NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT
 ORIGINALLY ISSUED
 July 1945 as
 Advance Reatricted Report L5108b

COLJMN AND PIATE COMPRESSIVE SIREWGITHS
OF AIRCRAFTT SITRUCIURAL MATERIAIS
EXITRUDED 24S-T ALDMMINUM ALIOY

By George J. Heimerl and J. Albert Roy

Langlej Memorial Aeronautical Laboratory Langley Field, Va.

WASHINGTON

N A C A LIBRARy
LANGLEY MEMORIAL AERONAUTICAI LABORATORY
Langley Fieid, V_{A}

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTTEE FOR AERONAUTICS

ADVANTE RESTRICTED REPCRT

COLUMN AND PI.ATE COMPRESSIVE STRENGTHS OF AIRCRAFT STRUCTURAL MATERTALS

EXTRUDEAD 24S-T ALUMINTM ALLOY
By George J. Heimerl and \mathcal{J}. Albert Roy

SUMMARY

Colum and plate compressive strengths of extruded 24S-T aluminum ailoy were determined both within and beyond the elastic range from tests of thin-strip columns and local-instability tests of $\mathrm{F}-$, $\mathrm{Z}-$, and channel-section columns. These tests are part of an extensive research investigation to provide data on the structural strength of verious aircraft materials. The results are presented In the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.

INTRODUCTION

Column and plate members in an aircraft structure are the basic elements that fail by instability. For the design of aircraft of low weight and high structural efficiency, the strength of these elements must be known for the varicus aircraft materials. An extensive research program has therefore been undertaken at the Langley Memorial Aeronautical Laboratory to establish the column and plate compressive strengths of a number of the alloys available for use in aircraft structures. Parts of this investigation already completed for various aluminum alloys - 2 lis-T sheet, 17S-T sheet, and extruded 75S-T are given in references 1,2 , and 3 , respectively.

The results of tests to determine the column and plate compressive strengths of extruded $24 \mathrm{~S}-\mathrm{T}$ aluminum alloy are presented herein.

SYMBOLS

L	length of colum
ρ	radius of gyration
c	fixity coefficient used in Euler column formula
\underline{L}	effective slenderness ratio of thin-strip column
$\rho \sqrt{c}$ b_{F}, t_{F}	width and thickness, respoctively, of flange of H-, Z-, or channel section (see fig. l)
b_{N}, t_{W}	width and thickness, respectively, of web of $\mathrm{H}-$, Z-, or channel section (see ifg. 1)
r	corner radius (see fig. l)
$k_{\text {\% }}$	nondimensional coefficient used with b_{W} and t_{W} in plate-buckling formula (see figs. 2 and 3 and reference 4)
E_{c}	modulus of elasticity in compression, taken as $10,700 \mathrm{ksi}$ for $24 \mathrm{~S}-\mathrm{T}$ aluminum alloy
T	nondimensional coefficient for columns (The value of T is so determined that, when the effective modulus $T E_{c}$ is substituted for E_{c} in the equation for elastic buckling of columns, the computed critical stress agrees with the experimentally observed value. The coefficient T is equal to unity within the elastic range and decreases with increasing stress bejond the elastic range.)
η	nondimensional coefficient for compressed plates corresponding to T for columns
$\boldsymbol{\mu}$	Poisson's ratio, taken as 0.3 for $24 \mathrm{~S}-\mathrm{T}$ aluminum alloy
$\sigma_{c r}$	critical compressive stress
$\bar{\sigma}_{\max }$	average compressive stress at maximum load
$\sigma_{c y}$	compressive yield stress

NACA ARR NO. L5FO8b

METHCDS OF TYSTING AND ANALYSIS

All tests were made in hydraulic testing machines accurate within three-fourths of 1 percent. The methods of testing and analysis developed for this research program (reference l) may be briefly summarized as follows:

The compressive stress-strain curves for the extrusions, which identify the material for correlation with its colum and plate compresaive strengths, were obtained for the withgrain direction from tests of single-thickness compression specimens cut from the exiruded H-section. The tests were made in a compression fixture of the Montgomery-Templin type, which provides lateral support to the specimens through closely soaced rollers.

The column etrencth and the associated effective modulus were obtained for the with-grain direction by the use of the method nresented in reference 5, in which thinstrip columns of the materiel were tested with the ends clamped in fixtures that provide a high degree of end restraint. The fixtures have been improved and the method of analysis has been modified since publication of reference 5. The method now used results in a column curve representative of nearly perfect column specimens. In addition, the method now takes into account the fact that columns of the dimensions tested are actually plates with two free edges. These columns were cut from the flanges of the H-section adjacent to the junction of the web and flange.

The plate compressive strength was obtained from compression tests of $\mathrm{H}-, \mathrm{Z}$-, and channel-section colums so proportioned as to develop local instability, that is, instability of the plate elements. (See fig. 4.) Extruded H-sections having two different web widths were tested; the flange widths for each were varied by milling off portions of the flanges. The flanges of some of the Hsection extrusions were removed in such a way as to make Z- or channel sections as desired. The flange widths of the Z - and channel-section columns were varied in the same manner as the flange widths for the H-section columns. The lengths of the columns were selected in accordance with the principles of reference 6. The columns were tested with the flat ends bearing directly against the testing-machine heads. In these local-instability tests measurements were taken of the cross-sectional distortion,

NACA ARR NO. L5FO8b
and the critical stress was determined as the stress at the point near the top of the knee of the stress-distortion curve at which a marked increase in distortion first occurred with small increase in stress.

A departure from the method of analysis presented in reference 1 is that the inside face dimensions were used to define b_{F} and b_{W} in the evaluation of $\sigma_{c r} / \eta$ by means of the equations and curves of figures 2 and. 3. This definition of b_{F} and b_{W} for extruded sections with small fillets was previcusly used in reference 3 in order that the tieeoretical and experimental buckling stresses would agree within the elastic range. For formed z- and channel sections with an inside kend radius of three times the sheet thickness (references 1 and 2), \mathfrak{b}_{F} and b_{w} were defined as center-? ine widths with square corners assumed.

RESULTS AND DISCUSSIOR

Compressive Stress-Strain Curves
Compressive stress-strain curves for eztruded 24s-T aluminum alloy, which were solected as typical or average curves for the column material, are given in figure 5. These curves were obtained from tests of compression specimens cut from the flanges of the extrusions adjacent to the junction of the web and.flanges as shown in figure 5.

In order to study the variation of the compressive properties over the cross sections, surveys were made of the extrusion by tests of compression specimens cut from the web and flanges of the H-sections. A tyoical variation of the compressive yield stress $\sigma_{c y}$ over the cross section is shown in figure 6. Values of $\sigma_{c y}$ at the outer part of the flanges are generally higher than those for the inner part of the flanges; the lowest values of $\sigma_{c y}$ were found in the wab in all cases. The strass-strain curves of figure 5, representative of the material in the flange adiacent to the web, therefcre usually show conservative values of $\sigma_{c y}$ for the flange and unconservative values of $\sigma_{c y}$ for the web.

The columns to which a particular-stress-strain curve applies are indicated in table 1 together with the value of the compressive yield stress for that stress-strain
curve. These values of $\sigma_{c y}$ for the with-grain direction average about 50 ksi . The frodulus of elasticity in compression was taken as 10,700-ksi, the present accepted. value for $24 \mathrm{~s}-\mathrm{T}$ aluminum alloy.

Column and Plate Compressive Strengths

Because the compressive properties of an extruded aluminum alloy may vary considerably, the data and charts of this report should not be used for design purposes for extrusions of $24 s-T$ aluminum alloy that have appreciably different compressive properties from those obtained in these tests, unless a suitable method is devised for adjusting test results to acoount for variations in material properties. The results of the column and localinstability tests for extruded $24 \mathrm{~S}-\mathrm{T}$ aluminum alloy are summarized herein; a discussion of the basic relationships is given in reference 1.

Column strength.- The column curve of figure 7 shows the results of the thin-strip-calumn tests for the withgrain direction. The reduction in the effective modulus of elasticity $T E_{c}$ with increase in column stress is indicated by the variation of T with stress shown in figure 8.

Plate compressive strength. - -The results of the localinstability tests of the $\mathrm{H}-, \mathrm{Z-}$, and channel-section colums used to determine the piate compressive strength are given in tables 2, 3, and 4, respectively. The platebuckiing curves, analogous to the column curve of figure 7, are shown in figure 9. The-reduction of the effective modulus of elasticity ηE_{c} with increase in stress for. compressed plates is. Indicated by the variation of η with stress, which is shown along with the curve for T -In figure 8. The crossing of the $T-1$ and η-ourves shown in figure 8 occurs because..the $\mathrm{H}-, \mathrm{Z}$-, and channel-section columns used to obtain the η-curves apperently had an appreciable degree of imperfection, which resulted in the deviation of the f-curves from unity at a lower stress than that at which the r-curve, representative of nearly perfect columns, diverges from unity.

The variation of the actual critical stress $\sigma_{c r}$ with the theoretical eritical..stress $\sigma_{c r} / \eta$ computed for elastic buckling by means of the formula and charts of figures 2 and 3 is shown in figure 10.

In order to illustrate the difference between the critical stress $\sigma_{c r}$ and the average stress at maximum load $\bar{\sigma}_{\max }$, the variation of $\sigma_{c r}$ with $\sigma_{c r} / \sigma_{\max }$ is shown in figure ll. Because values of $\bar{\sigma}_{\text {max }}$ may be required in strength calculations, the variation of $\bar{\sigma}_{\max }$ with $\sigma_{\mathrm{cr}} / \eta$ is shown in figure 12.

Figures 9 to 12 show that the data for H-sections described curves different from those indicated for Z - and channel sections. One of the reasons why higher values of $\bar{\sigma}_{\max }$ were obtained for H-sections then for Z - or channel sections for a given value of $\sigma_{\mathrm{cr}} / \eta$ (fig. 12) may be the fact that the high-strength material in the flanges (fig. 6) forms a higher percentage of the total cross-sectional area for the $\mathrm{H}-\mathrm{sec}$ tion than for the Z - or channel section. For the H -section, $\bar{\sigma}_{\text {max }}$ is increased over the value for the Z - or charnel section over the entire stress renge covered in these tests (fig. 12); $\sigma_{c r}$ for the H-section, however, is increased only for stresses beyond the elastic range (fig. 10).

Langley Memorial Aeronautical Laboratory
National Advisory Comimittee for Aeronautics Langley Field, Va.

1. Lundquist, Eugene E., Schuette, Evan H., Heimerl, George J., and Roy, J. Albert: Column and Plate --. Compressive Strengths of Aircraft Structural Materials. 24S-T Aluminum-Alloy Shest. NACA ARR NO. L5FOI, 1945.
2. Heimerl, George J., and Roy, J. Albert: Column and Plate Compressive Strengthis of Alrcraft Structural Materials. $17 \mathrm{~s}-\mathrm{T}$ Aluminum-Alloy Sheet. NACA ARR NO. L5FO8, 1945.
3. Heimerl, George J., and Roy, J. Albert: Column and Plate Compressive Strengths of Aircraft Structural Materials. Extruded 75S-T Aluminum Alloy. NACA ARR No. L5FO8a, 1945.
4. Kroll, W. D., Fisher, Gordon P., and Heimerl, George J.: Charts for Calculation of the critical Stress for Local Instability of Columns with I-, $\mathrm{Z}-$, Channel, and Rectangular-Tube Section. NACA ARR No. 3 KO 4 , 1943.
5. Lundquist, Eugene E., Rossman, Carl A., and Houbolt, John C.: A Method for Determining the Columi Curve from Tests of Columns with Equal Restraints against Rotation on the Ends. NACA TN No. 903, 1943.
6. Heimerl, George J., and Roy, J. Albert: Determination of Desirabie Lengths of z - and Channel-Section Columns for Local-Instability Tests. NACA RB No. Lit H 10 , 1944.

TAELE 1
COMPRESSIVE PRCP $A R T T E S$ OF EXTRUDED $24 S-T$ ALUMINUM ALLOY

$$
\left[E_{c}=10,700 \mathrm{ksi}\right]
$$

Colurns to which stress-strain curves apply		Stress- strain curve (fig. 5)	```Compressive yield stress, \sigmacy (ksi)```
Type	$\begin{aligned} & \text { Designation } \\ & \text { (tables } 2 \text { to } 4 \text {) } \end{aligned}$		
Thin strip	Al1	A	50.9
H	$\begin{aligned} & 5 \mathrm{a}, 5 \mathrm{~b}, 6 \mathrm{a}, 6 \mathrm{~b}, 6 \mathrm{c}, 7 \mathrm{a}, \\ & 7 \mathrm{~b}, 7 \mathrm{c}, 8 \mathrm{a}, 9 \mathrm{a}, 9 \mathrm{l} \end{aligned}$	B	52.1
H	2b, 3a	C	46.1
H	$\begin{aligned} & 1 a, 1 b, 1 c, 2 a, 2 c, \\ & 3 b, 3 c, 4 a, 4 b \end{aligned}$	D	47.0
H	$8 b$	E	52.5
Z	8	B	52.1
Z	3, 4a, 4b, 4c, 5a,	C	46.1
z	1, 2a, 2b, 2c	D	47.0
z	$9 a, 9 b, 10 a, ~ 10 b, ~$ $10 c$	E	52.5
Z	$\frac{6 a, 6 b, 6 c, 7 a, 7 b,}{7 c}$	F	51.6
Channel	$\left\lvert\, \begin{array}{llll} 3 \mathrm{a}, & 3 \mathrm{~b}, & 3 \mathrm{c}, & 3 \mathrm{a}, \\ 4 \mathrm{~b}, & 4 \mathrm{a}, \\ 5 \mathrm{a}, & 5 \mathrm{~b}, & 5 \mathrm{~d}, & 4 \mathrm{e}, \\ 4 \mathrm{4}, \end{array}\right.$	C	46.1
Channel	1a, 1b, 2a, 2b	D	47.0
Channel	$8 \mathrm{a}, 8 \mathrm{~b}, 8 \mathrm{c}, 9 \mathrm{a}, 9 \mathrm{~b},$ $9 c, 10 a, 10 b, 10 c$	E	52.5
Channel	$\begin{aligned} & 6 a, 6 b, 6 c, 7 a, 7 b, \\ & 7 c \end{aligned}$	F	51.6

TABLE 3.- DIMENSIONS OF COLOMNS AND TEST RESUETS
FOR EXTRUDED 24S-T Z-SECTIONS

TAELE 4.- DIMENSIONS OF COLUNNS AND TEST RESULTS
FOR EXTRUDED 24S-T CHANNEL SECTIONS

column	$\begin{gathered} t_{W} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{F} \\ (\operatorname{in} .) \end{gathered}$	$\begin{aligned} & b_{W} \\ & (\ln .) \end{aligned}$	$\begin{gathered} b_{F} \\ (\ln .) \end{gathered}$	$\begin{gathered} L \\ (\operatorname{in} .) \end{gathered}$	$\frac{L}{b_{W}}$	$\frac{t_{\text {W }}}{t_{F}}$	$\frac{b_{W}}{t_{W}}$	$\frac{b^{\text {b }}}{}$	$\begin{gathered} \mathbf{k}_{W} \\ (\mathrm{fig} \cdot 3) \end{gathered}$	$\frac{b_{W}}{t_{W}} \sqrt{\frac{12\left(1-\mu^{2}\right)}{k_{W}}}$	$\frac{\sigma_{c r}}{\eta}$ (ksi) (a)	$\begin{gathered} \sigma_{c r} \\ (k \neq 1) \end{gathered}$	$\bar{\sigma}_{\max }$ (k81)	$\frac{\sigma_{c r}}{\bar{\sigma}_{\max }}$
12	0.123	0.129	1.61	0.99	6.10	3.79	0.960	13.04	0.613	2.25	28.7	128.0	54.0	57.8	0.934
1 b	. 124	. 128	1.61	. 98	6.09	3.78	. .967	12.99	. 606	2.27	28.5	129.3	54.8	57.5	. .953
2 a	. 123	. 128	1.61	. 99	6.50	4.04	. 964	13.05	. 613	2.25	28.7	127.8	56.1	56.5	. 993
2 b	.123	.128	1.60	. 99	6.48	4.05	.959	13.01	. 620	2.20	29.0	125.7	55.2	56.6	. 975
3 a	. 125	. 129	1.63	1.08	6.45	3.96	.971	13.03	. 663	1.91	31.1	109.0	51.6	54.5	.947
3 b	. 125	. 129	1.61	1.09	6.39	3.97	. 966	12.91	. 677	1.90	31.0	110.2	52.7	54.6	. 965
3 c	. 125	. 129	1.61	1.09	6.46	4.01	.966	12.91	.677	1.90	31.0	110.2	52.6	54.9	. 958
3d	. 124	. 129	1.61	1.09	7.00	4.35	.966	12.93	. 677	1.90	31.0	109.9	53.5	54.6	. 980
4a	.124	. 129	1.60	1.17	7.00	4.38	. 962	12.90	. 731	1.66	33.1	96.5	49.4	51.8	.952
4 b	. 125	. 130	1.61	1.17	6.96	4.32	.961	12.91	. 727	1.67	33.1	96.9	49.8	51.8	. 961
4 c	. 125	. 130	1.61	1.17	6.96	4.32	.963	12.83	. 727	1.67	32.8	98.1	49.9	52.1	-958
4 d	. 125	. 129	1.62	1.18	6.94	4.28	. 964	13.00	. 728	1.67	33.2	95.6	50.6	51.9	-9 95
40	.124	. 129	1.61	1.18	6.95	4.32	. 960	12.95	. 733	1.66	33.2	95.7	51.2	52.6	. 973
4 r	. 125	. 129	1.61	1.18	7.00	4.35	. 965	12.90	. 733	1.65	33.2	95.9	51.5	52.8	. 975
5 a	. 125	. 129	1.61	1.34	7.48	4.65	. 963	12.92	. 832	1.33	37.0	77.0	46.7	48.4	. 965
5 b	.125	. 129	1.62	1.34	7.41	4.57	. 963	13.00	. 827	1.34	37.1	76.7	47.0	48.7	. 965
5 c	.124	. 129	1.60	1.35	7.47	4.67	. 962	12.86	. 844	1.29	37.4	75.4	46.3	48.4	. 957
62	.115	.119	2.75	1.10	10.00	3.64	. 964	23.87	. 400	3.88	40.1	65.8	46.2	46.8	. 987
6 b	.114	. 119	2.74	1.11	10.00	3.65	. 959	23.99	. 405	3.85	40.4	$64 \cdot 7$	46.8	47.4	. 987
6 c	.114	. 122	2.75	1.11	10.00	3.64	. 939	24.03	.404	3.94	40.0	66.0	46.5	47.2	. 985
7 m	.114	. 120	2.76	1.40	12.03	4.36	. 954	24.14	. 507	3.00	46.1	49.8	43.1	43.8	. 984
7 b	.115	. 119	2.74	1.40	12.02	4.39	.966	23.85	. 511	2.93	46.1	49.8	43.4	44.0	. 986
7 c	. 114	. 119	2.75	1.40	12.06	4.39	.957	24.09	. 509	2.98	46.1	49.7	43.4	44.1	. 984
8 a	. 125	. 120	2.76	1.68	15.46	5.60	1.042	22.07	. 609	2.10	50.3	42.5	37.5	38.9	. 964
8 b	.125	. 120	2.76	1.68	15.44	5.59	1.042	22.11	. 609	2.10	50.4	41.5	37.6	38.7	- 972
8 c	. 125	. 120	2.76	1.68	15.47	5.61	1.042	22.04	. 609	2.10	50.3	41.8	37.9	38.9	- 874
9 a	. 125	. 120	2.75	1.96	16.30	5.93	1.039	21.97	. 713	1.57	57.9	31.5	30.2	35.5	. 851
96	.125	. 120	2.76	1.98	16.30	5.91	1.042	22.01	. 717	1.54	58.5	30.7	30.1	35.7	. 843
9 c	. 125	-121	2.76	1.97	16.30	5.91	1.041	21.89	. 714	1.55	58.4	31.0		36.4	. 841
10 a	.126	-121	2.76	2.24	17.80	6.45	1.046	21.82	. 812	1.27	64.0	25.8	24.0	34.0	. 706
10 b	.127	. 121	2.76	2.23	17.85	6.47	1.047	21.72	. 808	1.28	63.4	26.2 25.6	24.1	33.3 35.6	.724 .660
10c	.126	. 121	2.76	2.24	17.80	6.45	1.044	21.90	. 812	1.27	64.2	25.6	23.5	35.6	. 660

$\frac{\sigma_{c r}}{\eta}=\frac{{ }_{r_{w}}{ }^{2} E_{c} t_{w}^{2}}{12\left(1-\mu^{2}\right) b_{w}^{2}}$, where $E_{c}=10,700 \mathrm{ksi}$ and $\mu=0.3$.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 1.- Cross sections of $\mathrm{H}_{-}, \mathrm{Z}^{-}$, and channelsection columns.

Figure 2.- Values of k_{W} for H -section columns. (From reference 4.)

$$
\frac{\sigma_{c r}}{\eta}=\frac{k_{w} \pi^{2} E_{c} t_{w}^{2}}{12\left(1-\mu^{2}\right) b_{w}^{2}}
$$

Figure 3. - Values of k_{W} for Z-and channelsection columns. (From reference 4.)

$$
\frac{\sigma_{c r}}{\eta}=\frac{k_{w} \pi^{2} E_{c} t_{w}^{2}}{12\left(1-\mu^{2}\right) b_{w}^{2}}
$$

Figure 4.- Local instability of an H-section column.

Figure 5.- Compressive stress-strain curves for extruded 24 S-T aluminum alloy. (Curves A, B, C, etc., are identified in table I.)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Figure 6. - Variation of the compressive yield stress over the cross section of an extruded H -section of 24S-T aluminum alloy. (Values in ksi)

Figure 7. - Column curve for extruded $24 \mathrm{~S}-\mathrm{T}$ aluminum alloy. $\sigma_{c y}=50 \mathrm{ksi}$.

Figure 8.- Variation of τ and η with stress for extruded $24 \mathrm{~S}-\mathrm{T}$ aluminurn alloy. $\sigma_{c y}=50 \mathrm{ksi}$.

Figure 9.- Plate-buckling curves for extruded 24 S-T aluminum alloy obtained from tests of H^{-}, Z^{-}, and channel-section columns. $\sigma_{c y}=50 \mathrm{ksi}$.

Figure 10.- Variation of $\sigma_{c r}$ with $\sigma_{c r} / \eta$ for plates of extruded 24 S-T aluminum alloy obtained from tests of $\mathrm{H}-, Z$ - and channel -section columns. $\sigma_{c y}=50 \mathrm{ksi}$.

Figure II. - Variation of $\sigma_{c r}$ with $\sigma_{c r} / \sigma_{\text {max }}$ for extruded $24 \mathrm{~S}-\mathrm{T}$ aluminum - alloy $\mathrm{H}-\mathrm{Z}$-, and channel-section columns. $\sigma_{c y}=50 \mathrm{ksi}$.

Figure 12.- Variation of $\bar{\sigma}_{\text {max }}$ with $\sigma_{c r} / \eta$ for extruded 24 S-T aluminum - alloy $\mathrm{H}^{-}, \mathrm{Z}$-, and channel-section columns. $\sigma_{c y}=50 \mathrm{ksi}$.

