalls were acceptable, then high platen power, pressure and short 
passivation time (100 W, 17 mT, 9 s) could be used to obtain the same anisotropy with a higher etch 
rate of 0.22 µm/min. Figure 5 illustrates some important defects with this process that need to be 

Fig. 3 - Sidewall slope as a function of platen power and pressure with a 17-s passivation time: 
 (a) response surface and experimental data points; (b) contour plot of response surface. 
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Fig. 2 - Cross-section of trenches etched with 
highest etch rate conditions (100 W, 7 mT, 9 s). 

Trench width = 13 µm, AR = 7.6. 
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overcome by further work: (1) Higher sidewall slopes (greater anisotropy) are desired. 

 
(2) The trenching visible at the base of the sidewall is an undesirable result typical of SiC DRIE 
using SF6 (high trenching was observed in all TMEP etches). (3) The process used to produce the 
electroplated Ni mask (still visible on the tops of the blades) does not accurately reproduce fine 
features such as the blade tips, which should be sharper.  

 

Summary 
Design of experiments methodology was used to characterize the response dependence of SiC etch 
rate and anisotropy on etching conditions in an ICP etcher. Etch rate was primarily determined by 
platen power and passivation time, while sidewall slope was primarily determined by platen power 
and pressure. It was found that smoother sidewalls could be obtained by increasing passivation 
time. Independent control of etch and passivation processes allowed optimization of sidewall slope 
and smoothness. Aspect ratios >5 and etch depths >100 µm were demonstrated in microstructures 
of single-crystalline SiC. With these advances in DRIE, structures can be created in SiC with a 
higher degree of control and precision than previously possible.  
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Fig. 4 - Effect of 
passivation time on 
sidewall smoothness at 
100 W, 17 mT: (a) 9-s 
passivation; (b) 17-s 
passivation. 
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Fig. 5 - SEMs showing (a) turbine 
blades etched to a depth of 109 µm in 
6H-SiC; (b) close-up of blades, which 
are 24 µm at the widest point and 8 
µm towards the trailing edge (in 
background). 
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