mttps://ntrs.nasa.gov/search.jsp?R=20050243505 2019-08-29T21:22:08+00:00Z

DEC 23 1946

July -

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED July 1945 as Advance Restricted Report L5F08b

COLUMN AND PLATE COMPRESSIVE STRENGTHS

OF AIRCRAFT STRUCTURAL MATERIALS

EXTRUDED 24S-T ALUMINUM ALLOY

By George J. Heimerl and J. Albert Roy

Langley Memorial Aeronautical Laboratory Langley Field, Va.

NACA

NACA LIBRARY

WASHINGTON

LANGLEY MEMORIAL AERONAUTICAL LABORATORY

Langley Field, Va NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

L - 32

3 1176 01364 8655

ŀ

ส.

NACA ARR No. 15F08b

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

COLUMN AND PLATE COMPRESSIVE STRENGTHS OF AIRCRAFT STRUCTURAL MATERIALS

EXTRUDED 24S-T ALUMINUM ALLOY

By George J. Heimerl and J. Albert Roy

SUMMARY

Column and plate compressive strengths of extruded 24S-T aluminum alloy were determined both within and beyond the elastic range from tests of thin-strip columns and local-instability tests of E-, Z-, and channel-section columns. These tests are part of an extensive research investigation to provide data on the structural strength of various aircraft materials. The results are presented in the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.

INTRODUCTION

Column and plate members in an aircraft structure are the basic elements that fail by instability. For the design of aircraft of low weight and high structural efficiency, the strength of these elements must be known for the varicus aircraft materials. An extensive research program has therefore been undertaken at the Langley Memorial Aeronautical Laboratory to establish the column and plate compressive strengths of a number of the alloys available for use in aircraft structures. Parts of this investigation already completed for various aluminum alloys - 24S-T sheet, 17S-T sheet, and extruded 75S-T are given in references 1, 2, and 3, respectively.

The results of tests to determine the column and plate compressive strengths of extruded 24S-T aluminum alloy are presented herein.

NACA ARR No. 15F08b

1.00

•

SYMBOLS

• 7

L	length of column
ρ	radius of gyration
с	fixity coefficient used in Euler column formula
$\frac{L}{P\sqrt{c}}$	effective slenderness ratio of thin-strip column
b _F , t _F	width and thickness, respectively, of flange of H-, Z-, or channel section (see fig. 1)
b _W , t _W	width and thickness, respectively, of web of H-, Z-, or channel section (see fig. 1)
r	corner radius (see fig. 1)
к. Ж	nondimensional coefficient used with b_W and t_W in plate-buckling formula (see figs. 2 and 3 and reference 4)
Ec	modulus of elasticity in compression, taken as 10,700 ksi for 24S-T aluminum alloy
т	nondimensional coefficient for columns (The value of τ is so determined that, when the effective modulus τE_c is substituted for E_c in the equation for elastic buckling of columns, the computed critical stress agrees with the experimentally observed value. The coefficient τ is equal to unity within the elastic range and decreases with increasing stress beyond the elastic range.)
ŋ .	nondimensional coefficient for compressed plates corresponding to τ for columns
μ	Poisson's ratio, taken as 0.3 for 24S-T aluminum alloy
σ _{cr}	critical compressive stress
o max	average compressive stress at maximum load
σ _{cv}	compressive yield stress

NACA ARR No. 15F08b

METHCDS OF TESTING AND ANALYSIS

All tests were made in hydraulic testing machines accurate within three-fourths of 1 percent. The methods of testing and analysis developed for this research program (reference 1) may be briefly summarized as follows:

The compressive stress-strain curves for the extrusions, which identify the material for correlation with its column and plate compressive strengths, were obtained for the withgrain direction from tests of single-thickness compression specimens cut from the extruded H-section. The tests were made in a compression fixture of the Montgomery-Templin type, which provides lateral support to the specimens through closely spaced rollers.

The column strength and the associated effective modulus were obtained for the with-grain direction by the use of the method presented in reference 5, in which thinstrip columns of the material were tested with the ends clamped in fixtures that provide a high degree of end restraint. The fixtures have been improved and the method of analysis has been modified since publication of reference 5. The method now used results in a column curve representative of nearly perfect column specimens. In addition, the method now takes into account the fact that columns of the dimensions tested are actually plates with two free edges. These columns were cut from the flanges of the H-section adjacent to the junction of the web and flange.

The plate compressive strength was obtained from compression tests of H-, Z-, and channel-section columns so proportioned as to develop local instability, that is, instability of the plate elements. (See fig. 4.) Extruded H-sections having two different web widths were tested; the flange widths for each were varied by milling off portions of the flanges. The flanges of some of the Hsection extrusions were removed in such a way as to make Z- or channel sections as desired. The flange widths of the Z- and channel-section columns were varied in the same manner as the flange widths for the H-section columns. The lengths of the columns were selected in accordance with the principles of reference 6. The columns were tested with the flat ends bearing directly against the testing-machine heads. In these local-instability tests measurements were taken of the cross-sectional distortion.

NACA ARR No. L5F08b

and the critical stress was determined as the stress at the point near the top of the knee of the stress-distortion curve at which a marked increase in distortion first occurred with small increase in stress.

A departure from the method of analysis presented in reference 1 is that the inside face dimensions were used to define b_F and b_W in the evaluation of $\sigma_{\rm CT}/\eta$ by means of the equations and curves of figures 2 and 3. This definition of b_F and b_W for extruded sections with small fillets was previously used in reference 3 in order that the theoretical and experimental buckling stresses would agree within the elastic range. For formed Z- and channel sections with an inside bend radius of three times the sheet thickness (references 1 and 2), b_F and b_W were defined as center-line widths with square corners assumed.

RESULTS AND DISCUSSION

Compressive Stress-Strain Curves

Compressive stress-strain curves for extruded 24S-T aluminum alloy, which were selected as typical or average curves for the column material, are given in figure 5. These curves were obtained from tests of compression specimens cut from the flanges of the extrusions adjacent to the junction of the web and flanges as shown in figure 5.

In order to study the variation of the compressive properties over the cross sections, surveys were made of the extrusion by tests of compression specimens cut from the web and flanges of the H-sections. A typical variation of the compressive yield stress $\sigma_{\rm CY}$ over the cross section is shown in figure 6. Values of $\sigma_{\rm CY}$ at the outer part of the flanges are generally higher than those for the inner part of the flanges; the lowest values of $\sigma_{\rm CY}$ were found in the web in all cases. The stress-strain curves of figure 5, representative of the material in the flange adjacent to the web, therefore usually show conservative values of $\sigma_{\rm CY}$ for the flange and unconservative values of $\sigma_{\rm CY}$ for the web.

The columns to which a particular stress-strain curve applies are indicated in table 1 together with the value of the compressive yield stress for that stress-strain

4

NACA ARR No. 15F08b

ŀ.

curve. These values of $\sigma_{\rm CY}$ for the with-grain direction average about 50 ksi. The modulus of elasticity in compression was taken as 10,700 ksi, the present accepted value for 24S-T aluminum alloy.

Column and Plate Compressive Strengths

Because the compressive properties of an extruded aluminum alloy may vary considerably, the data and charts of this report should not be used for design purposes for extrusions of 24S-T aluminum alloy that have appreciably different compressive properties from those obtained in these tests, unless a suitable method is devised for adjusting test results to account for variations in material properties. The results of the column and localinstability tests for extruded 24S-T aluminum alloy are summarized herein; a discussion of the basic relationships is given in reference 1.

Column strength. - The column curve of figure 7 shows the results of the thin-strip column tests for the withgrain direction. The reduction in the effective modulus of elasticity τE_c with increase in column stress is indicated by the variation of τ with stress shown in figure 8.

<u>Plate compressive strength</u>.- The results of the localinstability tests of the H-, Z-, and channel-section columns used to determine the plate compressive strength are given in tables 2, 3, and 4, respectively. The platebuckling curves, analogous to the column curve of figure 7, are shown in figure 9. The reduction of the effective modulus of elasticity ηE_c with increase in stress for compressed plates is indicated by the variation of η with stress, which is shown along with the curve for τ in figure 8. The crossing of the τ - and η -curves shown in figure 8 occurs because the H-, Z-, and channel-section columns used to obtain the η -curves apparently had an appreciable degree of imperfection, which resulted in the deviation of the η -curves from unity at a lower stress than that at which the τ -curve, representative of nearly perfect columns, diverges from unity.

The variation of the actual critical stress σ_{cr} with the theoretical critical stress σ_{cr}/η computed for elastic buckling by means of the formula and charts of figures 2 and 3 is shown in figure 10. In order to illustrate the difference between the critical stress σ_{cr} and the average stress at maximum load $\overline{\sigma}_{max}$, the variation of σ_{cr} with $\sigma_{cr}/\overline{\sigma}_{max}$ is shown in figure 11. Because values of $\overline{\sigma}_{max}$ may be required in strength calculations, the variation of $\overline{\sigma}_{max}$ with σ_{cr}/η is shown in figure 12.

Figures 9 to 12 show that the data for H-sections described curves different from those indicated for Z- and channel sections. One of the reasons why higher values of $\overline{\sigma}_{\text{MAX}}$ were obtained for H-sections than for Z- or channel sections for a given value of $\sigma_{\rm Cr}/\eta$ (fig. 12) may be the fact that the high-strength material in the flanges (fig. 6) forms a higher percentage of the total cross-sectional area for the H-section than for the Z- or channel section. For the H-section, $\overline{\sigma}_{\rm max}$ is increased over the value for the Z- or channel section over the entire stress range covered in these tests (fig. 12); $\sigma_{\rm cr}$ for the H-section, however, is increased only for stresses beyond the elastic range (fig. 10).

Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va. - . .

- Lundquist, Eugene E., Schuette, Evan H., Heimerl, George J., and Roy, J. Albert: Column and Plate Compressive Strengths of Aircraft Structural Materials. 24S-T Aluminum-Alloy Shest. NACA ARR No. L5F01, 1945.
 - Heimerl, George J., and Roy, J. Albert: Column and Plate Compressive Strengths of Aircraft Structural Materials. 17S-T Aluminum-Alloy Sheet. NACA ARR No. L5F08, 1945.
 - 3. Heimerl, George J., and Roy, J. Albert: Column and Plate Compressive Strengths of Aircraft Structural Materials. Extruded 75S-T Aluminum Alloy. NACA ARR No. L5F08a, 1945.
- 4. Kroll, W. D., Fisher, Gordon P., and Heimerl, George J.: Charts for Calculation of the Critical Stress for Local Instability of Columns with I-, Z-, Channel, and Rectangular-Tube Section. NACA ARR No. 3K04, 1943.
- 5. Lundquist, Eugene E., Rossman, Carl A., and Houbolt, John C.: A Method for Determining the Column Curve from Tests of Columns with Equal Restraints against Rotation on the Ends. NACA TN No. 903, 1943.
- Heimerl, George J., and Roy, J. Albert: Determination of Desirable Lengths of Z- and Channel-Section Columns for Local-Instability Tests. NACA RB No. L4H10, 1944.

.

TABLE 1

COMPRESSIVE PROPERTIES OF EXTRUDED 24S-T ALUMINUM ALLOY

 $[E_{c} = 10,700 \text{ ksi}]$

Columns to cu	which stress-strain rves apply	Stress-	Compressive yield
Туре	Designation (tables 2 to 4)	curve (fig. 5)	(ksi)
Thin strip	All	A	50.9
н	5a, 5b, 6 a,6b,6c,7a, 7b, 7c, 8a, 9a, 9b	В	52.1
H	2b, 3a	С	46.1
H	la, 1b, 1c, 2a, 2c, 3b, 3c, ца, цb	D	47.0
н	8ъ	Ē	52.5
Z	8	В	52.1
Z	3, Ца, Цъ, Цс, 5а, 5ъ	С	46.1
Z	l, 2a, 2b, 2c	D	47.0
Z	9a, 9b, 10a, 10b, 10c	E	52 <u>.</u> 5
Z	6а, 6ъ, 6с, 7а, 7ъ, 7с	F	51.6
Channel	3a, 3b, 3c, 3d, 4a, 4b, 4c, 4d, 4e, 4f, 5a, 5b, 5c	C	46 . 1
Channel	la, 1b, 2a, 2b	D	47.0
Channel	8a, 8b, 8c, 9a, 9b, 9c, 10a, 10b, 10c	E	52.5
Channel	6а, 6ъ, 6с, 7а, 7ъ, 7с	F	51.6

NATIONAL ADVISORY COMMITTEE FOR ATRONAUTICS

TABLE 2.- DIMENSIONS OF COLUMNS AND TEST RESULTS

FOR EXTRUDED 24S-T H-SECTIONS

Column	t _W (in.)	t _F (in.)	b _W (in.)	b _F (in.)	L (in.)	L bw	tw t _F	b _W t _W	≜ <mark>त</mark> मुत	k _W (fig. 2)	$\frac{b_{W}}{t_{W}}\sqrt{\frac{12(1-\mu^2)}{k_{W}}}$	$\frac{\sigma_{cr}}{\eta}$ (ksi) (a)	σ _{cr} (ksi)	σ _{max} (ksi)	σ _{cr} σ _{max}
1a 1b 22b 22a 35 34b 556a 66c 27 78a 85a 85a 99b	0.123 .124 .124 .124 .124 .124 .124 .124 .124	0.128 .128 .128 .129 .128 .129 .128 .129 .128 .129 .128 .129 .120 .120 .120 .120 .120 .120 .119 .119 .119 .119 .120 .121	$\begin{array}{c} 1.61\\ 1.62\\ 1.62\\ 1.661\\ 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.62\\ 2.7765\\ 2.7765\\ 4.776\\ 2.7764\\ 2.7764\\ 2.774$	$\begin{array}{c} 0.99\\ .999\\ .999\\ 1.009\\ 1.009\\ 1.17\\ 1.17\\ 1.34\\ 1.34\\ 1.109\\ 1.339\\ 1.339\\ 1.677\\ 1.975\\ 1.677\\ 1.9754\\ 2.24\end{array}$	7.91 7.91 7.91 7.91 8.766 9.566655 9.566655 10. 11.4.53999 15.5466554 15.54554 15.566554 15.566554 17.6655454 17.66554554 17.66554 17.66554554 17	4.91 4.95 5.95 6.6.51 4.91 4.91 4.95 5.95 5.66 6.65 5.95 6.65 6.55 6.65 6.65 6.55 6.65 6.65 6.55 6.65 6.55 6.65 6.55	0.960 9965 9965 9966 9966 9966 9966 9966 9	$\begin{array}{c} 13.07\\ 13.09\\ 13.09\\ 12.99\\ 12.99\\ 12.96\\ 12.99\\ 12.96\\ 12.98\\ 13.0\\ 23.78\\ 23.88\\ 23.88\\ 23.81\\ 24.03\\ 23.65\\ 243.97\\ 23.65\\ 243.92\\ 23.93\\ 2$	0.614 .610 .677 .673 .677 .727 .727 .7232 .827 .3995 .5004 .5055 .609 .707 .818 .818	$\begin{array}{c} 2.00\\ 2.01\\ 2.01\\ 1.67\\ 1.69\\ 1.48\\ 1.47\\ 1.46\\ 1.17\\ 3.79\\ 2.75\\ 2.75\\ 2.004\\ 1.951\\ 1.56\\ 1.22\\ 1.22\end{array}$	30.5 30.42 333.2 333.3 35.8 35.8 9 40.1 41 477.4 445.5 55.4 32.2 6 6 71.6 43.2 6 71.	240787866663 3340787866663 111495554444666 45766644445334522600 666444457660444452600	55.8 55.1 55.4 55.4 55.4 55.4 55.4 55.4 55.4	55555555555555555555555555555555555555	0.969 9952 9952 9952 9952 9952 9952 9952 9

$$\sigma_{\rm cr} = k_{\rm W} \pi^2 E_{\rm c} t_{\rm W}^2$$
, where $E_{\rm c} = 10,700$ ksi and $\mu = 0.3$.

 $12(1-\mu^2)b_W^2$

ŋ

ļ

•

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

. NACA ARR No. L5F08b

ω

•

TABLE 3 .- DIMENSIONS OF COLUMNS AND TEST RESULTS

FOR EXTRUDED 24S-T Z-SECTIONS

Column	^t w (in.)	t _F (in.)	b W (in.)	b _F (in.)	L (in.)	L b _W	tw t _F	b _w t _w	म् ख्र	k _W (fig. 3)	$\frac{b_{W}}{t_{W}}\sqrt{\frac{12(1-\mu^2)}{k_{W}}}$	$\frac{\sigma_{cr}}{\eta}$ (ksi) (a)	σ _{cr} (ksi)	σ _{max} (ksi)	σcr σmax
1 2a 2b 2c 3 4b 4b 4c 5b 6a 6b 6c 7b 6b 6c 7b 7c 8 9b 10a 10b 10c	0.124 .123 .123 .126 .126 .124 .125 .125 .125 .125 .125 .125 .125 .125	0.128 .128 .128 .128 .131 .130 .129 .129 .129 .129 .129 .129 .129 .121 .118 .121 .121 .121 .120 .120 .123 .122 .121	1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62	$\begin{array}{c} 0.98\\ 1.00\\ 1.00\\ 1.01\\ 1.09\\ 1.18\\ 1.18\\ 1.18\\ 1.35\\ 1.35\\ 1.09\\ 1.10\\ 1.38\\ 1.49\\ 1.368\\ 1.966\\ 1.965\\ 2.25\\ 2.25\end{array}$	6.11 6.47 6.46 7.60 6.95 6.95 7.52 9.03 11.99 11	7992399107 94266647777737 7992399107 94266647777737	0.964 9969 9959 99663 99764 99688 99776 99488 99477 994455 994455 9959 994455 9959 9955 9959 9955 9955 9955 9955 9955 9959 9955 995	$\begin{array}{c} 13.09\\ 13.15\\ 13.17\\ 12.83\\ 12.86\\ 13.03\\ 12.92\\ 12.92\\ 12.92\\ 12.92\\ 24.01\\ 23.99\\ 24.15\\ 23.81\\ 23.51\\ 23.51\\ 23.51\\ 23.69\end{array}$	0.602 .615 .623 .728 .728 .728 .728 .728 .728 .728 .728	2.31 2.24 2.224 1.92 1.667 1.331 3.957 3.997 2.028 1.68 1.331 3.957 3.997 2.028 1.738 1.338 1.338 1.338 1.338 1.338 1.3389 1.338	28.4 299.1 299.1 302.3 333.0 377.7 40.0 59.2 40.5 445.7 59.5 866.6 666.6 666.6	$130.4 \\ 125.3 \\ 125.1 \\ 122.7 \\ 112.8 \\ 97.6 \\ 95.1 \\ 97.7 \\ 75.9 \\ 66.1 \\ 64.9 \\ 66.0 \\ 51.1 \\ 49.4 \\ 507.6 \\ 29.5 \\ 24.1 \\ 23.7 \\ 2$	2041 55544200555554440 5554440002555 554440002555 5554440 5555325866200355 446 44562412488 284332 284332 284332 284332 284332 284332 284332 284332 284332 284332 284332 284332 28432 284322 28432 284422 28432 284422 284422 28442	555653991692 876653991692 777730375544333 777730375544333 777730375544333 777730375544333 7333333	0.950 .965 .965 .958 .959 .951 .959 .951 .958 .951 .968 .981 .977 .979 .981 .928 .805 .698 .689 .689 .689

° cr	=	kw ² Ectw ² ,	where	Ec	Ξ	10,700	ksi	and µ	=	0.3.
ŋ		$12(1-\mu^2)b_{\mu}^2$		-						

NATIONAL ADVISORY

1

COMMITTEE FOR AERONAUTICS

NACA ARR No. L5F08b

NACA ARR No. L5F08b

TABLE 4.- DIMENSIONS OF COLUMNS AND TEST RESULTS

FOR EXTRUDED 24S-T CHANNEL SECTIONS

Column	t _w (in.)	t _F . (in.)	b _₩ (in.)	^b F (in.)	L (in.)	L b _w	t ₇₇	^b ₩ t ₩	br br	k _W (fig. 3)	$\frac{b_{W}}{t_{W}}\sqrt{\frac{12(1-\mu^{2})}{k_{W}}}$	$\frac{\sigma_{\rm cr}}{\eta}$ (ks1) (a)	σ _{cr} (ksi)	σ _{max} (ksi)	σ _{cr} σ _{max}
1a 1b 2a 2b 3a 3c 3d 4a 4c 4c 4c 4c 5b 5c	0.123 .124 .123 .125 .125 .125 .124 .125 .124 .125 .125 .125 .125 .125 .125 .125 .125	0.129 .128 .128 .128 .129 .129 .129 .129 .129 .130 .130 .130 .129 .129 .129 .129 .129	$1.61 \\ 1.61 \\ 1.61 \\ 1.63 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.61 \\ 1.62 \\ 1.61 \\ 1.62 \\ 1.60 \\ $	0.99 .98 .99 1.08 1.09 1.09 1.09 1.17 1.17 1.17 1.18 1.18 1.18 1.34 1.34 1.35	6.10 6.99 6.548 6.4459 6.548 6.546 6.548 6.546 6.99 6.99 6.99 6.99 7.08 7.508 7.508 7.77 7.417	3.79845000000000000000000000000000000000000	0.960 .967 .9959 .9959 .9966 .99666 .99662 .99665 .99665 .99665 .99665 .99665 .99665 .99665 .99665 .99665 .9966 .9966 .9960 .9960 .9960 .9959 .99559 .995566 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .99556 .995566 .99556 .99556 .99556 .99556 .99556 .995566 .99556 .99556 .9955666 .995566 .995566 .9955666 .99556666666666	13.04 12.99 13.05 13.01 13.03 12.91 12.91 12.93 12.90 12.93 13.00 12.95 12.90 12.90 12.90 12.86	0.613 .606 .613 .620 .663 .677 .771 .777 .727 .727 .728 .735 .8327 .8327 .8327 .8324	2.25 2.27 2.25 2.20 1.90 1.90 1.90 1.90 1.66 1.67 1.66 1.67 1.65 1.33 1.34 1.29	28.7 28.5 28.7 29.0 31.1 31.0 31.0 33.1 33.1 33.8 33.1 33.8 33.2 33.2 33.2 33.2 33.2 37.1 37.4	128.0 129.3 127.8 125.7 109.9 110.2 109.9 96.5 96.9 95.6 95.7 95.6 77.0 76.7 75.4	544.0812.6765489.62570 55122.5599.001.2575 559.99.001.2570 544.45514.444 5514.44444444444444444444	85565696981968474 776664444112122888 8888 8888	0 99 99 99 99 99 99 99 99 99 99 99 99 99
62 60 60 72 80 80 80 80 90 90 90 100 100 100	.115 .114 .114 .114 .115 .125 .125 .125 .125 .125 .125 .126	.119 .119 .122 .120 .119 .120 .120 .120 .120 .120 .121 .121 .121	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.10 1.11 1.11 1.40 1.40 1.68 1.68 1.68 1.98 1.98 1.98 1.98 2.24 2.24	10.00 10.00 12.03 12.03 12.06 15.46 15.44 15.47 16.30 16.30 16.30 17.85 17.80	4546999091311575 6663339091311575 999444	.964 .959 .939 .954 .966 .957 1.042 1.042 1.042 1.042 1.042 1.044 1.044 1.044	23.87 23.999 24.03 24.14 23.85 24.09 22.07 22.01 21.97 22.01 21.99 21.82 21.72 21.90	400 405 405 507 509 609 609 713 717 714 808 812	3.88 3.994 2.998 2.998 2.998 2.10 2.10 1.554 1.557 1.228 1.27	40.1 400.0 466.1 500.0 550.0 558.4 643.4 644.2	870887558570826 6499.7558570826	46.2 46.8 46.5 43.4 43.4 43.4 43.7 5 7 7 .9 2 4 4 3 7 7 .9 2 4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	842801979574036 6773448885 56 435 5 56 435	.987 .987 .985 .984 .986 .984 .967 .977 .851 .851 .851 .841 .724 .851 .841 .724 .851 .841 .660

$$\frac{\sigma_{\rm or}}{\eta} = \frac{k_{\rm W} \eta^2 E_{\rm c} t_{\rm W}^2}{12(1-\mu^2) b_{\rm c}^2}, \text{ where } E_{\rm c} = 10,700 \text{ ksi and } \mu = 0.3.$$

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

11

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 1. - Cross sections of H-, Z-, and channelsection columns. NACA ARR No. L5F08b

Fig. 2

7

section columns. (From reference 4.) $\frac{\sigma_{cr}}{\eta} = \frac{k_W \pi^2 E_c t_W^2}{12(1-\mu^2) b_W^2}$

Figure 4.- Local instability of an H-section column.

Figure 5. - Compressive stress-strain curves for extruded 24 S-T aluminum alloy. (Curves A, B, C, etc., are identified in table I.) NACA ARR No. L5F08b

Fig. 5

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 6. - Variation of the compressive yield stress over the cross section of an extruded H-section of 24S-T aluminum alloy. (Values in ksi.)

Fig.

~7

Figure 9. - Plate-buckling curves for extruded 24 S-T aluminum alloy obtained from tests of H-, Z-, and channel-section columns. $\sigma_{cy=}$ 50 ksi.

Fig. 9

NACA ARR No. L5F08b

Figure 11. - Variation of σ_{cr} with $\sigma_{cr}/\overline{\sigma}_{max}$ for extruded 24 S-T aluminum - alloy H-, Z-, and channel-section columns. $\sigma_{cy} = 50$ ksi.

Fig. 12

NACA ARR No. L5F08b

.

· · · · · ·

·

.

.

.

3

1176 01364 8655