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AAS 05-462 

ATTITUDE ESTIMATION FOR LARGE 
FIELD-OF-VIEW SENSORS 

Yang Cheng*, John L. Crassidist and F. Landis Markleyt 

The QUEST measurement noise model for unit vector observations has 
been widely used in spacecraft attitude estimation for more than twenty 
years. It was derived under the approximation that the noise lies in the 
tangent plane of the respective unit vector and is axially symmetrically 
distributed about the vector. For large field-of-view sensors, however, this 
approximation may be poor, especially when the measurement falls near 
the edge of the field of view. In this paper a new measurement noise model 
is derived based on a realistic noise distribution in the focal-plane of a large 
field-of-view sensor, which shows significant differences from the QUEST 
model for unit vector observations far away from the sensor boresight. An 
extended Kalman filter for attitude estimation is then designed with the 
new measurement noise model. Simulation results show that with the new 
measurement model the extended Kalman filter achieves better estimation 
performance using large field-of-view sensor observations. 

INTRODUCTION 

TTITUDE determination is the identification of a proper orthogonal rotation (attitude) A matrix that maps sensed vectors from a reference frame into the sensor frame. If all 
the measured and reference vectors are error free, then the rotation matrix is the same for 
all sets of observations. However, if measurement errors exist, then a least-squares type 
approach must be used to determine the attitude. Several attitude sensors exist, including: 
three-axis magnetometers, sun sensors, Earth-horizon sensors, global positioning system 
(GPS) sensors and star trackers. Reference [l] provides detailed descriptions of each of 
these sensors. The specific choice for the complement of onboard attitude sensor hardware 
is mostly driven by the individual requirements of the spacecraft mission. For example, for 
low accuracy requirements, such as a few degrees, a three-axis magnetometer can be used 
solely to determine three-axis attitude coupled with gyroscopes or a dynamic model [2]. 
The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) is an example of 
a highly successful mission that employs only a three-axis magnetometer and a coarse (0.25 
degree) sun sensor coupled with a dynamic model [3]. 
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For missions with tight attitude knowledge requirements, the primary means to deter- 
mine attitude is the star tracker, The technology behind star trackers has changed much 
over the years. Evolving from gimballed to fixed-head, the latest star trackers now use 
charge-coupled devices (CCD) for imaging, which offer high accuracy [4]. By using star 
image centroiding, accuracies of approximately 1/10 the size of a pixel can be achieved. 
For small field-of-view (FOV) star trackers, this leads to off-boresight attitude knowledge 
on the order of 10 to 20 arcsec. Star trackers fall into the category of line-of-sight (LOS) 
sensors since they measure the direction of a celestial body. In particular, the angle of that 
body is measured from the sensor boresight in two mutually orthogonal planes [5].  With 
the advent of low-cost CCD arrays and powerful processors, the use of star trackers is more 
common today. 

For LOS sensors the observation equations are given by the well-known collinearity 
equations [6] ,  which relate image plane coordinates to object plane coordinates through 
an attitude rotation. For stellar applications the light sources can be treated as infinite 
distance points, so that the only unknown, once a star is identified, is the attitude matrix. 
All attitude sensors, including star trackers, contain noise in their measurements however. 
This noise includes both systematic errors and random errors. Systematic errors are re- 
duced through calibration procedures, which can even be done on-orbit [7]. Random errors 
are usually treated as zero-mean Gaussian white-noise processes with known covariance. A 
realistic covariance matrix takes into account an increase in the errors away from the bore- 
sight due to radial distortions and contains correlated terms. A frequently-used covariance 
model for the noise added to the collinearity truth equations is given by Eq. (10) of Ref. [8]. 
This model is referred to here as the “focal-plane model.” 

The collinearity equations are usually cast in vector form since the attitude matrix 
appears linearily in this form. This unit vector form, also called the “LOS measurement 
model,” is the most widely used observation equation in attitude determination [9]. Recent 
research has also shown that using the unit vector form produces better results in a filter 
design over the standard collinearity equations form for the observation equations [lo]. 
This is due to lower nonlinearity of the LOS measurement model and boundedness of the 
LOS measurements. Unfortunately, the measurement noise is also transformed when the 
collinearity equations are converted into the unit vector form. A simple covariance model 
that is valid for small FOVs has been developed by Shuster and Oh [9], called the “QUEST 
measurement model,” which is a singular matrix that arises for the unit-normalization of 
the observations. The beauty of this model is in its simplicity, which is evident in its use 
in the extended Kalman filter (EKF). In particular, Shuster [8] has shown that the singular 
covariance matrix can effectively be replaced with a nonsingular isotropic matrix, thereby 
providing practical use in the EKF. 

In this paper the QUEST measurement model is replaced with a general model that 
is valid for large FOVs. New sensors are evolving that incorporate wider FOVs, which 
may lead to degraded performance when using the QUEST measurement model. One such 
sensor is the vision-based navigation (VISNAV) system [ll], which comprises an optical 
sensor of a new kind combined with specific light sources (beacons) in order to achieve a 
selective or “intelligent” vision. The sensor is made up of a Position Sensing Diode (PSD) 
placed in the focal plane of a wide angle lens, which yields a 100 degree FOV. When the 
rectangular silicon area of the PSD is illuminated by energy from a beacon focused by the , 
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lens, it generates electrical currents in four directions that can be processed with appropriate 
electronic equipment to estimate the energy centroid of the image. The new measurement 
model is derived using a first-order Taylor series expansion approach of the observation noise 
model. This makes the assumption that the noise is "small" compared to the signal. It will 
be shown thai this model can produce more accurate results than the QUEST measurement 
model for the VISNAV sensor. Unfortunately, as is the case with the QUEST measurement 
model, the new covariance is also singular, which causes a problem in the computation of 
the Kalman gain. To overcome this problem, two solutions are presented. The first is based 
on a matrix decomposition of the new covariance and the second is based on a rank-one 
update. 

The organization of this paper proceeds as follows. First, the collinearity equations are 
summarized, followed by the introduction of the focal-plane covariance model. Then, the 
QUEST measurement model is reviewed. Next, a new covariance model is derived that 
is valid for large FOVs. Its implementation in an EKF design is then shown by using a 
measurement transformation approach as well as a rank-one update approach. Finally, 
simulation results are shown that compare EKF results with the QUEST measurement 
model versus the new measurement model using VISNAV sensor observations. 

OVERVIEW 

In this section the collinearity equations are summarized for close range photogrammetry 
applications using the VISNAV sensor. A covariance model for the focal-plane equations is 
also summarized and the QUEST measurement model is shown. 

Collinearity Equations 

Photogrammetry is the technique of measuring objects (2D or 3D) from photographic 
images or LOS measurements. Photogrammetry can generally be divided into two cate- 
gories: far range photogrammetry with camera distance settings to infinity (commonly used 
in star cameras), and close range photogrammetry with camera distance settings to finite 
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values. In general close range photogrammetry can be used to determine both the position 
and attitude of an object, while far range photogrammetry can only be used to determine 
attitude. The VISNAV system comprises an optical sensor of a new kind combined with 
specific light sources (beacons), which can be used for close range photogrammetry-type I 
applications. The relationship between the position/attitude and the observations used in 
photogrammetry involves a set of collinearity equations, which are reviewed in this section. 
Figure 1 shows a schematic of the typical quantities involved in basic photogrammetry from 
LOS measurements, derived from light beacons in this case. If we choose the z-axis of the 
sensor coordinate system to be directed outward along the boresight, then given object 
space and image space coordinate frames (see Figure l), the ideal object to image space 
projective transformation (noiseless) can be written as follows [6] : 

where N is the total number of observations, (a,, 0,) are the image space observations for 
the ith LOS, (X , ,  yi, 2,) are the known object space locations of the ith beacon, (z, y, z )  are 
the unknown object space location of the sensor, f is the known focal length, and AJk are 
the unknown coefficients of the attitude matrix, A. In general the observations can be given 
by a,/f and /3,/f, so we can assume f = 1 without loss in generality, which is done for 
the remainder of this paper. The goal of the inverse problem is given observations (a,, p,) 
and object space locations (X, ,  y Z ,  Z,), for i = 1, 2,  . . . , N ,  determine the attitude (A)  and 
position (z, y, 2). Note that if the beacons are “infinitely away” then Eq. (1) reduces down 
to the standard stellar collinearity equations. 

Denoting a, and 0% by the 2 x 1 vector 7, = [a, P,lT, then the measurement model 
follows 

;r; = 7% + w, ( 2 )  
where a frequently used covariance for w, with f = 1 is given by [8] 

(3) 1 (1 + d&2 (da,PJ2 

[ R,FOCAL = u2 

++; (da,P,)2 (1  + d p y  

where d is on the order of one and u is assumed to be known. Note that as a, or P, 
increase then the individual components of RF°CAL increase, which realistically shows that 
the errors increase as the observation moves away from the boresight. Also, as stated in 
Ref. [8], the covariance model is a function of the true variables a, and p,, which are never 
available in practice. However, using the measurements themselves or estimated quantities 
in the EKF leads to only second-order error effects. 

Unit Vector Form 

The observation can be reconstructed in unit vector form as 

bi=Ari, i = I , 2  , . . . ,  N 

4 
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where 

When measurement noise is present, Shuster and Oh [9] have shown that nearly all the 
probability of the errors is concentrated on a very small area about the direction of Ari, so 
the sphere containing that point can be approximated by a tangent plane, characterized by 

Li = Ari + vi, wTAri = 0 (6) 

where bi denotes the ith measurement and the sensor error vi is approximately Gaussian, 
which satisfies 

E {vi} = 0 ( 7 4  

RPUEST E {wit$} = u2 [ 1 s X 3  - (Ar i ) (A~=i )~ ]  (7b) 

where E{ } denotes expectation and 1 3 x 3  denotes a 3 x 3 identity matrix. Equation (7b) 
is known as the QUEST measurement model. Shuster has shown that for a: + ,@ << 1, the 
QUEST measurement model agrees well with the inferred model for the real sensor given by 
Eq. (3). Note that Eq. (7b) is also a function of the unknown truth quantities. However, the 
advantage of using the QUEST measurement model is that the measurement covariance in 
the EKF formulation can effectively be replaced by a nonsingular matrix, given by ~ $ 1 3 ~ 3  

(see Ref. [8] for more details). 

New Model 

To derive a covariance for the actual unit vector measurement, the true values for cui 
and pi must be replaced with the measured ones‘in Eq. (5). Performing this replacement 
does not explicitly yield the form given by Eq. (6) because the actual model cannot separate 
Ari from the noise. Hence, the actual noise model contains nonlinear terms coupled with 
non-Gaussian components. In order to derive a covariance, the new measurement model is 
based on a first-order Taylor series expansion of the unit vector model in Eq. (6). Note that 
this approach does not make the small FOV assumption, but rather it makes the assumption 
that the measurement noise is “sma11~’ compared to the signal, which is valid for every star 
tracker and for the VISNAV sensor as well. The Jacobian of Eq. (5a) is given by 

The new covariance is now given by 

NEW = ji RFOCAL j: R, (9) 

Clearly, RNEW is a singular matrix, just as Eq. (7b). It will be shown that the eigenvector 
associated with the zero eigenvalue of RyEW is Ari, which is exactly the same eigenvector 
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associated with the zero eigenvalue of RBUEST. Since RBuEST has two repeated eigenvalues, 
P’, then the associated eigenvectors, which are always in the plane perpendicular to Ari, 
are not unique. Therefore, without loss in generality it can be assumed that RQUEsT has 
the same eigenvectors as RNEW. Thus, the only differences between these two covariances 
are their nonzero eigenvalues. The covariances are identical, i.e. RNEW = RQUEST, when 
RF°CAL is given by 

which agrees with the corrected result shown in Ref. [12]. This shows that in order to 
recover Ri QUEST, the errors also should not be constant over the FOV. Note the differences 
between Eq. (3) and Eq. (10) though. However, for small FOVs the condition a: + 0; << 1 
is valid, so Eq. (10) agrees well with Eq. (3) in this case [8]. 

EXTE N D ED K ALM A N  FI LTE R I M P LE M EN TAT1 0 N 

In this section the new covariance is implemented in the EKF. Two approaches to 
overcome the singularity issue in the EKF are presented. The first is based on an eigen- 
value/eigenvector decomposition of RNEW and the second is based on a rank-one update of 
the covariance matrix. Only attitude estimation is considered here. The VISNAV sensor 
is capable of determining position as well, but this is an easy extension of the attitude 
estimation problem by simply augmenting the state vector. The EKF equations follow the 
multiplicative quaternion approach of Ref. [ 131, which includes the three-component atti- 
tude error vector and gyro-bias errors. Unfortunately, straightforward implementation of 
the EKF with the new model is not possible. The Kalman gain for a single observation, 
written in terms of using the true values for now, is given by [14] 

K = P-HT [Hip-$ + RNEW]-’ (11) 

where P- is the propagated 6 x 6 covariance matrix and Hi is given by [13] 

K = [[Arixl 03x31 (12) 

where [A  ri x ]  is the standard cross product matrix (see Ref. [13]) and Osx3 is a 3 x 3 matrix 
of zeros. We now investigate the properties of the matrix Zi HiP-HT + RNEW, which is 
known as the innovation matrix. In the EKF formulation the estimated values will be used 
to form the matrices HiP-HT and RNEW. Hence, for the analysis of the matrix Zi we can 
set bi = Ari without loss in generality for now. From the definition of the cross product 
matrix it is easy to see that HTbi = 0. Performing the multiplication JTbi also gives 
JTbi = 0. Hence, Zibi is always zero, which means Zi is aIways singular. Furthermore, 
since the rank of RF°CAL is two, which means the rank of RNEW is also two, then bi is the 
eigenvector associated with the zero eigenvalue of RNEw. The singularity problem always 
exists no matter how many measurements are used in the EKF. Therefore, the standard 
EKF cannot be executed. 

The specific form for the EKF follows Murrell’s version [15], which processes one unit 
vector observation at a time through a sequential approach. This approach reduces taking 
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Figure 2 Computationally Efficient Attitude Estimation Algorithm 

an inverse of a 3N x 3N matrix for the Kalman gain to taking an inverse of a 3 x 3 matrix N 
times, which significantly reduces the computational load. A flow chart of Murrell's version 
for the update is shown in Figure 2, where p- and p+ are the propagated and updated gyro- 
bias estimates, respectively, P+ is the updated 6 x 6 covariance matrix, A i -  and A i +  are 
the propagated and updated state corrections for the attitude and gyro bias, respectively, 
and A(q-) is the attitude matrix parameterized using the propagated quaternion estimate, 
4-. Note that the gain in this flowchart uses the QUEST measurement model approach, 
with R, = 0 ~ 1 3 ~ 3 .  The first step involves propagating the quaternion, gyro bias and error- 
covariance to the current observation time. Then, the attitude matrix is computed. The 
propagated state vector is now initialized to zero. Next, the error-covariance and state 
quantities are updated using a single vector observation. This procedure is continued, 
replacing the propagated error-covariance and state vector with the updated values, until 
all vector observations are processed. Finally, the updated values are used to propagate the 
error-covariance and state quantities to the next observation time. 
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Decomposition Approach 

The eigenvalue/eigenvector decomposition of RYEW can be written in the form given by 

RYEW Ti Ei TiT 

(13) 

where tl, t 2  and t 3  are the eigenvectors, and A1 and A2 are the nonzero eigenvalues. A 
linear transformation of the measurement residual in Figure 2 is now performed, giving a 
new residual di: - -  

(14) 

where ei is a 2 x 1 vector made up of the first two components of di and gi is the third 
component of di. Since t 3  = A(q-)ri, then the transformed sensitivity matrix has the form 

where 
needed to perform the updates. These equations are now given by 

is a 2 x 3 matrix and OzX3 is a 2 x 3 matrix of zeros. Hence, only the vector ei is 

where = [Z 02x3] and Ai is a diagonal matrix made up of the nonzero eigenvalues of 
@JEW: 

Note that the matrix inverse in the Kalman gain reduces from a 3 x 3 matrix to a 2 x 2 
matrix. Also, since hi is a diagonal matrix, then a sequential process can be used to process 
each component of ei one at a time [14]. This reduces taking a 2 x 2 matrix inverse down 
to taking an inverse of a scalar twice, which further reduces the computational load. The 
quaternion and gyro-bias updates are given by 

AX+ [a&+T ap+TIT (184 

q+ = 4- + -$(~-)d&+, re-normalize quaternion (18b) 

(184 b+ = p- f @+ 

where dti is the angle correction, AD is the bias correction and z(q-) is a 4 x 3 matrix 
given by 
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with q- [p-* Q;lT. The propagation equations remain unchanged, which are not shown 
here for brevity (see Ref. [13] for more details). In order to further enhance the numer- 
ical properties of the algorithm, a U-D factorization [14] of the covariance update and 
propagation is employed. The main advantage of this approach is that the factorization is 
accomplished without taking square roots, unlike a square-root filter, and the formulation 
does not add much computational effort over the standard EKF. The new model uses the 
specific covariance shown in Eq. (3), but it is important to state that any covariance matrix 
can be used in this formulation. The eigenvalue/eigenvector decomposition can easily be 
performed using numerical techniques. 

Rank-One Update Approach 

An alternative approach to overcome the problem of the EKF due to the singularity 
of the new measurement covariance matrix is shown. The main idea of the approach is 
to add an extra term, cbibff (c > 0), to the singular measurement covariance matrix 
to ensure that the modified measurement covariance matrix is nonsingular. After this 
modification the standard EKF equations are used, as shown in Figure 2 .  The EKF with 
the modified measurement covariance matrix will yield the identical measurement update 
result with the one employing size-reduced residuals and measurement covariances. This 
approach is a straightforward extension of Shuster's approach in Ref. [8] to overcome the 
problem with the singular QUEST measurement covariance matrix (and singular innovation - 

matrix). In Ref. [SI the original QUEST measurement covariance matrix in the standard 
EKF, Ri = a; ( 1 3 x 3  - bib?), is replaced by R y S T  = ~ ; 1 3 ~ 3 ,  with the modification 
to the QUEST measurement covariance given by 

Ri QUEST = RgUEST + a2bibr (20) 

Again note that RgUESTbi = 0. 

For the new measurement model, we propose to modify the singular measurement co- 
variance matrix, R N ~ ~ ,  in a similar manner: 

Ri NEW = RNEW + cib,bF (21) 

with q > 0. For any RNEW derived from RF°CAL, it is also true that RyEWbi = 0, which 
is a direct result of JTbi = 0. The inverse of RrEW is then given by 

(RyEw)-' E (RyEw)' + lb,b? ci (22) 

where (RyEW)' may be interpreted as the pseudo-inverse of RNEW or simply a convenient 
notation. Pre-multiplying both sides of Eq. (22) by HT leads to 

(23) HT (RNEw)-l = HT (Ri NEW ) t + HT. -bib? 1 = HT (RyEW)' 
ci 

Note that because HTbi = 0, the identity holds regardless of the value of ci > 0. The limit 
of HT (RYE")-' as q approaches zero is HT as well. Similarly, for all q we have 

HT (RFEW)-l Hi = HT (RyEW) ' Hi (24) 
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The inverse of RyEW always exist since the eigenvalues obey [16] 

(25) NEW N E W  Xj(Ri ) = Xj(R, ) +mj ci, j = 1, 2, 3 

with ml + m2 + m3 = 1. In fact the eigenvalues and eigenvectors of RyEw are identical to 
the ones of RyEW, except that the zero eigenvalue of RrEW is replaced with G. Since C i  is 
assumed to never be zero, then the inverse of RrEW always exists. 

The measurement update of the covariance matrix and the computation of the Kdman 
gain matrix with the original and modified measurement covariance matrices may be re- 
written as 

and 

From the two sets of equations and Eqs. (23) and (24), we can see that any RFEW will 
lead to the same P+ and K and thus to the same measurement update result as RYEw 
does. Therefore, the use of RYEW overcomes the singularity problem, but does not alter 
the result of the EKF. Finally, we note that 

1. There is no limitation of the parameter ci > 0 in order to guarantee non-singularity of 
the measurement covariance matrix and the innovation matrix. Physically, ci is small 
because the error along the true boresight of the effective unit vector measurement 
converted from the focal-plane measurement is much smaller than the errors along 
the other two directions (the first order approximation of ci is zero). For numerical 
purposes, however, ci may be chosen to be 

1 
c' - 

a -  2 

where trace denotes the trace of a matrix. That is, ci is the average of the nonzero 
eigenvalues of RyEW. Note that using Eq. (30) on Ri QUEST instead of RyEW gives 
ci = g2, which yields Eq. (20). 

2. The parameter ci will change the property of the measurement covariance matrix, but 
not that of HT (RyEW)-' H,. If HT (RyEW)-' Hi is ill-conditioned, the approach 
does not help. 

3. Since HT (RyEw)-' Hi remains unchanged with the modified measurement covari- 
ance matrix, there is no information loss or gain in the EKF. 

4. The approach overcomes the singularity problem based on the very special structure 
of Hi and RyEW: HFbi = 0 and RyEWbi = 0. However, if the system does not have 
such a special structure, the innovation matrix in the EKF will not be singular and 
the problem no longer exists. 
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Figure 3 Availability of Beacons and Average Angle from Boresight 

S I M U LATlO N RES U LTS 

In this section the simulation results using synthetic VISNAV measurements are pre- 
sented. The VISNAV sensor is only used here to determine attitude for the simulation 
results. As previously stated, position can also be determined by augmenting the EKF 
state vector. Eight beacons are used to create the synthetic measurements. The beacon 
locations in meters are given by 

x1=5, Y1=5, zi=o (314 
x2 =5,  Y2 = -5, 2 2  = o  (31b) 
x3 = -5, Y3 = 5 ,  23 = o  (314 
x4 = -5, Y4 =-5, 24 = o  (314 
x, = 0.2, Y5 =0.2, 25 = o  (314 
x6 = 0.2, Y6 = -0.2, 2 6  = 0 (310 
x7 = -0.2, Y7 = 0.2, 2 7  = 0 (31d 
xs = -0.2, Ys = -0.2, 2 s  = 0 ( 3 W  

The first four beacons are spread out further than the last four beacons. A 30 second simu- 
lation is used with a sampling rate of 100 Hz for both the VISNAV and gyro measurements. 
A docking-type motion with a rotation is used in the simulation. The linear motions for 
both the 2 and y axes are zero for the entire simulation run. The vehicle performs a linear 
motion maneuver along the z axis starting 30 meters away at the initial time and ending 
at 0 a t  the final time. The initial attitude is given by the identity matrix and the angular 
velocity is given by w = [0.1 sin(t) 0.1 cos(t) (3 x 360/30) x (r/180)IT rad/sec. The VIS- 
NAV sensor FOV is assumed to be 100 degrees. Therefore, any LOS measurement that is 
greater than 50 degrees from the boresight is not available. Since the last four beacons are 
“close in,” they are available throughout the entire simulation. The availability of the first 
four beacons is shown in Figure 3(i), where 1 indicates that the beacon is available and 0 
indicates that it is not available. The first four beacons are all available until about 20 sec- 
onds into the simulation run. Synthetic measurements are generated using the covariance 
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Figure 4 Extended Kalman Filter Results 

in Eq. (3) with d = 1 and a = (100/5000) x (n/l80) radians. These measurements are 
then converted into unit-vector form to be used in the EKF. The gyro noise parameters are 
given by au = x rad/sec1/2. See Ref. [17] for 
a detailed explanation of the gyro model. The initial biases for each axis of the gyro are 
given by 0.1 deg/hr. 

r a d / ~ e c ~ / ~  and au = fi x 

Two EKFs are executed. Both EKFs use the same exact synthetic LOS and gyro 
measurements, and both use Murrell's version shown in Figure 2. The first EKF uses the 
QUEST model approach for t&e measurement covariance with R, = 0 ~ 1 3 ~ 3 .  The second 
EKF uses the new measurement covariance model RyEw. A plot of the average angle from 
the boresight for all the available beacons is shown in Figure 3(ii). The discontinuities are 
due to a loss of a beacon at that specific time. In general we expect that when the average 
angle is small, then using the QUEST model in the EKF should yield approximately the 
same solution as using the new model. Plots of the roll, pitch and yaw errors for a typical 
simulation run, with their respective 3a bounds computed from the error covariance, are 
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Figure 5 Extended Kalman Filter Results for Large Roll Initial Condition Error 

shown in Figures 4(i)-4(iii), respectively. The top plot of each figure corresponds to using 
the QUEST model in the EKF and the bottom plot corresponds to using the new model 
approach. At first glance it seems as though both approaches yield nearly identical results, 
but closer inspection shows that this is not true. To investigate the performance aspects 
of both filters, the percent difference between the 30 attitude bounds is computed. The 
results are shown in Figure 4(iv). Using the QUEST model approach gives a 30 bound 
that is always larger than the new model approach. As expected, when the average angle 
from the boresight is small the percent differences are negligible. But when thekangle is 
large, using the QUEST model can lead to significantly large errors, as seen by the 30 
percent difference in the yaw error. An augmented filter that estimates attitude as well 
as position has also been developed. The state vector is augmented by six states, which 
model the three accelerations as zero-mean Gaussian white-noise processes. The position 
improvements using the new covariance are nearly the same as the attitude improvements, 
and thus are not shown here for brevity. Overall, the simulation results clearly show that 
the new covariance model can provide better results over the QUEST model for large FOV 
sensors. 

A comparison between the covariance decomposition approach and the rank-one update 
approach has also been done. The decomposition approach is found to be sensitive to nu- 
merical ill-conditioning effects. In fact large errors are present for the simulation results 
shown in Figure 4(iv) when the U-D factorization is not used, i.e. running the standard 
EKF equations. This does not occur with the rank-one update approach. The convergence 
properties of each approach has also been studied. A roll error of 180 degrees is introduced 
at the initial condition and the variance for that part of the initial covariance of the EKF is 
set to [(220/3) x ( ~ / 1 8 0 ) ] ~  rad2 for both approaches. For this error both approaches do not 
converge well. But, for this test the decomposition approach uses the U-D factorization, 
while the rank-one update approach uses the standard EKF equations. A U-D factoriza- 
tion for the rank-one update approach has also been designed. The results of the U-D 
factorization EKF version for both the decomposition and rank-one update approaches are 
shown in Figure 5 .  Clearly, the rank-one update approach produces better convergence 
behaviors than the decomposition approach. Several other initial condition errors have also 
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been tested, as well as a number of Monte Carlo-type simulations. When using the U-D 
factorization EKF version for both approaches, the rank-one update approach always shows 
better convergence behaviors than the decomposition approach. Further improvements may 
be obtained by using an Unscented filter [18]. 

CONCLUSIONS 

In this paper a new measurement covariance model was derived that can be used for 
large field-of-view sensors. The new model was derived using a first-order Taylor series 
expansion approach of the line-of-sight measurement model. Due to the singular nature of 
the new covariance, straightforward implementation of the extended Kalman filter was not 
possible. This was overcome by using one of two approaches. The first approach involves 
decomposing the covariance matrix into its eigenvalues and eigenvectors, and then perform- 
ing a transformation of state so that a reduced nonsingular matrix is used in the extended 
Kalman filter. The second approach adds a simple term, i.e. a rank-one update, to the 
covariance matrix that does not alter the overall Kalman gain. Simulation results indicate 
that the new model can yield better estimation results over using the small field-of-view 
QUEST measurement model in the filter design. Also, a comparison of the two approaches 
showed that the rank-one update approach can provide better convergence properties than 
the decomposition approach for large initial condition errors. Also, the rank-one update 
approach allows a designer to easily implement the extended Kalman filter, even if the 
QUEST measurement model is used for the measurement covariance. For these reasons, 
the rank-one update approach is preferred over the decomposition approach. 
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