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Abstract. Topological classification of the 4-manifolds bridges computation theory 
and physics. A proof of the undecidability of the homeomorphy problem for 4- 
manifolds is outlined here in a clarifying way. It is shown that an arbitrary Turing 
machine with an arbitrary input can be encoded into the topology of a 4-manifold, 
such that the 4-manifold is homeomorphic to a certain other 4-manifold if and only if 
the corresponding Turing machine halts on the associated input. Physical implications 
are briefly discussed. 
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1. Introduction 

A theorem proved by Markov on the non-classifiability of the 4-manifolds implies 
that, given some comprehensive specification for the topology of a manifold (such as 
its triangulation, a la Regge calculus, or instructions for constructing it via cutting 
and gluing simpler spaces) there exists no general algorithm to decide whether the 
manifold is homeomorphic to  some other manifold [l]. The impossibility of classifying 
the 4-manifolds is a well-known topological result, the proof of which, however, may 
not be well known in the physics community. It is potentially a result of profound 
physical implications, as the universe certainly appears to  be a manifold of at least 
four dimensions. The burgeoning quest for the topology of the universe [2] is still in 
its infancy; Markov’s theorem may ultimately bear upon what can be deduced about 
it. Already Markov’s theorem impacts certain approaches to quantum gravity. On 
the basis of this theorem, and consideration of hypothetical quantum superpositions 
of manifolds, Penrose has heuristically argued that the universe is fundamentally non- 
computable [3]. As another example, in analogy with Feynman’s sum over histories 
approach to quantum mechanics, the Euclidean path integral approach to quantum 
gravity requires a sum over all possible topologies, with appropriate weighting, in order 
to calculate expectation values. However, Markov’s theorem implies inherent difficulties 
in computing such a summation, as it would be impossible to decide whether a particular 
topology had been counted more than once [4]. 

Owing to  its theorized physical significance, the computability and tractability of 
this sum over topologies has received some attention in the literature. Although direct 
summation of the series is non-computable, it is unknown whether it might nonetheless 
be deducible by indirect means, perhaps as the computable limit of some sequence; 
failing in that, it has been implied that the sum can nevertheless be approximated 
to any desired order of accuracy [4]. However, without a systematic way to proceed, 
there is no guarantee that such an approximation could be carried through in finite 
time. To obviate such difficulty, it  has been proposed to relax the condition of 
homeomorphy, when classifying the manifolds, and instead classify them according to  
a weaker condition, in terms of their triangulation [5, 61. But such a classification 
scheme would keep infinite redundancy of physically distinct manifolds in the series and 
it is not clear how to interpret the resulting sum. More recently, partly sidestepping 
the issue of computability, deductions have been made about the density of topologies 
per ‘‘normalized volume” - a geometric quantity - in the context of a saddle-point 
approximation to  the Euclidean path integral [7, 8, 91. The above work was motivated 
by the tantalizing possibility that this sum over topologies might determine the value 
of the cosmological constant [7, 8, 9, lo]. 

Manifold non-classifiability represents a fascinating juxtaposition of theoretical 
computer science with physics. The intent here is to outline a proof that will establish a 
correspondence between Turing machines and 4-manifolds such that deciding whether a 
manifold is homeomorphic to  a certain other manifold is tantamount to deciding whether 



The world problem 3 

the corresponding Turing machine halts; to the author’s knowledge this illuminating 
point has not been explicitly made elsewhere. It is further hoped that the proof sketched 
here will provide insight into the physical -i* &of Markov’s theorem. 

This paper is organized as follows. In Section 2, Turing machines, and the 
unsolvability of the halting problem, are reviewed. In Section 3 it is shown that if the 
group triviality problem could be solved then the halting problem could be solved. In 
Section 4 it is shown that if the 4-manifold homeomorphy problem could be solved then 
the group triviality problem could be solved. These results are discussed in Section 5. 

, -.‘7 :.&\‘Q 

2. Turing machines 

A Turing machine is a formal idealization of a computer [ll]. In its simplest formulation, 
a Turing machine consists of a linear tape divided into squares onto which symbols have 
been printed, and a movable head that scans each square one at a time. The sequence 
of symbols initially printed on the tape can be considered the input of the Turing 
machine. The head can overwrite the current scanned square, move one square to the 
right, or move one square to  the left, depending on its internal state and its programmed 
instructions. Let the h + 1 possible states of the machine be denoted by 4 0 ,  . . .qh and 
the IC + 1 possible symbols printed on the tape be denoted by so, ... s k .  The instructions 
followed by the machine can be conceived as a list of if-then statements of the form: 
“if the current state is qz and the current scanned symbol is s3 then [either move a 
square or print a symbol] and change to state q k  ”. After updating its state and its 
current scanned symbol, the machine repeats the process, reviewing the list of if-then 
statements. This goes on forever or until the machine arrives at a (q2, s3) pair for which it 
has no instructions, at which point i t  halts. Note that, although more properly referred 
to  as a program, by convention the term “Turing machine” is taken to be synonymous 
with its hardwired instructions. 

Consider, as Turing did, machines designed to output a sequence of symbols, 
potentially never ending, as the digits of a real number. Its output can be printed 
on every other square of the tape, while the rest of the squares are reserved for “scratch 
paper”. Rather than print the entire sequence continuously, these machines will print 
only j digits, given the integer j as an input (i.e., initially printed on some of the tape 
squares). All such machines, which input an integer and output a digit, can themselves 
be ordered and numbered by integers. Turing provided a specific way to  encode the 
instructions which uniquely characterize each Turing machine into the digits of a (very 
large) integer; these integers can then be ordered and renumbered by consecutive integers 
- call them rz. 

A Turing machine, which can examine another Turing machine by reviewing the 

machine will complete its computation and halt on a given input. or go into an infinite 
loop without ever printing any output. This assertion can be proven by contradiction. 
Assume the existence of a machine algorithm that decides, in a finite number of steps, 

lattpr’s specif icst inns nn t n y ,  r n n n n t  in ZPnPrnl clpriclp nrhpthpr a n  arhitr2ry ~ i ~ _ p ~ ~ r r  0 
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whether a given machine will halt on a given input. A machine 6 can then be constructed 
which, given an input integer n, operates as follows. 6 initializes a counter j to 1, checks 
to see whether rl halts on input 1, and if so increments j by 1. 6 then checks to see 
whether each subsequent machine r, halts on input j ,  in order, incrementing j for each 
halting machine. When r, is determined not to halt, j remains at the same value and 
the next machine T,+~ is checked. Finally, 6 checks to  see whether T, halts on input 
j ,  where j now equals one plus the number of halting machines up through T,-~. If 6 
decides that rn halts, then 6 prints the j t h  digit computed by r, and then halts itself. 
Otherwise, 6 just halts. Note that, in the former case, as part of 6’s assigned task, 6 
must effectively emulate machine rn. (Turing proved it is possible to design a machine 
such as 6 to emulate any other arbitrary machine r, on command.) By assumption, 6 
can perform all of the above operations in a finite number of steps. 

Since 6 is essentially a machine that outputs a digit on being input an integer, 6 
itself ranks among the r, machines described previously. Now give 6 input k ,  such that 
the kth halting machine is 6. 6 will proceed by computing the first digit output from 
the first halting machine, the first two digits output from the second halting machine, 
and so forth, up to the first k - 1 digits output from the ( k  - 1)th halting machine. In 
so doing, 6 will have computed the first k - 1 digits of its own output sequence. Now 
S must compute the first IC digits of the kth halting machine, itself. According to the 
algorithm by which 6 is defined, 6 must recompute the first k - 1 digits of its output 
sequence. Then to compute the kth digit, S must recompute the first IC - 1 digits of 
its output sequence. And so forth, ad infinitum. We have arrived at a contradiction: 
the assumption that b will halt on all input implies that 6 will not halt on at least one 
input. 

Alternatively, the unsolvability of the halting problem can be understood using 
Cantor’s diagonal argument. If one attempts to enumerate all of the sequences computed 
by halting machines, i.e. put them on a one-to-one correspondence with the integers, 
one can always use a machine such as 6 to construct a sequence not on the list - i.e., 
1 - 6 ( j ) ,  if the output digits are binary digits. This would imply that the computable 
sequences are uncountably infinite and, as there is at least one Turing machine for 
each such sequence, that Turing machines are also uncountable. However, since Turing 
machines are finitely specified, they must be countable: a contradiction, proving again 
that the halting problem is unsolvable. 

3. Semigroups and groups 

A few definitions are in order. A semigroup is a set of elements for which a binary 
operator has been defined so as to satisfy closure and associativity; equivalently, it 
is a group in which elements are not required to  have inverses. A finitely generated 
semigroup or group, generally infinite, albeit discrete, and non-Abelian, has a finite 
alphabet of generators. Its elements can be represented as “words”, i.e. strings “spelled 
out” by products of generators. A finitely presented semigroup or group is specified 
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by a finite number of generators and a finite number of relations, where relations are 
equations between words. The word problem for semigroups or groups is the problem of 
finding a general algorithm which, by successive application of the relations, can decide 
whether two arbitrary words are equal (in a finite number of steps). 

The following proof of the unsolvability of the semigroup word problem proceeds 
very much like that of Post [12] but has been modified to connect it more directly with 
the halting problem. Consider a semigroup I?7 with generators 4 0 ,  q 1 ,  ...qh, so, s l ,  ... sk ,  
and 1. Each qi will represent a state of a Turing machine, each sj will represent a symbol 
on the tape, so will represent a blank, and 1 will represent the left and right bounds of 
the string of symbols input to the machine. 

All of the operations of a Turing machine r can then be represented by relations 
in I?,. The action of printing over symbol s b  with symbol sd can be represented by the 
following relation, 

q a s b  = q c s d  (1) 

where a and c have some specific values between 1 and h, and likewise b and d between 0 
and k .  In accordance with Turing’s convention, all machine actions will be accompanied 
by a simultaneous change of state. Similarly, the action of moving to the left one space 
can be represented by the following h + 2 relations. 

And the action of moving to  the right one space can be represented by the following 
h + 2 relations. 

This completes the semigroup “emulation” of a Turing machine. 
For the purpose of investigating the halting problem, I’m going to  introduce two 

new generators with the unconventional notation ) and ( , for reasons that will soon 
become clear. For every q a S b  pair that  does not appear in the left hand side of equations 
(l-s), add the relation: 

q a s b  ” ) s b  

Now add the following 2h + 3 relations: 

si) =), i = 0,1, ..., h 

l )  = I (  
( S i = ( ,  i = O , l ,  ..., h 

In A$F,,+ \ A ^__^_._I - 1 1  -_ 1 1 , . I  1 f. 
VILVVY, , uc.vuulJ 3yllluu13 Lu 1b3 1elL. i L  C O I I A ~ S  LO tile eIid-marker i, it mutates 

The outcome is that if any word w, corresponds to an input L on which the associated 
Turing machine halts, then it can be shown to be equivalent, by repeated application of 

into ( . ( devours all symbols to its right. 
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the above relations (7-9), to the word I(1. If a word does not correspond to an input on 
which the associated Turing machine halts, then it is not equivalent to the word Z(1. By 
convention, 40 is reserved for the halting state, so the relation l ( 1  = 40 might be added 
- then w, = 40 in rT if and only if T halts on input L .  An algorithm that could solve 
the word problem for semigroups, therefore, could solve the halting problem for Turing 
machines. 

The above result for semigroups has direct implications for groups. For each finitely 
presented semigroup r7 described above, there is a prescription for constructing a 
finitely presented group G: such that for every generator and relation in r7 there is 
a corresponding generator and relation in G:, and the following theorem holds: There 
exist words ui and v, in the finitely presented group G: that are equal if and only if 
w, = qo in the finitely presented semigroup r7 [13]. Equivalently, w, u,v;' = 1 in 
G: if and only if w, = 40 in rT. Further, for each finitely presented group G: and each 
word w, in G: there is a prescription for constructing a finitely presented group GT(wL) 
such that for every generator and relation in G: there is a corresponding generator and 
relation in G7(wL) and the following theorem holds: G7(wL) is trivial, i.e. contains only 
the identity element, if and only if w, = 1 in G: [14]. It follows that the triviality of 
finitely presented groups is algorithmically undecidable. 

4. Manifolds 

Each element of the fundamental group of a manifold represents an equivalence class of 
closed paths in the manifold that can be continuously deformed into one another, i.e., a 
homotopy class of closed paths. As an example, a trivial element in a fundamental 
group represents a class of paths that can be contracted to a point, and a trivial 
fundamental group implies a simply connected manifold. As another example, the 
infinite cyclic group, which can be finitely presented by one generator and no relations, 
is the fundamental group of a hypersphere with one arcwise connected handle: each 
element of the group, equal to  the generator raised to some power p ,  corresponds with 
the homotopy class of paths that wind about the handle p times (and negative powers 
will be said to  correspond to  counterwindings, described below). It will be shown that 
for any given finitely presented group, a manifold can always be constructed for which 
the given group is fundamental. The prescription can be summarized as attaching to  
a hypersphere a handle for each generator of the group, followed by further surgery to  
accommodate each relation. 

The following construction is homeomorphic to  that of Markov, but the method 
of construction has been streamlined for pedagogical purposes. Consider an arbitrary 
finitely presented group of the form . 

where each ri is a word representing a relation of the form ri = 1 and is called a 
relator. Beginning with the 4-sphere, S4, for each generator gi attach a handle of the 
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form H, = S3 x [-1, +1]. Each such attachment is performed by removing from S4 
two non-intersecting, open 4-balls and identifying the resulting 3-spherical boundaries 
with the ends of H,. Calling the former S4 region A, the attachments are subject to the 
conditions that no two handles intersect, and the intersection of each handle with A is 
a union of two 3-spheres: H, n H, = 0, i # j ,  A n  H, = S3 x {-1, +l}. In this manner 
a manifold can be handily constructed for each free fundamental group of the form 
{gl, ..., gnl}.  To understand this, note that the construction thus far is homeomorphic 
to the connected sum of m copies of S3 x SI, then use the fact that  the fundamental 
group of the cross product of manifolds is the free product of the fundamental groups 
of the manifolds, while the fundamental group of the connected sum of manifolds is the 
direct product of the fundamental groups of the manifolds. 

An arbitrary word can be represented by a closed path in the above construction 
as follows. Consider a path that begins at some point inside A. Reading the word from 
left to right, represent each generator g, of positive power p by a path that enters its 
associated handle H, at S2 x {-I} , then exits H, at S2 x {+1} , then circles back 
around and repeats p -  1 times. Represent negative powers -p  the same way but switch 
S2 x (-1) and S2 x {+1} (hence negative powers “unwind” positive powers). After 
exiting the handle for the pth time, continue the path to the handle associated with the 
next generator in the word, and repeat the winding process, continuing in this way until 
the last generator in the word has been represented. Finally, join the end of the path 
with its starting point to close the loop. 

-4 relator of the finitely presented fundamental group, being a word equated with the 
identity, corresponds to paths that can be continuously deformed to a point. Obviously 
such deformation of a path through a handle is obstructed; some topological surgery 
will be necessary to bypass the obstruction. For each relator r3 , gouge out a region 
from the above constructed manifold (call the manifold M )  along the vicinity of a path 
representative of rI such that the gouged-out region is homeomorphic to U3 x S2 , where 
U 3  is the open 3-ball. Simultaneously, in a copy of S4 , gouge out a similar U3 x S1 
region; call this manifold 0,. Finally, identify the S2 x S1 boundary of the gouged-out 
region in M (call this boundary T, ) with the S2 x S1 boundary of the gouged-out region 
in 0,. Note that 0, is simply connected. (To see this, consider that the only conceivably 
non-trivial closed path in 0, is one that interlocks with the loop formed by the gouged- 
out region. But the former can be continuously deformed to  the boundary of the latter, 
whereupon it can be made to encircle a cross-section homeomorphic to S2 ,  and thereon 
contracted to  a point.) Any path in the homotopy class of paths associated with the 
relator r7 can now be continuously deformed to the siirface of T, , then contracted to a 
point in 0, . Repeat this surgery for each relator, in this way gluing to 11, n copies of 
0,. This completes the construction. It can be verified, by considering the fundamental 

v group G‘ as advertised. 
If two manifolds are homeomorphic, their fundamental groups are isomorphic. But 

the converse is not necessarily true, thus the non-classifiability of the manifolds does not 
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immediately follow from the non-classifiability of their fundamental groups. Fortunately 
for the purposes of this proof, the manifolds constructed above have the following critical 
property. First consider another manifold formed by gouging out from S4, m non- 
intersecting regions homeomorphic to  U 3  x S1, and gluing the remaining boundaries to 
those of an identical copy; call the resulting manifold Nm. Given one of the previously 
constructed manifolds M such that its fundamental group G has rn generators, if G is 
trivial then, it turns out, M must be homeomorphic to Nm [l]. 

To come full circle, let the fundamental group of the manifold M represent a Turing 
machine: let M = MT(wL)  such that its fundamental group is GT(wL)  , as described in 
Section 2. Call MT(wL) a Turing manifold. Call Nm(T,Ll, where  IT, L )  is the number of 
generators required to represent the Turing machine 7 with input L by GT(wL), a halting 
manifold. It follows that the Turing manifold M T ( w L )  is homeomorphic to the halting 
manifold Nm(T,Ll if and only if Turing machine IT halts on input L . 

5 .  Discussion 

A sketch of a proof has been given for the non-classifiability of the 4-manifolds, by 
way of a topological construction whereby a 4-manifold represents a Turing machine. 
More precisely, a Turing machine has been encoded into a finitely presented semigroup, 
which has been encoded into a finitely presented group, which along with a particular 
Turing input has been encoded into another finitely presented group, which has been 
encoded intJo a 4-manifold. The chain of encodings is such that solving the homeomorphy 
problem for 4-manifolds would solve the halting problem for Turing machines, which is 
unsolvable. Expressed more intuitively, the essence of the problem is that  the topology 
of a 4-manifold is potentially so rich that its complexity can rival that of any computer 
program intended to analyze it. Inputting the specifications of a 4-manifold to such a 
computer program can, in a sense, be equivocated with inputting a computer program 
to a computer program - an enterprise subject to logical paradoxes and limitations of 
the kind brought to light by Turing. 

Regarding the physical applicability of Markov’s theorem, while the constructions 
considered above are compact $-manifolds, spacetime is often considered to be non- 
compact, and is sometimes speculated to have hidden extra dimensions. Markov’s proof 
appIies equally well to higher dimensional manifolds - consider M x Sd-4, where d > 4 
- as well as non-compact manifolds - consider M#R4.  Granted Markov’s theorem only 
applies to  manifolds that are permitted to be non-simply connected, but there is a strong 
possibility that  the universe lives in this category. On the cosmic scale, the universe may 
be multiply-connected [2]; on the stellar scale, black hole interiors may be topologically 
nontrivial, though such nontriviality might be rendered undetectable by event horizons 
[16] (on the other hand, traversable worm holes might exist [17]); on the subatomic 
scale, particles are sometimes speculated to be topological geons [18, 191; and on the 
Planck scale, spacetime foam is conjectured to  perturb the local topology to no end 
17, 8, 9, 201. 
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It is conceivable that some physical criteria could be found which would restrict 
permissible 4-manifolds to classifiable manifolds. For example, if a strict interpretation 
of causality is imposed, in the form of the conditions of isochrony and the exclusion of 
closed timelike curves, then it can be shown that the allowed 4-manifolds are constrained 
to those of the form C x  [0,1], Cx [0, oo), and Cx (-m, oo), where C is a 3-manifold [21]. 
These manifolds are classifiable if the 3-manifolds are classifiable; although whether the 
3-manifolds are classifiable is still an open’question. Note that the proof of Markov’s 
theorem, as sketched above, is not applicable to 3-manifolds; for example, the three- 
dimensional analog of Oj is not simply connected, as required. In a sense, there is 
not enough “room” in a 3-manifold to topologically encode it Turing machine, and 
so there is hope that 3-manifolds might be classifiable. However, whether the universe 
obeys the previously mentioned interpretation of causality is unknown. These particular 
conditions may be too restrictive; they would preclude Wheeler’s spacetime foam, as 
well as other exotic but physically motivated topological proposals. In summary, on the 
basis of current physical knowledge, the non-classifiability of the 4-manifolds remains 
relevant. 
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