
Planning with Continuous Resources in Stochastic Domains

Content Areas: Planning under uncertainty, iMarkov decision processes, Search.

Abstract Past work has dealt with various variants of this problem.

We consider the problem of optimal planning
in stochastic domains with metric resource con-
straints. Our goal is to generate a policy whose
expected sum of rewards is maximized for a given
initial state. We consider a general formulation mo-
tivated by our application domain - planetary ex-
ploration - in which the choice of an action at each
step may depend on the current resource levels. We
adapt the forward search algorithm AO* to handle
our continuous state space efficiently.

I 1 Introduction
There are many problems inherent in communication with re-
mote devices such as planet exploratory rovers [Bresina et al..
20021. Therefore, remote rovers must operate autonomously
over substantial periods of time. Moreover, the surfaces of
planets are very uncertain environments: there is a great deal
of uncertainty in the duration, energy consumption, and out-
come of a rover’s actions. Currently, instructions sent to plan-
etary rovers are in the form of a simple plan for attaining a

rover attempts to carry this out. and when done remains idle.
If it fails early on, it makes no attempt to recover and possi-
bly achieve an alternative goal. This may have serious impact
on missions. For instance, it has been estimated that the 1997
Mars Pathfinder rover spent between 40% and 75% of its time
doing nothing because plans did not execute as expected.

Working in this application domain, our goal is to provide
a planning algorithm that can generate a reliable contingent
plan that can respond to different events and action outcomes.
This plan must optimize the expected value of the expen-
ments conducted by the rover, while being aware of its time,
energy, and memory constraints. In particular, we must pay
attention to the fact that given any initial state, there are many
experiments the rover could conduct, most combinations of
which are infeasible due to resource constraints. General fea-
tures of our problem include: (1) concrete starting state; (2)
continuous resources (including time) with stochastic con-
sumption; (3) uncertain action effects; (4) several possible
one-time-rewards, only a subset of which are achievable. This
type of problem is of general interest, as it fits a large class of
(stochastic) logistics problems, and many more.

single gs2! (e& i;ho:cgiaphing so=e in:eies:ing rock). F,e

Related work on MDPs with resource constraints includes the
model of constrained MDPs developed in the OR commu-
nity [Altman, 19991. In this model, a linear program includes
constraints on resource consumption and is used to find the
best feasible policy, given an initial state and resource alloca-
tion. But a drawback of the constrained MDP model is that it
does not include resources in the state space. and thus a pol-
icy cannot be conditioned on resource availability. Moreover,
resource consumption is modeled as deterministic. In the area
of decision-theoretic planning, several techniques have been
proposed to handle uncertain continuous variables (e.g. [Feng
et al., 2004; Younes and Simmons, 20041). Finally, [Smith,
2004; van den Brie1 et al., 20041 considered the problem of
over-subscription planning, i.e., planning with a large set of
goals which is not entirely achievable. They provide tech-
niques for selecting a subset of goals for which to plan. but
they deal only with deterministic domains.

Our main contribution is an implemented algorithm that
handles all of these problems together: oversubscription plan-
ning, uncertainty, and limited continuous resources. Our ap-
proach is to include resources in the state description. This
a!!=:.:s decisiccs $2 be mzde based 0:: rescxce a-;dabi!-
ity, and it also allows resource consumption to be stochas-
tic (which contrast with the factored MDP approach). Al-
though this increases the size of the state space, we assume
that the value functions may be represented compactly and
we use the work of Feng et al. (2004) on piecewise constant
and linear approximations of dynamic programming (DP) in
our implementation. However, DP cannot use the resource
constraint to reduce the search space of feasible policies be-
cause it solves the problem for each state without consid-
ering the trajectory along which the state was reached Our
contribution in this paper is to show how to use the for-
ward heuristic search algorithm called AO* [Pearl, 1984;
Hansen and Zilberstein, 20011 to solve MDPs with resource
constraints and continuous resource variables. Unlike DP,
forward search keeps track of the trajectory from the start
state to each reachable state, and thus it can check whether the
trajectory is feasible or violates a resource constraint. This al-
lows heuristic search to prune infeasible trajectories and can
dramatically reduce the number of states that must be consid-
ered to find an optimal policy. This is particularly important
in our domain where the discrete state space is huge (expo-

https://ntrs.nasa.gov/search.jsp?R=20050240166 2019-08-29T21:06:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10516109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nential in the number of goals), yet the portion reachable from
any initial state is relatively small because of the resource
constraints: It is well-known that heuristic search can be more
efficient than DP because it leverages a search heuristic and
reachability constraints to focus computation on the relevant
parts of the state space. We show that for problems with re-
source constraints, this advantage can be even greater than
usual because resource constraints further limit reachability.

2 Problem definition and solution approach
Problem definition We consider a Markov decision pro-
cess (MDP) with both continuous and discrete state vari-
ables. Continuous variables typically represent resources,
where one possible type of resource is time. Discrete vari-
ables model other aspects of the state, including (in our appli-
cation) the set of goals achieved so far by the rover. (Keeping
track of already-achieved goals ensures a Markovian reward
structure, since we reward achievement of a goal only if it was
not achieved in the past.) Although our models typically con-
tain multipie discrete variables, this piays no role in the de-
scription of our algorithm, and so, for notational convenience,
we model the discrete component as a single variable.

A Markov state s E S is a pair (n , x) where n E N is
the discrete variable. and x = (5 ,) is a vector of continuous
variables. For each zi E Xi, X, is an interval of the real line,
and X = B i X i is the hypercube over which the continu-
ous variables are defined. We assume an explicit initial state,
denoted (no, x g) . and one or more absorbing terminal states.
One terminal state corresponds to the situation in which all
goals have been achieved. Others model situations in which
resources have been exhausted or an action has resulted in
some error condition that requires executing a safe sequence
by the rover and terminating plan execution.

State transition probabilities are given by the function
Pr(s’ 1 s, a) , where s = (n: x) denotes the state before action
a and s’ = (n’, x’) denotes the state after action a, also called
the arrival state. Following [Feng et al., 20041, the probabili-
ties are decomposed into:

the discrete marginals Pr(n’In, x, u) . For all (n, x, a) ,

n’EN

0 the continuous conditionals Pr(x’In, x: a , n’). For all
(72, x, a, n’),

Any transition that results in negative value for some contin-
uous variable is viewed as a transition into a terminal state.

The reward of a transition is a function of the arrival state
only. More complex dependencies are possible, but this is
sufficient for our goal-based domain models. We let %(x)
denote the reward associated with a transition to state (n, x).

In our application domain, continuous variables model un-
replenishable resources. We also assume that each action has
some minimal positive consumption of at least one resource.
An important implication of this assumption is that the num-
ber of possible steps in any execution of a plan is bounded,

which we refer to by saying the problem has a bounded hori-
zon. Note that the actual number of steps until termination
can vary depending on actual resource consumption.

Given an initial state (no,xo), the objective is to find a
policy that maximizes expected cumulative reward. In our
application, this is equal to the sum of the rewards for the
goals achieved before running out of a resource. Note that
there is no direct incentive to save resources: an optimal solu-
tion would save resources only if this allows achieving more
goals. Therefore, we stay in a standard decision-theoretic
framework. This problem is solved by solving Bellman’s op-
timality equation. which takes the following form:

V,”(x) = 0 ,

n’EN

Pr(x’ 1 72, x, a, n‘) (I?,: (x’) f v;, (x’)) dx’
J x I

where A,(x) denotes the set of actions executable in (n , ~) .
Note that the index t represents sequential order but does not
necessarily correspond to time in the planning problem. The
duration of actions is one of the biggest source of uncertainty
in our rover problems, and we typically model time as one of
the continuous resources x,.

Solution approach Feng et al. [Feng et al., 20041 describe
a dynamic programming (DP) algorithm that solves this Bell-
man optimality equation. In particular, they show that the
continuous integral over x’ can be computed exactly, as long
as the transition function satisfies certain conditions. We de-
fer a discussion of the details of their approach until Sec-
tion 3.3. and treat this computation as a black-box for now.
This allows us to simplify the description of our algorithm in
the next sectinn and focus on our contribution.

The difficulty we address in this paper is the potentially
huge size of the state space, which makes DP infeasible.
One reason for this size is the existence of continuous vari-
ables. But even if we only consider the discrete compo-
nent of the state space, the size of the state space is expo-
nential in the number of propositional variables comprising
the discrete component. To address this issue, we use for-
ward heuristic search in the form of a novel variant of the
AO* algorithm. Recall that AO* is an algorithm for search-
ing AND/OR graphs [Pearl, 1984; Hansen and Zilberstein,
20011. Such graphs arise in problems where there are choices
(the OR components), and each choice can have multiple con-
sequences (the AND component), as is the case in planning
under uncertainty. AO* can be very effective in solving such
planning problems when there is a large state space. One rea-
son for this is that AO* only considers states that are reach-
able fiom an initial state. Another reason is that given an
informative heuristic function, AO* focuses on states that are
reachable in the course of executing a good plan. As a result,
AO* often finds an optimal plan by exploring a small fraction
of the entire state space.

The challenge we face in applying AO* to this problem is
the challenge of performing state-space search in a continu-
ous state space. Our solution is to search in an aggregate state
space that IS represented by a search graph in which there is
a node for each distinct value of the discrete component of
the state, and each node corresponds to the continuous region
of the state space for which the value of the discrete compo-
nent is the same. In this approach, different actions may be
optimal for different concrete states in the aggregate state as-
sociated with a search node, especially since the best action
is likely to depend on how much energy or time is remain-
ing. To address this problem and still find an optimal solu-
tion, we associate a value estimate with each of the concrete
states in an aggregate. Following the approach of [Feng et al.,
20041, this value function can be represented and computed
efficiently due to the continuous nature of these states and the
simplifying assumptions made about the transition functions.
Using these value estimates, we can associate different ac-
tions with different concrete states within the aggregate state
corresponding to a search node.

In order to select which node on the fringe of the search
graph to expand, we also need to associate a heuristic value
with each search node. Thus, we maintain both a value func-
tion for concrete states (which is used to make action selec-
tions) and a heuristic estimate for each search node or ag-
gregate state (which is used to decide which search node to
expand next). Details are given in the following section.

We note that LAO*, a generalization of AO*, allows for
policies that contain ''loops'' in order to specify behavior over
an infinite horizon [Hansen and Zilberstein, 20011. Because
our assumptions about resource consumption imply that our
problem has a bounded horizon, AO* suffices. However, sim-
ilar ideas can be used to extend LAO* to our setting.

3 The Algorithm
A simple way of understanding our algorithm is as an AO*
variant where states with identical discrete component are ex-

The explicit graph describes all the sfates that have been
expanded so far and the AND/OR edges that connect them.
The nodes of the explicit graph are stored in two lists: OPEN
and CLOSED.

The greedy policy (or partial solution) graph is a sub-graph
of the explicit graph describing the current optimal policy.
In standard AO*, a single action will be associated with each
node in the greedy graph. However, as described before, mul-.
tiple actions can be associated with each node, because differ-
ent actions may be optimal for different concrete states repre-
sented by an aggregate state.

3.1 Data Structures
The main data represents a search node n. It contains:

The value of the discrete state. In our application these are
the discrete state variables and set of goals achieved.

Pointer to its parents and children in the explicit and greedy
policy graphs, as pairs (n', a) , where n' is aparent'child node,
and a is an action that allows this transition.
pn(.) - a probability distribution on the continuous vari-

ables in node n. For each x E x, P,(x) is an estimate of the

panded in urissc, Th- -lmnt;+hm x.rn-lrs ..,;+h trTrn -0nhc. l l l r L I I - V I I U I I L I W " I R W A L L 1 L""" 61uy"J. 3

probability density of passing through state (n, x) under the
current greedy policy. It is obtained by progressing the initial
state forward through the optimal actions of the greedy policy.
With each P,, we maintain the probability of passing through
n under the greedy policy: M(P,) = JxEX Pn(X)dx.
0 H,(.) - the heuristic function. For each x E X, H,(x)
is a heuristic estimate of the optimal expected reward from
state (n, x). The heuristic functions H are obtained by solv-
ing a relaxed problem. An admissible heuristic is obtair,ed
by assuming that all action consumptions take their smallest
possible value in each dimension with probability 1.
0 V, (.) - the value function. At the leaf nodes of the explicit
graph, V, = H,. At the non-leaf nodes of the explicit graph,
V, is obtained by backing up the H functions from the de-
scendant leaves. If the heuristic function l?,~ is admissible in
all leaf nodes n', then Vn(x) is an upper bound on the opti-
mal reward to come from (n; x) for all x reachable under the
greedy policy.
gn - a heuristic estimate of the increase in value of the

greedy po!icy that we wou!d get by expanding node. n. If ITn<
is admissible then 9, represents an upper bound on the gain
in expected reward. The gain gn is used to determine the pri-
ority of nodes in the OPEN list (9, = 0 if n is in CLOSED),
and to bound the error of the greedy solution at each iteration
of the algorithm.'

Note that some of this information is redundant. Neverthe-
less, it is convenient to maintain all of it so that the algorithm
can easily access it. The algorithm uses the customary OPEN
and CLOSED lists maintained by AO*. They encode the ex-
plicit graph and the current greedy policy. CLOSED contains
expanded nodes, and OPEN contains unexpanded nodes and
nodes that need to be re-expanded.

3.2 Algorithm
Algorithm 1 presents the main procedure. The more crucial
steps are described in more detail below.
Expanding a node (lines 10 to 20): At each iteration, the al-
" gorithm expands fne open node n with the nighest priority gn
in the greedy graph. Note that standard AO* expands only
tip nodes, whereas this algorithm can put a node back in the
OPEN list, that has been expanded earlier and that belongs to
the greedy policy (lines 18 & 23). The algorithm then con-
siders all possible successors (a , n') of n given the state dis-
tribution P,. Typically, when n is expanded for the first time,,
we enumerate all actions a possible in (n ,x) (a E An(x))
for some reachable x (P,(x) > 0), and all arrival states n'
that can result from such a transition (Pr(n'] n, x, a) > O).'
If n' was previously expanded (thus it has been put back in
OPEN), only actions and arrival nodes not yet expanded are
considered. In line 11, we check whether a node has already
been generated. This is not necessary if the graph is a tree
(i.e., there is only one-way to get to each discrete ~ t a t e) . ~ In

'The algorithm keeps its convergence properties if we use a
heuristic other than g to select the next node to expand. However
it loses its anytime properties.

'We assume that performing an action in a state where it is not
allowed is an error that ends execution with zero or constant reward.

'Sometimes it is beneficial to use the tree implementation of AO*

’c,
E

1: Create the root node no which represents the initial state.
2: P,, = initial distribution on resources.
3: V,, = 0 everywhere in X.
4: gno = 0.
5 : OPEN = {no}.
6: CLOSED = 0.

8: = argmax,lEOPENnGREEDY(g,l) .

7: while OPEN n GREEDY # 0 do

9:
10:

11:
12:

13: Get H,,.
14:
15:

17: else
18:
19:
20:
21:

22:

23:

Move n from OPEN to CLOSED.
for all (a ; n’) E .4 x N not expanded yet in n and reachable
under P, do

if n’ $! OPEN U CLOSED then
Create the data structure to represent n’ and add the tran-
sition (n, a , n‘) to the explicit graph.

Vnr = H,f everywhere in X.
if n’ is terminal: then

16: . Add 12’ to CLOSED.

’ Add n’ to OPEN.
else if n’ is not an ancestor of n in the explicit graph then

if some pair (a , n’) was expanded at previous step (1. 10)
then

Update V, for the expanded node n and some of its ances-
tors in the explicit graph, with Algorithm 2.

Update Pnf and g,, using Algorithm 3 for the nodes n’ that
are children of the expanded node or of a node where the opti-
mal decision changed at the previous step (1. 22). Move every
node n‘ E CLOSED where P changed back into OPEN.

Algorithm 1: AO* algorithm for hybrid domains.

Add the transition (n: a. n’) to the explicit graph.

line 15, a node n’ is terminal if M(P,,) = 0, i.e. if we run
out of a resource before arriving in n’. In our application do-
main each goal pays only once, thus the nodes in which all
goals of the problem have been achieved are also terminal.
Finally, the test in line 19 prevents loops in the explicit graph,
as discussed in section 2.

Putting a node from CLOSED back in OPEN when it is
regenerated is not a feature of standard AS* as described iii
[Hansen and Zilberstein, 20011. As a search node represents
several problem states, when a new path to an existing node is
found, it may have reached some Markov states that were not
considered in the explicit graph before. and so it needs to be
expanded. For this reason, when a new path to n’ is found, the
state distribution in Pnl may need to be updated and actions
that where not possible in n’ before may become applicable.
Consequently new arrival nodes may also become possible.
Therefore, n‘ needs to be expanded again.
Updating the value functions (lines 22 to 23): As in stan-
dard AO*, the value of a newly expanded node must be up-
dated. This consists of recomputing its value function with
Bellman’s equations (Eqn. l), based on the value functions
of all children of n in the explicit graph. This computation is
discussed in Section 3.3. Note that these backups involve all
continuous states x E X, not just values. However. they con-
sider only actions and arrival nodes that are reachable accord-
ing to P,. Once the value of a state is updated, its new value

when the problem graph is ulmosf a tree, by duplicating nodes that
represents the same (projected) state reached through different paths.

must be propagated backward in the explicit graph. The back-
ward propagation stops at nodes where the value function is
not modified, and/or at the rood node. The whole process is
performed by applying Algorithm 2 to the newly expanded
node.

I :
8:

9:
10:

Z = {n) lln the newly expanded node.
while 2 # 0 do

Chose a node n’ E 2 that has no descendant in z.
Remove n’ from Z.
Update Vnj following Eqn. I .
if Vn, was modified at the previous step then

Add all parent of n’ in the explicit graph to 2.
if optimal decision changes for some (n’, x), p,~ (x) > 0
then

Update the greedy subgraph in n’ if necessary.
Mark n’ for use at line 23 of Algorithm 1.

Algorithm 2: Updating the vaIue functions V,.

Updating the state distributions (line 23): Pn’s represent
the state distribution under the greedy policy, and t5ey need
to be updated after recomputing the greedy policy. More pre-
cisely, P needs to be updated in each descendant of a node
where the optimal decision changed. To update a node n, we
consider all its parents n’ in the greedy policy graph, and all
the actions a that can lead from one of the parents to n. The
probability of getting to n is the sum over all (n’, u) of the
probability of arriving from n’ under a, which is obtained by
convoluting P,! and the transition probability of a:

Pr(n I n’, x’, a) ~,(x) =
(n’.a)ER,,

J,. P,, (x’) Pr(x I R’, x’, a: n.)dx’. (2)

Note that it is sufficient to consider only pairs (n’, a) where a
is the greedy action in n‘ for some reachable resource level:

an = { (n ‘ , ~) E N x A : 3~ E X,
Pn((x) > 0 , &(x) = a; Pr(n I n‘,x,a) > 0) ,

where &(x) E -4 is the greedy action in (n, x). Note that this
operation may induce a loss of total probability mass (P, <
E,, P,,) because we can run out of a resource during the
transition and end up in a sink state. When the distribution
P, of a node n in the OPEN list is updated, its priority g,
is recomputed using the following equation (the priority of
nodes in CLOSED is maintained as 0):

g n = J Pn(x)Hn(x)dx ; (3)
XE s (P,) - X X ‘ d

where S (P) is the support of P: S (P) =
{x E X : P(x) > O}, and X;ld contains all x E X
such that the state (n,x) has already been expanded before
(X:ld = 8 if n has never been expanded). The techniques
used to represent the continuous probability distributions
P, and compute the continuous integrals are discussed in
Section 3.3. Algorithm 3 presents the state diseibutions
updates. It applies to the set of nodes where the greedy
decision changed during value updates (including the newly
expanded node, ;.e. n in Algorithm 1).

1: 2 = children of nodes where the optimal decision changec

2: while 2 + 0 do
3:
4: Remove n from 2.
5:
6:
7:
8:

9:

when updating value functions in Algorithm 1.

Choose a node n E 2 that has no ancestor in Z .

Update P, following Eqn. 2.
Update the greedy subgraph in n if necessary.
if P, was modified at step 6 then

Updare 9, following Eqn. 3.

Algorithm 3: Updating the state distributions P,.

Move n from CLOSED to OPEN.

I 3.3 Handling Continuous Variables
Computationally, the most challenging aspect of the algo-
rithm is the handling of continuous state variables, and partic-
ularly the computation of the continuous integral in Bellman
backups. We approach this problem using the ideas devel-
oped in [Feng et aL, 20041 for the same application domain.

models of the uncertainty on continuous variables, as long as
value functions can be computed in finite time. The basic idea
is to exploit the apparent structure in the continuous value
functions of the type of problems we are addressing. These
value functions typically appear as collections of humps and
plateaus, each of which corresponds to a region in the state
space where similar goals are pursued by the optimal policy.
Such structure is exploited by grouping states that belong to
the same plateau, while reserving a fine discretization for the
regions of the state space where it is the most useful (such as
the edges of plateaus).

Technically, we impose a number of restrictions that imply
that our value functions can be represented as piece-wise con-
stant or linear. More specifically, we assume that the continu-
ous state space induced by every discrete state can be divided
into hyper-rectangles in each of which the following holds:
(i) The same actions are applicable. (ii) The reward function

Crete effects of each action are identical. (iv) Action effects
are discrete and constant. Assumptions (i-iii) follow from the
hypotheses made in our domain models. Assumption (iv)
comes down to discretizing the actions resource consurnp-
tions, which is an approximation. It contrasts with the naive
approach that consists of discretizing the state space regard-
less of the relevance of the partition introduced. Instead, we
discretize the action outcomes first, and then deduce a parti-
tion of the state space from it. The state-space partition is kept
as coarse as possible, so that only the relevant distinctions be-
tween (continuous) states are taken into account. Given the
above conditions, it can be shown (see [Feng er al., 20041)
that for any finite horizon, for any discrete state, there exists
a partition of the continuous space into hyper-rectangles over
which the optimal value function is piece-wise constant or
linear. The implementation represents the value functions as
kd-trees, using a fast algorithm to intersect kd-trees [Fried-
man et ai., 19771, and merging adjacent pieces of value func-
tion based on their value. We augmented this approach by
allowing the representation of the continuous state distribu-
tions P, as piecewise constant functions of the continuous

PA.-. lu wcv*ci, the pieseiited a l g o i i t h remains i6cntical hi 0th

. . i j piece--*;je eoiis-&iii ;iG) &iselkc~cjii of &s-

variables. Under the set of hypotheses above, if the initial
probability distribution on the continuous variables is piece-
wise constant, then the probability distribution after any finite
number of actions is, too, and Eqn. 2 may always be computed
in finite time.4

3.4 Properties
As for standard AO* [Hansen and Zilberstein, 20011, it can be
showed that if the heuiistic functions H, are adiilissible (opti-
mistic), and if the continuous back-ups are computed exactly,
then: (i) at each step of the algorithm, Vn(x) is an upper-
bound on the optimal expected return in (n, x), for all (n, x)
expanded by the algorithm; (ii) the algorithm terminates after
a finite number of iterations; (iii) after termination, Vn(x) is
equal to the optimal expected return in (n, x), for all (n, x)
reachable under the greedy policy (P,(x) > 0). Moreover,
if we assume that, in each state, there is a done action that
terminates execution with zero reward then we can evaluate
the greedy policy at each step of the algorithm by assum-
ing thzt execution is egds each time we reach a leaf of the
greedy subgraph. Under the same hypotheses, the error of
the greedy policy at each step of the algorithm is bounded by
~ n E G R E E D Y n O P E N gn. This property allows trading com-
putation time for accuracy by stopping the algorithm early.

4 Experimental Evaluation
We tested our algorithm on a slightly simplified variant of the
rover model used for NASA Ames October 2004 IS demo
[Pedersen et al., 20051. In this domain, a planetary rover
moves in a planar graph made of locations and paths, sets
up instruments at different rocks, and performs experiments
on the rocks. Actions may fail. and their energy and time
consumption are uncertain. The problcm instance used in
our preliminary experiments contains 43 propositional state
variables, 37 actions and 5 goals (rocks to be tested). There-
fore, there are 248 different discrete states, which is far be-
yond the reach of a flat DP algorithm. Resource consump-
tions are drawn from two type of distributions: uniform and
normal, and then discretized. The results presented here were
obtained using a preliminary implementation of thepiecewise
constant DP approximations described in [Feng et al., 20041
and using a flat representation of state partitions instead of
kd-trees. This is considerably slower than an optimal im-
plementation. To compensate, our domain features a single
abstract continuous resource, while the original domain con-
tains two resources (time and energy). We used the following
admissible heuristic: H, is the constant function equal to the
sum of the utilities of all the goals not achieved in n.

We varied the initial amount of resource available to the
rover. As available resource increases, more nodes are reach-
able and more reward can be gained. The performance of
the algorithm is presented in Table 1. We see that the num-
ber of reachable discrete states is much smaller than the total
number of states (248) and the number of nodes in an opti-
mal policy is surprisingly small. This indicates that AO* is
particularly well suited to our rover problems. However, the

4A deterministic starting state xo is represented by a uniform
distribution with very small rectangular support centered in XO.

D
39
163
456
909
1399
2148
3020
4139
5983
I I284
17684
27946
36001

-

1263
2004
2840
3737
5446

G
1
1
1
2
2
2
2
2
3
3
3
3
3

- n
239
1378
4855
12888
25205
42853
65252
102689
155733
268962
445107
17113

1055056

Table 1: Performance of the algorithm for different initial resource
levels. A: initial resource (abstract unit). B: execution time (s). C:
reachable discrete states. D: # nodes created by AO*. E: # nodes
expanded by AO*. F: # nodes in the optimal policy graph. G: #
goals achieved in the longest branch of the optimal solution. H: #
reachable Markov states.

initial
resource

I30
130
130
130
130
130
130
130
130
130
130
130
I30

’ Execution

319.3
319.3
318.5

:: nodes
created by AO”

17684
17570
17486
17462
17462
17417
17417
17404
17404
17404
17404
17404
17356

,Y nodes
expanded by AO”

14341
14018
13786
13740
13740
13684
13684
13668
13668
13668
13668
13668
13628

Table 2: Complexity of computing an €-optimal policy. The opti-
mal return for an initial resource of 130 is 30.

number of nodes expanded is quite close to the number of
reachabie discrete blates. Thus, our current si~iipk heiiiistics
is only slightly effective in reducing the search space, and
reachability makes the largest difference. This suggests that
much progress can be obtained by using better heuristics. The
last column measures the total number of reachable Markov
states, after discretizing the action consumptions as in [Feng
et al., 20041. This is the space that a forward search algo-
rithm manipulating Markov states, instead of discrete states,
would have to tackle. In most cases, it would be impossible to
explore such space with poor quality heuristics such as ours.
These numbers indicate that our algorithm is quite effective in
scaling up to very large problems by exploiting the structure
presented by continuous resources.

When gn is admissible, we can bound the error of the cur-
rent greedy graph by summing its value over fringe nodes.
In Table2 we describe the timehalue tradeoff we found for
this domain. On the one hand, we see that even a large com-
promise in quality leads to no more than 25% reduction in
time. On the other hand, we see that much of this reduction is
obtained with a very small price (6 = 0.5). Additional exper-
iments are required to learn if this is a general phenomenon.

5 Conclusions
We presented a variant of the AO* algorithm that, to the best
of our knowledge, is the first algorithm to deal with: lim-
ited continuous resources, uncertainty, and oversubscription
planning. Our preliminary implementation of this algorithm
shows very promising results on a domain of practical impor-
tance. We are able to handle problem with 248 discrete state,
as well as a continuous component.

We are now implementing the full algorithm, on whose
performance we shall report in the final version. This algo-
rithm includes: (1) a full implementation of the techniques
described in [Feng et al., 20041; (2) a rover model with two
continuous variables; (3) a more informed heuristic function.
We will generate this heuristic function by solving the orig-
inal planning problem while assuming deterministic transi-
tions for the continuous variables, Le., P~(x’ ln , X, a, n’) E
{0,1}. If we assume actions consumes the minimal amount
of each resource, we obtain an admissible heuristic function.
A (probably) more informative, but inadmissible heuristic
functicr, is cbtaineci by using the =em resource consumption.
Our central idea is to use the same algorithm to solve both the
relaxed and original problem and to use the value function V,
for the relaxed problem as the heuristic function. The relaxed
problem is easier to solve, and unlike typical heuristic func-
tions which are recomputed for each search state, one expan-
sion from the initial state provides us with values that can be
used for most reachable nodes.

References
[Altman, 19991 E. Altman. Constrained Markov Decision Pro-

cesses. Chapman and HALUCRC, 1999.
[Bresina etal., 20021 J. Bresina, R. Dearden, N. Meuleau, S. Ra-

makrishnan, D. Smith, and R. Washington. Planning under con-
tinuous time and resource uncertainty: A challenge for AI. In
Proc. of UAI-02, pages 77-84, 2002.

[Feng et al., 20041 Z. Feng, R. Dearden, N. Meuleau, and R. Wash-
ington. Dynamic programming for structured continuous Markov
decision problems. In Proc. of UAI-04, pages 154-161,2004.

[Friedman etal., 19771 J.H. Friedman, I.L. Bentley, and R.A.
Finkel. An algorithm for finding best matches in logarithmic ex-
pected time. ACM Trans. Mathematical Soffware, 3(3):209-226,
1977.

[Hansen and Zilberstein, 20011 E. Hansen and S. Zilberstein.
LAO*: A heuristic search algorithm that finds solutions with
loops. ArtiJicial Intelligence, 129:35-62, 2001.

[Pearl, 19841 J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1984.

[Pedersen et al.. 20051 L. Pedersen, D. Smith, M. Deans, R. Sar-
gent, C. Kunz, D. Lees, and S.Rajagopa1an. Mission planning and
target tracking for autonomous instrument placement. In Submit-
ted to 2005 IEEE Aerospace Conference, 2005.

[Smith, 20041 D. Smith. Choosing objectives in over-subscription
planning. In Proc. of ICAPS-04, pages 393401.2004.

[vandenBrieletaL,20041 M. van den Briel, M.B. DO
R. Sanchez and, and S. Kambhampati. Effective approaches
for partial satisfation (over-subscription) planning. In Proc. of
AAAI-04, pages 562-569,2004,

[Younes and Simmons, 20041 H.L.S. Younes and R.G. Simmons.
Solving generalized semi-Markov decision processes using con-
tinuous phase-type distributions. In Proc. ofAAAI-04, pages 742-
747,2004.

