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Assessment of an Explicit Algebraic Reynolds

Stress Model

This study assesses an explicit algebraic Reynolds stress turbulence
model in the in the three-dimensional Reynolds averaged Navier-
Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for
Arbitrary Configurations). Additionally, it compares solutions for two
select configurations between ISAAC and the RANS solver PAB3D.
This study compares with either direct numerical simulation data,
experimental data, or empirical models for several different geometries
with compressible, separated, and high Reynolds number flows. In
general, the turbulence model matched data or followed experimental
trends well, and for the selected configurations, the computational
results of ISAAC closely matched those of PAB3D using the same
turbulence model.

1 Introduction

The capabilities of application–level three–dimensional Reynolds
averaged Navier-Stokes (RANS) solvers have increased due to the
rapid growth of the speed and the size of computational resources
concurrent with advances in turbulence modeling. Requirements of
more completely resolving wake–boundary layer flows, highly curved
flows and jet shear flow physics, for example, have provided impetus
for the implementation of more, higher order, turbulence models
into RANS solvers. Two equation turbulence transport models,
such as k-ε or k-ω, though a step beyond the previous 0-, 1/2-,
and 1-equation models, still make significant compromises in the
physical modeling in the flow calculations.

Many current three–dimensional Navier-Stokes methods utilize the
higher order turbulence models such as full Reynolds stress model of
Launder et al;1 the nonlinear model by Shih, Zhu, and Lumley;2 and

1 B. Launder, G. Reece, and W. Rodi.
Progress in the development of a
Reynolds stress turbulence closure.
J. Fluid Mech., 68:537–566, 1975.

2 T.-H. Shih, J. Zhu, and J. Lumley. A
New Reynolds Stress Algebraic Model.
NASA TM–166644, 1994.

the explicit algebraic Reynolds stress model (EASM) of Gatski and
Speziale.3These models have had only a minor additional impact to

3 T. Gatski and C. Speziale. On Ex-
plicit Algebraic Stress Models for Com-
plex Turbulent Flows. J. Fluid Mech.,
254:59–78, 1993

the overall computational effort and, for the most part, have been
an improvement over linear eddy viscosity turbulence models.

It is important to be able to evaluate the turbulence models within
a numerical code whose numerical characteristics are well-known.
In an attempt to quantify potential numerical biases present in the
code, a code-to-code comparisons is performed. The challenge is to
be sure that the turbulence model is similarly implemented in each
code. This level of effort is time consuming but is becoming more
essential in the current technical environment where an increasing
number of validation studies are undertaken.
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The purpose of this paper is to describe and assess the imple-
mentation of a particular explicit algebraic Reynolds stress model
(EASM) in the RANS solver ISAAC (Integrated Solution Algorithm
for Arbitrary Configurations). Earlier results using this model in
the solver PAB3D are published in papers by Hamid,4 and Carlson.5

4 K. Abdol-Hamid. Implementation
of Algebraic Stress Models in General
3D Navier Stokes Method (PAB3D).
NASA CR–4702, December 1995.

5 J.-R. Carlson. Prediction of High
Reynolds Number Flow Using Alge-
braic Reynolds Stress Turbulence Mod-
els, Part 1: Incompressible Flat Plate.
J. Propulsion and Power, 13:610–619,
1997; and J.-R. Carlson. Prediction
of High Reynolds Number Flow Us-
ing Algebraic Reynolds Stress Turbu-
lence Models, Part 2: Transonic Shock-
Separated Afterbody. J. Propulsion

and Power, 13:620–628, 1997.

The first two sections briefly describe the ISAAC code and
details of the turbulence model equations used herein. The next
section contains the validation cases of the EASM simulating four
different flows and comparing them with the DNS (Direct Numerical
Simulation), empirical or experimental data where appropriate.
The last section are N-version tests (code-to-code comparisons) of
numerical solutions of ISAAC compared with PAB3D, using two
of the four test cases. The nomenclature is found in Appendix A
followed by a discussion on turbulence transition indicators used for
this study.

2 Numerical approach

Numerical algorithm

ISAAC 6 is a multiblock, upwind, finite volume code that solves
6 J.H.Morrison. A Compressible
Navier-Stokes Solver with Two-
Equation and Reynolds Stress Turbu-
lence Closure Models. NASA CR–4440,
May 1992.

the three-dimensional Favre averaged compressible Navier-Stokes
equations with an upwind finite volume formulation. The inviscid
terms are upwind-biased spatial differenced and the viscous terms
are centrally differenced. This study also uses the flux-difference
splitting procedure of Roe7 with MUSCL8 (Monotone Upstream-

7 P. L. Roe. Approximate Riemann
Solvers, Parameter Vectors, and Dif-
ference Schemes. J. Comp. Phys.,
43:357–372, 1981

8 B. van Leer. Towards the Ultimate
Conservative Difference Schemes V.
A second Order Sequel to Godunov’s
Method. J. Comp. Phys., 32:101–136,
1979

center Scheme for Conservative Laws) differencing and it advances
solutions in time with an approximately factored three-factor scheme.
The limiter used in the MUSCL scheme was Venkatakrishnan’s
limiter,9 unless otherwise noted.

9 V. Venkatakrishnan. Convergence to
Steady State Solutions of the Euler
Equations on Unstructured Grids with
Limiters. J. Comp. Phys., 118:120–130,
1995

k-ε equations transport equations

The transport equations for the turbulent kinetic energy, k =
1
2u

′ ·u′, where u′ is the fluctuating velocity vector, and the turbulent
dissipation rate, ε, are10

10 Several variations of the dissipation
rate transport equation exist in the lit-
erature. Many of the variations involve
the destruction of dissipation term and
with the singularity of the term as k
approaches zero at the wall. The cur-
rent model uses the model proposed
by Hanjalić and Launder. (K. Han-
jalić and B. Launder. Contribution
towards a Reynolds-stress closure for
low-Reynolds-number turbulence. J.

Fluid Mech., 74:593–610, 1976.)

D

Dt
(ρk) = ρPk − ρε + Dk (1)

D

Dt
(ρε) = Cε1

f1
ρε

k
Pk − Cε2

f2
ρεε̃

k
+ Dε (2)

with

Cε1
= 1.44, Cε2

= 1.92, σk = 1.0, σε = 1.3 (3)

and where D/Dt = ∂/∂t+ui∂/∂xi. The equation for the production
of turbulent kinetic energy, Pk , uses the Reynolds stresses and the
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mean flow gradients,

Pk = −τij

∂ui

∂xj
(4)

The term Dk derives its form from the turbulent convection and
pressure transport terms of the Reynolds stress equations. Often, as
is the case presently, the gradient-diffusion model of Daly–Harlow11

11 B. Daly and F. Harlow. Transport
Equations of Turbulence. Phys. Fluids

B, 11:2634–2649, 1970.

is used resulting in

Dk = ∇ ·
[(

µ +
µt

σk

)

∇k

]

(5)

The dissipation rate transport equation uses a fully modeled term,
Dε, for the viscous diffusion and turbulent transport of ε.

Dε = ∇ ·
[(

µ +
µt

σε

)

∇ε

]

(6)

The eddy viscosity, µt, in these two transport equations is the high
Reynolds number form with the equilibrium model coefficient Cµ0

,

µt = Cµ0

ρk2

ε
, Cµ0

= 0.09 (7)

The functions in the dissipation rate equation are

f1 = 1, f2 = 1 − 0.3e−Rt
2

, Rt =
ρk2

µε
(8)

and the singularity in the destruction of dissipation term is removed
through the term ε̃

ε̃ = ε − 2ν
∣

∣

∣
∇
√

k
∣

∣

∣

2
(9)

The boundary conditions enforced on the wall for the turbulence
equations are

kw = 0, εw = 2ν
∣

∣

∣
∇
√

k
∣

∣

∣

2

w
(10)

Freestream levels for k and ε are derived from the ISAAC user
input variables TKEINF

12, 13 and RMUTNF ≡ µt/µ. TKEINF is then

12 It is interesting to note that if the
turbulence intensity is related to the
ratio of the turbulent kinetic energy to
the mean flow kinetic energy, I ∼

p

k/Ē

(where k = 1

2
u′ · u′, Ē = 1

2
U·U), then,

assuming in the freestream that U2
∞

=
U ·U, an expression for the freestream
turbulent kinetic energy can be written
as k∞ ∼ 1

2
I2
∞

U2
∞

= 1

2
I2
∞

M2
∞

a2
∞

.

13 More often, and as is the case for
this study, the streamwise turbulence
intensity is defined using the stream-
wise mean and fluctuating velocities

as I ∼
p

u′u′/U . For isotropic flow
k reduces to 3

2
u′u′, and again solving

for k and expressing the velocity in
terms of the Mach number and the
freestream speed of sound, results in
k∞ = 3

2
I2
∞

M2
∞

a2
∞

. The difference
comes from the definition of I and the
method of introducing k back into the
equations. Typical levels for I∞ are ap-
proximately 10−2 for grid turbulence
and 10−1 for shear flows. The input
variable TKEINF is equivalent to 3

2
I2
∞

.
nondimensionalized by the square of the speed of sound and used
as the freestream value for k. RMUTNF determines the freestream
value for ε via the expression for the turbulent eddy viscosity.14 The

14 µt = Cµ
ρk2

ε
, R ≡ Reynolds number

per unit length, and M∞ ≡ freestream
Mach number.

nondimensional forms designated by the ′ are then,

k′
∞ ≡ TKEINF× M2

∞ =
3

2
I2
∞M2

∞ (11)

ε′∞ ≡ Cµρ∞k′2
∞

RMUTNF

(

R

M∞

)

=
Cµρ∞k′2

∞
(µt/µ)∞

(

R

M∞

)

(12)
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Algebraic Reynolds stress model

One can express the Reynolds stress transport equations in terms of
the stress anisotropy tensor b (= τ/2k − I/3),

2k
Db

Dt
=

Dτ

Dt
− τ

k

Dk

Dt

=
(

P − τ

k
Pk

)

+ Π +
(

D − τ

k
Dk

)

(13)

where D represents the combined terms of viscous diffusion and
turbulent transport of the Reynolds stresses; Dk = {D}/2 similarly
denotes the viscous diffusion and turbulent transport of the kinetic
energy equations. The braces, { }, denote a tensor inner product.
Π represents the stress redistribution tensor, here modeled by the
pressure–strain relation developed by Speziale, Sarkar and Gatski
(SSG).15

15 C. Speziale, S. Sarkar, and T. Gatski.
Modeling the pressure-strain correla-
tion of turbulence: an invariant dynam-
ical systems approach. J. Fluid Mech.,
227:245–272, 1991.

Π = −C1εb + C2kS + C3k
(

bS + Sb− 2

3
{bS}I

)

−C4k
(

bW − Wb
)

(14)

with the symmetric and antisymmetric strain rate tensors, respec-
tively,

S =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, W =
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

. (15)

The coefficients of the SSG model are denoted C1 − C4:

C1 = C1

1

Pk

ε
+ C0

1
, C0

1
= 3.4, C1

1
= 1.8,

C2 = 0.36, C3 = 1.25, C4 = 0.4 (16)

Similarly, an expression for the production, P, in terms of the
tensors, b, S and W is,

P = −4

3
kS− 2k (bS + Sb) + 2k (bW − Wb) (17)

Substituting eqs. (17) and (14) into eq. (13) the implicit anisotropy
transport equation is

2k
D

Dt
b =

(

−2Pk − C1ε
)

b−
(4

3
− C2

)

kS

−
(

2 − C3

)

k
(

bS + Sb +
I

3k
Pk

)

+
(

2 − C4

)

k
(

bW − Wb
)

+
(

D − τ

k
Dk

)

(18)

One can form various models for D, both differential and algebraic,
(e.g. the gradient-diffusion model of Daly-Harlow16 or algebraic

16 B. Daly and F. Harlow. Transport
Equations of Turbulence. Phys. Fluids

B, 11:2634–2649, 1970.
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forms that model D = f(τ ,b,Dk , k)17). The present work uses the
17 T. Gatski and C. Speziale. On
Explicit Algebraic Stress Models for
Complex Turbulent Flows. J. Fluid

Mech., 254:59–78, 1993; J.-R. Carl-
son, N. Duquesne, C. Rumsey, and
T. Gatski. Computation of Turbulent
Wake Flows in Variable Pressure Gradi-
ent. Computers & Fluids, 30:161–187,
2001.

algebraic model for the turbulent transport and viscous diffusion
by Gatski & Speziale and the solution of the explicit equation
by Girimaji.18 The standard algebraic model for D,19 eq.(19), is

18 S. Girimaji. Fully Explicit and Self-
Consistent Algebraic Reynolds Stress
Model. Theoret. Comp. Fluid Dynam-

ics, 8:387–402, 1996

19 Most explicit algebraic Reynolds
stress models make this assumption
for the viscous diffusion and turbulent
transport terms, D = D

µ + D
t, of the

stress anisotropy transport equations.
A good discussion on algebraic stress
models and explicit representations can
be found in T. Gatski and T. Jongen.
Nonlinear eddy viscosity and algebraic
stress models for solving complex tur-
bulent flows. Progress in Aerospace

Sciences, 36(8):655–682, 2000.

substituted into eq.(18)

D =
τ

k
Dk (19)

so that the trailing term is now identically zero. Next, one must
derive the expression for the production of turbulent kinetic energy
in terms of the anisotropy and symmetric strain rate tensor from
one-half the trace of eq. (17),

Pk =
1

2
{P} = −2k{bS} (20)

Substituting in the expression for Pk , eq. (20), and assuming
an equilibrium condition of Db/Dt = 0, one writes the implicit
equation for the anisotropy tensor,

0 = −
(

C0

1
− 2(2 + C1

1
){bS}T

) b

2T
− a1S

−a3

(

bS + Sb− 2

3
{bS}I

)

+ a2

(

bW − Wb
)

(21)

a1 =
1

2

(4

3
− C2

)

, a2 =
1

2

(

2 − C4

)

, a3 =
1

2

(

2 − C3

)

(22)

a4 =
T

γ0

Pk

ε
+ γ1

, T =
k

ε
(23)

One can represent the anisotropy tensor by an expansion of a set of
basis tensors T(n) with scalar coefficients αn as,

b =

3
∑

n=1

αnT
(n) (24)

with

T(n) =















S , n = 1

SW − WS , n = 2

S2 − 1
3{S2}I , n = 3

(25)

A basis set of three is able to fully describe two-dimensional
flows.20 Substitution of eq. (24) into eq. (21) results in a cubic

20 An evaluation of 3- vs 5-term basis
sets can be found in T. Jongen and
T. Gatski. General Explicit Algebraic
Stress Relations and Best Approxi-
mation for Three-Dimensional Flows.
IJES, 36:739–763, 1998.

equation in scalar coefficient α1, i.e.,

(α1

T

)3
+ p

(α1

T

)2
+ q

(α1

T

)

+ r = 0 (26)
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where 21

21 The first two invariants of S and W

are usually defined as η1 = {S2} and
η2 = {W2}, respectively. Some previ-
ous articles have used the nomenclature
of η2 (≡ η1) and R (≡ −η2/η1).

p = − γ1

η∗1γ0
(27)

q =
1

(2η∗1γ0)
2

(

γ2
1 − 2η∗1γ0a1 −

2

3
η∗1a

2
3 − 2η∗2a2

2

)

(28)

r =
γ1a1

(2η∗1γ0)
2 (29)

γ0 =
1

2

(

C1
1 + 2

)

, γ1 =
1

2

(

C0
1 − 2

)

(30)

η∗1 = T2{S2}, η∗2 = T2{W2} (31)

There are three roots to eq. (26) and can be written as,

R1 = −p

3
+ 2

√

−a

3
cos

(

θ

3

)

(32)

R2 = −p

3
+ 2

√

−a

3
cos

(

θ

3
+

2π

3

)

(33)

R3 = −p

3
+ 2

√

−a

3
cos

(

θ

3
+

4π

3

)

(34)

with

a = q − p2

3
(35)

b = 2p3 − 9q2 + 27r (36)

d =

(

b

2

)2

+
(a

3

)3
(37)

θ = arccos(φ), φ =
−b/2

√

−a3/27
(38)

The only physically realizable solution comes from the smallest
negative root of the cubic equation. An examination of the
equations when d < 0 and whether b is either positive or negative
reveal that R2 will always be the smallest negative root using the
following logic:

If d < 0, R2 will always be the smallest negative root, therefore

C∗
µ = −

(α1

T

)

= −R2 (39)

If d > 0, there are two roots,

R1 = −1

3
p + sign

(

− b

2
+

√
d

)

∣

∣

∣
− b

2
+

√
d

∣

∣

∣

1/3

+sign

(

− b

2
−

√
d

)

∣

∣

∣
− b

2
−

√
d

∣

∣

∣

1/3
(40)
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R2 = −1

3
p − 1

2
sign

(

− b

2
+

√
d

)

∣

∣

∣
− b

2
+

√
d

∣

∣

∣

1/3

−1

2
sign

(

− b

2
−

√
d

)

∣

∣

∣
− b

2
−

√
d

∣

∣

∣

1/3
(41)

where the model coefficient is

C∗
µ = −

(α1

T

)

= −min (R1,R2) (42)

α2 = a2a4α1 (43)

α3 = −2a3a4α1 (44)

One then writes the Reynolds stress relation as,

τ =
2

3
kI + 2kα1 T(1) + 2kα2 T(2) + 2kα3 T(3) (45)

=
2

3
kI − 2C∗

µkTS−
2C∗

µkT2

4γ0C∗
µT2 + γ1

(

a2

(

SW − WS
)

− 2a3

(

S2 − 1

3
{S2}I

))

(46)

In order to capture the boundary layer log-layer region, one uses the
expression C∗

µ fµ in place of C∗
µ in the linear stress term, making the

final expression for the Reynolds stresses

τ =
2

3
kI − 2C∗

µfµkTS−
2C∗

µkT2

4γ0C∗
µT2 + γ1

(

a2

(

SW − WS
)

− 2a3

(

S2 − 1

3
{S2}I

))

(47)

3 Results and Discussion

This section presents four configurations concerning the initial
validation of this EASM in the CFD (computational fluid dynamics)
code ISAAC.

1. Channel flow DNS at Rτ = 590.22

22 R. Moser, J. Kim, and N. Mansour.
DNS of Turbulent Channel Flow up to
Reτ = 590. Phys. Fluids, 11:943–945,
1999.

2. Zero pressure gradient flat plate flow DNS at Rθ = 1410.23

23 P. Spalart. Direct Simulation of
Turbulent Boundary Layers up to Reθ

= 1410. J. Fluid Mech., 187:61–98,
1988.

3. Backward facing step experiment.24

24 D. Driver and H. Seegmiller. Fea-
tures of a Reattaching Turbulent Shear
Layer in Divergent Channel Flow.
AIAA J., 23:163–171, 1985.

4. Transonic flow over an axisymmetric afterbody experiment.25
25 D. Reubush. Experimental Investiga-
tion to Validate Use of Cryogenic Tem-
peratures to Achieve High Reynolds
Numbers in Boattail Pressure Testing.
NASA TM X–3396, August 1976.

This study will also compare solutions utilizing the ISAAC flow
solver of the the zero pressure gradient flat plate and the transonic
flow over the axisymmetric afterbody with solutions from using the
solver PAB3D.
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ISAAC validation test cases

Turbulent channel flow at Rτ = 590

DNS data—Computational results from the RANS code will be
compared with the numerical experiment (DNS) of Moser et al.26

26 R. Moser, J. Kim, and N. Mansour.
DNS of Turbulent Channel Flow up to
Reτ = 590. Phys. Fluids, 11:943–945,
1999.

for a fully developed channel flow at a Reynolds number (Reτ ) of 590.
The direct numerical method used a Chebychev-tau formulation
in the wall-normal direction and a Fourier representation in the
two other directions. The DNS calculation used a third-order
Runge-Kutta time discretization for the nonlinear terms, and it
applied periodic boundary conditions in the streamwise and spanwise
directions. The computational space was dimensioned 384×257×384
with a streamwise length of 2πδh, ( δh ≡ channel half-height ).

Computational mesh for ISAAC—The grid consisted of a single
block of an H-type mesh topology with the dimensions of 201×201
with the streamwise direction in i and the normal (viscous) direction
in j, respectively. Figure 1 shows the one-quarter density grid. The

i

j

subsonic
inflow

subsonic
outflow

farfield

farfield

(1/4 grid density)

wall

wall
x=5

y=0

x=0 (leading edge of wall)

y=0.01

Figure 1: Channel flow computational grid with boundary conditions.

inflow boundary was -0.5 units upstream of the channel entrance.
The channel length was 5 units, the channel full height (i.e., from
wall to wall) was 0.01 units, and the first grid point away from
the wall was at 5.0×10−6 units (the first cell center was placed at
y+ ≈ 0.3 ) and geometrically stretched away from the wall at a rate
of approximately 4 percent. The grid spacing at the channel leading
edge was 0.025 units and stretched downstream from the leading
edge at a rate of approximately 0.5 percent.

This study applied a ‘subsonic inflow’ boundary condition to the
inflow face i = 1, setting the total temperature and total pressure to
the input freestream conditions; additionally it applied a ‘subsonic
outflow’ boundary condition to the outflow face i = imax, with the
back pressure to the reference static pressure, p/p∞, set to 1. Since
the subsonic inflow boundary cannot immediately abut a no-slip
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wall, the first 40 cells of the upper and lower boundaries had a
farfield (1-D Riemann invariants) boundary condition imposed.

This study also set the initial freestream turbulent eddy viscosity
ratio (RMUTNF) to 10, and turbulence intensity (TKEINF) to 1.×10−4.
The freestream Mach number is 0.20, and the Reynolds number per
unit grid length is 5.8×106 in order to achieve a channel Reynolds
number, Rτ , based on the local friction velocity, uτ , of 590 in the
channel. The input unit Reynolds number was manually iterated
until the correct Rτ developed in the channel.

Grid density study—This study calculated solutions at four different
grid density levels. Each coarser grid was generated by removing
every other grid point from the previous level grid.

Figure 2(a) shows the variation with the grid density of the
channel Reynolds number versus local Reynolds number.
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800

1000

(a) Rτ vs. Rx ; —–, Baseline grid ; - - - -, 1/2 grid ; −·−·,
1/4 grid ; − · · − ··, 1/8 grid
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R
τ

103 104 105300

400

500

600

700

800

Rτ = 590

(b) Rτ vs. Ncell ; #, Rx = 2.0×107 ; 2, Rx = 5.0×106

Figure 2: Effect of grid density.

With the exception of the region of developing flow (Rx < 7×106),
the 1/4, 1/2 and baseline grids all result in very similar Rτ

distributions. The channel Reynolds number at two streamwise
stations, Rx = 5.0 × 106 and Rx = 2.0 × 107 is plotted against
the total number of computational cells, fig. 2(b). The channel
Reynolds number at each streamwise station in the region of
developing flow, Rx = 5.0 × 106, appears to have some local
grid sensitivity changing roughly 1 percent between the 1/2 and
baseline grids. The channel Reynolds number at the station further
downstream at Rx = 2.0 × 107 varies less than 0.3 percent between
the 1/2 and baseline grids.
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Figure 3: Effect of grid density at Rτ = 590: —–, Baseline grid (Rτ = 590) ; 2, 1/2 grid (Rτ = 588) ; �,
1/4 grid (Rτ = 586) ; �, 1/8 grid (Rτ = 565). .

Mean flow, turbulent kinetic energy, and turbulent shear stress
are plotted with grid density in fig. 3. All of the profiles show good
grid convergence. Very little shift is observed between solutions
generated using the 1/4, 1/2 and baseline grids.
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Figure 4: Comparisons with DNS at Rτ = 590, linear scale. ——, EASM; #, DNS [Moser, Kim & Mansour].

EASM comparisons with DNS—Figures 4–7 show an evaluation of
the EASM for predicting mean and turbulent flow characteristics of
the channel flow. In general, there is good agreement between the
EASM and the DNS data, with the exception of the anisotropy of
the normal stresses approaching the wall and the channel centerline.

The normal Reynolds stresses are equal to 2/3 k with linear
two-equation eddy viscosity turbulence models. The pressure-strain
relation in the Reynolds stress transport equation (the basis for
the EASM) can redistribute turbulent kinetic energy between the
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Figure 5: Comparisons with DNS at Rτ = 590, log-linear scale. ——, EASM; #, DNS [Moser, Kim &
Mansour].

different stress components resulting in anisotropy in the flow as one
may observe in figs. 6a and 6b. Though in the region approaching
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(a) Linear scale
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Figure 6: Comparisons with DNS at Rτ = 590, turbulent normal
stresses. ——, EASM; #, DNS [Moser, Kim & Mansour].

the wall, the stress anisotropy due to the presence of the solid
boundary in not correctly modeled. The normal Reynolds stresses
predicted by the CFD begin to depart from the DNS around y+ ≈
100 and, approaching the wall, become isotropic by y+ ≈ 0.5 (see
fig. 6b).

Figure 7 shows a comparison of the predicted turbulent kinetic
energy budget with DNS. As a result of the damping of the linear
terms in the expression for the Reynolds stresses (see eq. (47) and
the location of the maximum and general profile of the production
of turbulent kinetic energy, Pk , the EASM fairly closely matches the
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Figure 7: Comparisons with DNS at Rτ = 590, turbulent kinetic energy
budget. ——, EASM ; #, DNS [Moser, Kim & Mansour].

DNS calculation. As a consequence the mean velocity profile is also
well matched as seen in fig. 4a. The dissipation rate, ε, balances
the viscous diffusion of k, Dk , at the wall although the wall values
of these two quantities are elevated. This is likely due to elevated
near-wall asymptotic value of k (see fig. 5b).

The absence of a damping function in the turbulent eddy viscosity
in the k and ε equations contributes to the excessively high level of
the turbulent transport of k, Tk, compared to the DNS. Additionally
it contributes to the Tk profile peak occurring too close to the wall
(see EASM at y+ ≈ 5, fig. 7).

Zero pressure gradient flat plate

DNS data—Spalart27 used a fully spectral method in space based
27 P. Spalart. Direct Simulation of
Turbulent Boundary Layers up to Reθ

= 1410. J. Fluid Mech., 187:61–98,
1988.

on Fourier series in the directions parallel to the plate and an
exponential mapping in the normal direction. The time integration
uses a Runge-Kutta scheme for the transport terms and a Crank-
Nicolson scheme for the viscous terms. The following section uses
mean and turbulent flow data at the Reynolds number based on
momentum thickness of 1410 from this DNS.

Computational mesh for ISAAC—The 5-unit long, flat plate, single
block grid had an H-type mesh topology. The computational domain
included an inflow block extending 2.5 units upstream from the
leading edge of the 5 unit flat plate. The initial streamwise grid
spacing at the leading edge of the plate was 5.0×10−4 units and was
exponentially stretched from the leading edge to the trailing edge
at a rate of 4 percent with a total of 161 grid points. The first cell
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height of the baseline grid was 1.0 × 10−6 units ( first cell center at
y+ ≈ 0.1 ) fixed at both ends of the plate and exponentially stretched
from the surface to the outer boundary at a rate of 6 percent with a
total of 201 grid points. The upper boundary was 5 units away. The
baseline grid had the dimensions 201 × 201. Numerical transition
to turbulent flow occurred around Rx ≈ 0.5 × 106 or Rθ ≈ 500,
which corresponds to a physical distance of approximately 0.004
units downstream of the plate leading edge. Grid cell counts were
divisible by eight to allow three levels of mesh sequencing and/or
the use of a multigrid to assist solution convergence.

Ncell
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(a) cf vs. total number of compu-
tational cells

Ncell

δ*

103 104 1050

0.002

0.004

0.006

(b) δ∗ vs. total number of compu-
tational cells

Figure 8: Effect of grid den-
sity on local skin friction and
displacement thickness at fixed
stations. #, Rθ = 1410. ; 2,
Rθ = 1.0 × 104 ; —–, Baseline
grid reference line.

Grid density study—Figure 8 shows grid density effects for the
zero pressure gradient flat plate. The solution functionals, local
skin friction and boundary layer displacement thickness, are plotted
against total cell count in fig. 8. These solution functionals are not
monotonically grid converged at Rθ = 1410, circle symbols in fig.
8a, because the skin friction of the 1/2 density solution is slightly
higher than both the 1/8 density and baseline grid density solutions.
The variations between the skin friction at Rθ = 1410 for these 3
finest grids are within 1 percent. One sees a similar trend in the
variation of the boundary layer displacement thickness at the same
two stations, fig. 8b, where the 1/2 density grid solution produces
results below those of both the 1/8 density and baseline density
solutions. This is due to the point of transition from laminar to
turbulent flow occurring further downstream for the 1/2 density
grid than any other grid.

Further downstream of the turbulent transition point, the
variation of local skin friction at Rθ = 1.0 × 104, square symbols
in fig. 8a, did not change for the 3 finest grids. Variations in
the turbulent transition point can be masked because the skin
friction correlation ( cf vs. Rθ ) use local functional values, that
is, the local skin friction, cf = 2τw/ρu2

∞, and a Reynolds number
based on the local momentem thickness. Changes in the transition
location globally affect the displacement thickness, hence the same
non-monotonic grid density trend occurs at both Rθ stations, see
square symbols in fig. 8b.

Figures 9 and 10 shows the variation in the solution with the grid
density for the mean flow, turbulent kinetic energy, Reynolds shear
stress at (Rθ = 1410), the skin friction correlation and boundary
layer thickness. The mean flow solution changed little with increase
in grid resolution. Slightly more variance is observed in the turbulent
kinetic energy and the turbulent shear stress at y+ ≈ 200 and above.
This could be in part due to the differing states of transition of the
boundary for each grid resolution solution.

The survey station of Rθ = 1410 was only slightly downstream of
the start of the numerical laminar-to-turbulent transition phenomena
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Figure 9: Effect of grid density at Rθ = 1410. #, Baseline grid ; 2, 1/2 grid ; �, 1/4 grid ; �, 1/8 grid .
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(constrast the location of Rθ = 590 in figures 10a and 10b). Some
distance appears to be required before ‘fully’ turbulent flow is
achieved; therefore, in this transitional region the profiles of various
quantities are subject to some distortion. The difference in the state
of the boundary layer is not as apparent in fig. 10a as it is in fig.
10b, noting where Rθ = 1410 falls in each plot, and that the variance
in δ∗ is observed. Appendix B briefly discusses various indicators of
laminar or turbulent flow.

EASM comparisons with DNS—Figures 11 through 13 shows
comparisons between the EASM and DNS for various quantities.
Here as well, the EASM closely matched the DNS for the mean
flow, turbulent kinetic energy, and the Reynolds shear stress. The
general characteristics of the normal Reynolds stresses are captured
similar to the channel flow, again with the exception of missing the
nearwall anisotropy.
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Figure 11: A comparison of the mean velocity profiles with DNS at Rθ = 1410. ——, EASM ; #, DNS
[Spalart]. .

The skin friction correlation, fig. 14a, has a distinct laminar
characteristic followed by an apparently abrupt transition to
turbulent like flow starting around Rθ = 400. The growth of the
displacement thickness, δ∗, displays a more gradual transition from
the laminar to turbulent like flow spanning the Reynolds number
range, Rx ≈ 4×105 to roughly 2.5 ×106, reference fig. 14b.28 The

28 δ∗ = 1.728x/
√

Rx (Blasius) ;

δ∗ = 0.046xR
−1/5
x (turbulent); (F. M.

White. Viscous Fluid Flow. McGraw-
Hill, Inc., 1974)

trend and level of both the skin friction correlation and the growth
of displacement thickness duplicate the classical theory well.

Backward facing step

Experimental data—Driver et al.29 obtained the data for this section
29 D. Driver and H. Seegmiller. Fea-
tures of a Reattaching Turbulent Shear
Layer in Divergent Channel Flow.
AIAA J., 23:163–171, 1985

from an experimental investigation that collected flow survey data
for a rectangular channel with a backward facing step. The channel
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Figure 12: A comparison of the mean velocity profiles with DNS at Rθ = 1410. ——, EASM ; #, DNS
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Figure 14: Comparisons with classical theory. #, EASM ;——, Blasius
; - - - -, turbulent.

consisted of a 1-m long, 10.1-cm high by 15.1-cm wide channel,
followed by a 1.27-cm high step down. The top wall of the channel
varied in angle from -2 degrees (inward) to 10 degrees (outward),
creating either an adverse or positive pressure gradient downstream
of the step. This study examines top wall angles of 0 and 6 degrees.

In units of the step height H, the upstream channel was 8 units
high, followed by a constant channel height of 9 units for the 0
degree wall configuration. The channel height was 12.2 units for
the 6 degree wall configuration at the outflow boundary 40 units
downstream of the step face. In absolute units, the reference
conditions were Uref = 44.2 m/s, Mref = 0.128, δbl = 1.9 cm, and
Rθ = 5000 obtained from data at station x/H = -4.

Computational mesh for ISAAC—The computational domain
consisted of two blocks; the upstream block modeled the region
upstream of the backward facing step; and the downstream block
included the step and region downstream of the step. The upstream
and downstream blocks had the dimensions 121×113, and 201×225
respectively, with a 1:1 block interface. The cell height of the first
cell was 1.0 × 10−6 m and was stretched away from the wall at the
rate of approximately 15 percent until reaching the centerline of the
channel. The streamwise grid spacing at the step wall was 5.0×10−4

m and was stretched away from that point at approximately 5
percent in the upstream and downstream directions.

The location of the inflow boundary was placed 1.0 m upstream
of the step with subsonic conditions applied along that boundary.
Turbulent flow developed “naturally” along the 1.0 m wall leading
up to the location of the step. An alternative would be to define
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Figure 15: Backward facing step grid .

a set of fixed conditions at the reference station x/H = -4 derived
from the specified experimental quantities. The backpressure along

Table 1: Flow Parameters for the Backward Facing Step

Case (p/p∞)outflow Mref δbl,ref (cm) Rθ,ref

Reference data 0.128 1.9 5000

EASM–α = 0 deg. 1.00126 0.131 1.70 6160

EASM–α = 6 deg. 1.0065 0.121 1.87 4750

the downstream outflow boundary was varied to approximate the
stated conditions at the reference station of x/H = -4, see table 1.
Figure 15 shows the entire computational domain and fig. 16 shows
the detail of the gridding in the vicinity of the step.

(baseline grid density)

H

j

i

Figure 16: Detail of step for the
backward facing step grid.

Grid convergence—Figure 17 shows the variation of static pressure
coefficient and local skin friction with grid density for the α = 0
configuration. Similar solutions were calculated using the 1/4, 1/2,
and baseline grids, the 1/8 density grid departing significantly from
the other three grids.

Comparisons with experimental data—Figures 18 and 19 show
comparisons of the experimental data with the ISAAC solutions
using the EASM for both α = 0 and α = 6 degree configuration.
The change in the static pressure coefficient with a variation in the
wall angle is quite well captured though the actual levels are slightly
elevated. The change in the local skin friction coefficient with the
wall angle was similarly predicted though not quite matched as well.
These results are similar to what has been published previously for
the Rumsey-Gatski EASM for the α = 0 configuration.30 The earlier

30 C. Rumsey and T. Gatski. Summary
of EASM Turbulence Models in CFL3D
With Validation Test Cases. NASA
TM–2003-212431, June 2003.

results predicted the shift in the boundary layer edge velocity with
the wall angle, fig. 18c, though the absolute levels were low in the
region downstream of the step probably due to a high back pressure.
These results also predicted a change in the flow reattachment point
with the wall angle though the level was shifted upstream of the
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data, fig. 19. The error bar on the experimental data is from the
published uncertainty in the determination of the point of flow
reattachment. The error bar applied to the CFD data was the local
grid spacing. The local grid spacing was considered to be the finest
resolution possible for determining the reattachment point.
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Figure 19: Variation of reat-
tachment point with wall angle,
backward facing step. •, Data
[Driver and Seegmiller] (Error
bar indicates stated experimen-
tal uncertainty) ; #, EASM
(Error bar indicates local grid
spacing) .

Axisymmetric afterbody

Test facility—This test case was an axisymmetric geometry that
was part of a series of models tested in both the Langley 1/3-m
Pilot Transonic Cryogenic Tunnel, fig. 20, and the Langley 16-Foot
Transonic Tunnel. The Pilot Tunnel had an octagonal test section
with slots at the corners of the octagon similar to the Langley 16-Foot
Transonic Tunnel test section.31 The test medium for the cryogenic

31 R. Kilgore, J. Adcock, and J. Ed-
ward. Flight Simulation Character-
istics of the Langley High Reynolds
Number Cryogenic Transonic Tunnel.
AIAA Paper 74-80, January 1974.

Figure 20: Axisymmetric afterbody model in 1/3-meter Pilot Transonic
Cryogenic Tunnel .

tunnel was liquid nitrogen cooled air. High Reynolds number
data were obtained in the Pilot Tunnel through a combination of
cryogenic freestream temperatures and freestream total pressure
that were independently controllable. Approximately 5 atm of
pressure and 100K total temperature produced a unit Reynolds
number of 260 × 106/m.

This test case conducted the experiment over a range of tem-
peratures from approximately 100K to 300K and pressures from 1
to 5 times the standard atmospheric level. Several variations of
freestream total temperatures or pressures resulted in the same
free stream Reynolds number. Surface pressure coefficients and
nozzle-boattail drag were shown to be similar, regardless of the
temperature and pressure combinations that created the equivalent
Reynolds numbers.

Previously32 high Reynolds number simulations with a CFD

32 J.-R. Carlson. Prediction of High
Reynolds Number Flow Using Alge-
braic Reynolds Stress Turbulence Mod-
els, Part 2: Transonic Shock-Separated
Afterbody. J. Propulsion and Power,
13:620–628, 1997.

solver were obtained through increased total pressure alone rather
than through a combination of freestream total pressure and using
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cryogenic temperatures. The temperature range of Sutherland’s law
used for calculating bulk viscosity imposes some limits to the input
flow conditions. ISAAC input parameters are Reynolds number per
unit grid length, static temperature and Mach number, so similarly,
the high Reynolds number conditions were obtained through a
change in density rather than cyrogenic temperatures.
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Figure 21: Axisymmetric afterbody computational grid

Axisymmetric Afterbody Model and Conditions—The model vali-
dation geometry presented herein is one of six models that were
built for a Reynolds number investigation performed by Reubush.33

33 D. Reubush. The Effect of Reynolds
number on Boattail Drag. AIAA pa-
per 75-63, January 1975; D. Reubush
and L. Putnam. An Experimental and
Analytical Investigation of the Effect
on Isolated Boattail Drag of Varying
Reynolds Number up to 130 × 106.
NASA TND–8210, May 1976; and
D. Reubush. Experimental Investiga-
tion to Validate Use of Cryogenic Tem-
peratures to Achieve High Reynolds
Numbers in Boattail Pressure Testing.
NASA TM X–3396, August 1976 .

This model had a characteristic length of 16 in. and the boattail
geometry was a circular-arc, with a length-to-maximum-diameter
ratio (fineness ratio) of 0.8 boattail. The nose of the model was
a 28◦ cone, 1.7956 in. long, fairing to the cylindrical body via
a 1.3615-in.-radius circular-arc whose center is 2.125 in. downstream
of the model nose and 0.8615 in. below the model centerline.

The circular-arc fairing is tangent at its endpoints to the conical
nose (1.7956 in. from the nose) and cylindrical body (2.125 in. from
the nose). The model was sting mounted with the diameter of the
sting being equal to the model base diameter. The length of the
constant diameter portion of the sting (6.70 in. measured from the
nozzle connect station) was such that there should be no effect of
the sting flare downstream of the nozzle trailing edge on the boattail
pressure distributions. These numbers will produce an analytically
consistent surface definition. The model was cast aluminum and
from conversations with the original test enginer, it was felt that
the models were possibly not manufactured to tolerances that would
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have produced an analytically smooth shape.
The grid utilizes an H-type mesh topology, see fig. 21. The block

dimensions are divisible by 4 to facilitate investigating grid density
effects on the flow solution. The mesh is gridded with the streamwise
flow direction oriented along the i index and the j index in the
normal direction. The body is described using 100 cells extending
from the leading edge of the nose to the nozzle connect station
and 80 cells from the nozzle connect station to the nozzle-boattail
trailing edge, as well as, 80 cells extending 80 body radii from the
body surface to the far field. The boundary layer grid expansion
rate away from the body is approximately 16 percent. The inflow
boundary is 40 body radii upstream of the model nose and the
outflow boundary is 35 radii downstream of the nozzle boattail.
Solid walls are treated as no-slip adiabatic surfaces. Riemann
invarinats along characteristics are specified for boundary conditions
along the inflow and the lateral freestream outer boundaries of the
flow domain. The extrapolation boundary condition is applied on
the downstream outflow face. The flux limiter is min-mod and mesh
sequencing is used to enhance numerical convergence of the solution.
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Figure 22: Variation of afterbody pressure coefficient with grid density, M = 0.9, L = 16. #, baseline grid;
2, 1/2 grid, �, 1/4 grid .

The freestream conditions for the axisymmetric CFD cases were
M = 0.9, T∞ = 300F, using air at γ = 1.4. The first cell height
of the grid of each configuration was different for each freestream
Reynolds number according to table 2. Input Reynolds numbers of

Table 2: Schedule of Reynolds
Number and Grid Spacing Nor-
mal to the Wall

R(×106) R(×106)/in. h1 (in.)

7.0 0.4375 6×10−5

128.3 8.0313 2×10−6

4.375 × 105/in. and 8.0313 × 106/in. were used to develop the low
and high Reynolds number solutions respectively.
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Figure 22 shows grid sensitivity of the EASM at M = 0.9 at
the lowest and highest Reynolds number for this test case, (a) R
= 7 × 106 and (b) R = 128 × 106 respectively. These sensitivities
were relatively consistent for the other turbulence models and
other viscous models investigated.34 The EASM prediction of

34 J.-R. Carlson. Prediction of High
Reynolds Number Flow Using Alge-
braic Reynolds Stress Turbulence Mod-
els, Part 2: Transonic Shock-Separated
Afterbody. J. Propulsion and Power,
13:620–628, 1997.

the afterbody shock strength and pressure recovery was Reynolds
number dependent, see fig. 23.
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Figure 23: Comparison of afterbody pressure coefficients with experimental data at M = 0.9, L = 16. ——,
EASM ; #, φ = 0; 2, φ = 120; ⋄, φ = 240 Data [Reubush] .

N–Version Testing

Flat plate

Figures 24 through 30 compare the solutions produced by the
ISAAC code with those produced by the PAB3D code for the zero
pressure gradient flat plate. Several flow variables, such as mean
flow and turbulence quantities, are compared at two stations, Rθ =
1410 and Rθ ≈ 10000, followed by comparisons of the development
of boundary layer displacement thickness, shape factor and the skin
friction correlation.

A very good match has been obtained between the two solvers for
the mean flow at station Rθ = 1410, see fig. 24, but the turbulent
kinetic energy and Reynolds shear stress at station Rθ = 1410 are
not as close, see figs. 25 , 26 and 27. Further downstream of the
numerical transients caused by the transition to turbulent flow at
the station Rθ ≈10000, the two codes appear to match more closely,
see figs. 28 and 29.

The first boundary layer shape factor, H12 and the skin friction
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Figure 24: Zero pressure gradient flat plate at Rθ = 1410. •, ISAAC; #, PAB3D .
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Figure 25: Zero pressure gradient flat plate at Rθ = 1410, linear scale. •, ISAAC; #, PAB3D .
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Figure 26: Zero pressure gradient flat plate at Rθ = 1410, log-log scale. •, ISAAC; #, PAB3D .
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Figure 27: Zero pressure gradient flat plate at Rθ = 1410. •, ISAAC; #, PAB3D .
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Figure 28: Zero pressure gradient flat plate at Rθ = 104, mean flow. •, ISAAC; #, PAB3D ; · · · , log-layer.
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Figure 29: Zero pressure gradient flat plate at Rθ = 104, turbulent kinetic energy. •, ISAAC; #, PAB3D ;
· · · , log-layer.
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Figure 30: Zero pressure gradient flat plate. •, ISAAC; #, PAB3D ; —–, Linear theory-laminar ; - - - -, Linear
theory-turbulent.

correlation, cf vs Rθ, are also quite closely matched with only
minor variances seen in the upstream laminar portion of the flat
plate, see figs. 30b and 30c. Similarly, the development of the
the displacement thickness with Reynolds number, fig. 30a, for
the most part is identical between ISAAC and PAB3D. A slight
departure occurs in the the laminar-to-turbulent transition region,
3 × 105 < Rx < 2 × 106, but is relatively local and does not appear
to affect the downstream match significantly.

Axisymmetric afterbody

Using the two codes, fig. 31 compares the static pressure coefficients
on the afterbody. A slightly higher pressure occurs in the ISAAC
solution compared with the PAB3D solution for the lower Reynolds
number case, see fig. 31a just downstream of x/dm = 0.0. The
high Reynolds number comparison show virtually identical static
pressure distributions on this portion of the model.

Initially, the solutions developed using ISAAC had a considerably
weaker shock because of the type of limiter being applied to
the inviscid fluxes. Since the PAB3D solutions were developed
using the min-mod limiter, changing the limiter being used in the
ISAAC calculations from Venkatakrishnan’s smoothing limiter to
the min-mod resolved this difference in the solutions between the
two solvers.

4 Summary

The turbulence equations being solved in the three-dimensional
Reynolds averaged Navier-Stokes (RANS) code PAB3D have
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Figure 31: Comparison of static pressure coefficients, axisymmetric afterbody, M = 0.9, L = 16. —–, ISAAC
; - - - -, PAB3D ; #, φ = 0; 2, φ = 120; ⋄, φ = 240, Data [Reubush].

been implemented in the three-dimensional RANS code ISAAC.
Initial validation of the implementation was accomplished through
comparisons with data for four test cases: channel flow, zero pressure
gradient flat plate, backward facing step and an axisymmetric
transonic afterbody flow. These test cases covered a wide range of
fluid dynamic situations, including compressible flow, separated flow,
and high Reynolds number flow. The turbulence equations were
able to simulate all of these flow situations fairly well. Additionally,
excellent agreement was achieved in comparisons between solutions
developed using ISAAC and with solutions developed using the
solver PAB3D.
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A Nomenclature

Symbol Definition

b, bij Reynolds stress anisotropy tensor

C∗

µ Variable model coefficient, −α1/T

Cp Pressure coefficient, (p - p∞) / q∞

cf Local skin friction coefficient, τw / q∞

dm Body maximum diameter (1.0 in.) [axisymmetric afterbody]

H Backward facing step height

H12 First boundary layer shape factor, (δ∗/θ)

h, δh Channel half-height

h1 Physical height of first computational grid from a wall

L Reference length [axisymmetric afterbody]

M Mach number

Ncell Total number of computational cells

P Production, −τik(∂uj/∂xk) − τjk(∂ui/∂xk)

Pk Production of turbulent kinetic energy, − 1

2
{P} = τij (∂ui/∂xj)

p Static pressure

q Dynamic pressure

R Reynolds number based on model reference length, (u∞L/ν)

Rt Cell turbulent Reynolds number, k2/(νε)

Rx Reynolds number based on distance x, (u∞x/ν)

Rθ Reynolds number based on momentum thickness, (u∞θ/ν)

Rτ Reynolds number based on wall shear stress, (uτ h/ν)

S, Sij Symmetric velocity gradient tensor, (∂ui/∂xj + ∂uj/∂xi) /2

T Kinematic time scale, k/ε

u, ui Velocity vector

u+ Law-of-the-wall coordinate, u/uτ

uτ Local friction velocity,
p

τw/ρw

W, Wij Antisymmetric velocity gradient tensor, (∂ui/∂xj − ∂uj/∂xi) /2

x Streamwise distance

x, xi Position vector

xr Point of flow reattachment

y Vertical distance

y+ Law-of-the-wall coordinate, y uτ / ν

α Wall divergence angle (backward facing step)

αn scalar coefficient

δ Boundary-layer thickness, value of y at 0.995 umax

δ∗ Displacement thickness,
R δ
0

(1-u/ue)dy

η∗

1
Flow invariant, T2{S2}

η∗

2
Flow invariant, T2{W2}

θ Momentum thickness,
R δ
0

(u/ue) (1 - u/ue) dy

µ Laminar viscosity

µt Turbulent eddy viscosity, Cµ0
ρk2/ε

ν Kinematic viscosity, µ / ρ

ρ Density

τ, τij Reynolds stress tensor

τw Shear stress at the wall, ρw du/dn

φ Angular location of pressure orifices, deg. (axisymmetric afterbody)

bl Boundary layer

ref Reference conditions

w Condition at wall surface

∞ Freestream condition
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B A Comparison of Transition Indicators

There are several parameters that can indicate the presence of
turbulent flow, or as the case may be, developing turbulent flow over
the flat plate. These indicators occur both at a primative level, e.g.,
peak turbulent kinetic energy and dissipation rate level at the wall;
or at a derived level, e.g., local skin friction, the rate of boundary
layer growth with local Reynolds number, or boundary layer shape
factors, to name a few examples.

Typically, a variation of the local skin friction with the local
Reynolds number, fig. 32 is plotted, which clearly deliniates the

Rx
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Rx≈400000
Rθ≈410

Figure 32: Local skin friction
with local Reynolds number. ◦,
EASM.

change from laminar flow by the rather abrupt discontinuity in the
curve around Rx = 400,000.

If the Reynolds number based on the momentum thickness of the
boundary layer is used instead of the local Reynolds number, an
equally abrupt change in the skin friction correlation from laminar
flow to turbulent flow levls is observed, fig. 33. At first glance,

Rθ

c f
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10-3

10-2

Rθ≈410

Figure 33: Skin friction correla-
tion. ◦, EASM ;- - - -, Karman-
Shoenherr empirical curve.

the local skin friction in these two figures appears to attain a fully
turbulent level almost immediately downstream of the transition
point. (As noted on the figure, the momentum Reynolds number of
410 is approximately coincident with the local Reynolds number of
400,000 and is used as a reference point for the discussion.)
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Figure 34: Displacement thickness with local Reynolds number (detail).
◦, EASM ;——, Blasius ;- - - -, turbulent (flat plate theory) .

A slightly different conclusion could be drawn (concerning the
transition of the flow from laminar to turbulent flow) from a plot of
the rate of growth in the boundary layer displacement thickness with
local Reynolds number, fig. 34. The displacement thickness only
gradually approaches the turbulent level as the Reynolds number
increases downstream of the transition point marked (Rθ ≈ 410).35

35 M. Rai and P. Moin. Direct Nu-
merical Simulation of Transition and
Turbulence in a Spatially Evolving
Boundary Layer. Journal of Computa-

tional Physics, 109:169–192, 1993.

Similarly the first shape factor, H12 = δ∗/θ, shows a clear
departure from laminar flow, fig. 35, but a rather prolonged region
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Figure 35: First shape factor with momentum thickness Reynolds
number. ◦, EASM .

of developing turbulent flow before the shape factor approaches the
classically derived level.

If the “simpler” parameter of peak turbulent kinetic energy is
plotted against Reynolds number, a less definitive picture appears
as to the point of transition, fig. 36. For reference, the figures show
the locations of Rx ≈ 400000 and Rθ ≈ 410.

Though still somewhat abrupt at transition, the peak turbulent
kinetic energy has a region of gradual increase in intensity before
increasing another two orders of magnitude greater than the level in
the region of laminar flow, in the current example, starting from a
value around 10−6.
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Figure 36: Streamwise variation of peak turbulent kinetic energy.
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7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–19103

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration

Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2005–213771

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 01
Availability: NASA CASI (301) 621-0390

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov

14. ABSTRACT

This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged
Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions
for two select con gurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation
data, experimental data, or empirical models for several di erent geometries with compressible, separated, and high Reynolds number
ows. In general, the turbulence model matched data or followed experimental trends well, and for the selected con gurations, the
computational results of ISAAC closely matched those of PAB3D using the same turbulence model.

15. SUBJECT TERMS

CFD, turbulence modeling, code assessment, Reynolds stress, explicit algebraic stress model

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

36

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390


