
Alternatives to Re-Planning: Methods for Plan Re-Evaluation at Runtime

Emmanuel Benazera
RIACS, NASA ARC, Moffet Field, CA 94035

ebenazer@email.arc.nasa.gov

Abstract

Current pIaniiing algorithms have difficulty hmding the com-
plexity that is due to an increase in domain uncertainty, and
especially in the case of multi-dimensional continuous spaces.
Therefore, they produce plans that do not take into account nu-
merous situations that can occur at runtime, such as faults or
other changes in the planning domain itself. Thus there is a
gap between the plan generation and the reality experienced
at runtime. Here we present two methods that allow the plan
conditionals to be revised w.r.t. uncertainty on the system as
estimated at runtime.

I

Introduction
The need for autonomy and robustness in the face of uncer-
tainty is growing as planetary rovers become more capable
and as missions explore more distant planets. Recent progress
in areas such as instrument placement (Pedersen et al. 2003;
2005) makes it possible to visit multiple rocks in a single com-
munication cycle. This requires reasoning over much longer
time frames, in more iiiiceiizi~ enviomxnts. SL?$e mccc-
ditional plans as used by the Mars Exploration Rovers (MER)
will probably have a low probability of success in such con-
text, so that the robot would spend almost all its time waiting
for new orders from home.

In the last decade, architectures for future planetary rover
missions include a plannerlscheduler, a health monitoring sys-
tem, and an executive. The plannedscheduler generates a con-
trol p rog rdp lan that describes the sequence of run-time ac-
tions necessary to achieve mission goals. Since the rover's en-
vironment is highly uncertain (Bresina et d. 2002), the control
programs (also called plans) are contingency plans (Dearden
et al. 2003) in that they involve conditional branches that are
based on decision functions of the system state that the execu-
tive can evaluate in real time. The executive is responsible for
the execution of the control programs, taking into account the
current state of the system as estimated by the health monitor-
ing system. This capability includes deciding the best branch
in a plan when reaching a branch point, given an estimate of
the current system state, inserting and replacing plan portions
to react to faults and other unpredictable events.

However, planners have difficulties handling certain situa-
tions, such as actions that carry no utility (typically used for
responding to unlikely situations) and fault occurences, or to

prepare for a belief state update'. First, actions with no re-
ward can possibly be inserted anywhere in the plan at low cost,
so the greedy approach that seeks tc ma?rin??ze the expected
utility fails to position them efficiently. Second, planner do-
mains describe a very limited set of faults, thus relying on a
mostly nominal model of the world and system actions (e.g.
no stuck wheels, broken navigation system, rocky environ-
ment,., .). Moreover, fault models exponentially increase the
complexity of the planning even if the faults have low prob-
ability of occurence as they can occur at any time during the
plan execution. Finally, the health monitoring system returns
an ever changing belief state over time that has to be taken into
account. For these reasons, the response to unlikely situations
and faults is better decided at execution: the health monitoring
system passes a belief over the system state to the executive
that decides which portion of the plan to execute, sometimes
insertinglreplacing wantedhnwanted plan blocks.

More recent architectures try to mitigate these problems by
moving towards unified planning and execution frameworks
(Alami et al. 1998; Muscettola et al. 2002; Estlin et al. 2005).
Severai or' these aichiicci-ties xse discussed zt t!x end of this
paper, however it is well understood that uncertainty in future
values forces an agent to plan locally. For example, to mitigate
this problem, (Muscettola et al. 2002) allows plans to include
explicit calls to a deliberative planner. This comes back to
finding place where to insert a branch, and as demonstrated
in (Dearden et al. 2003), the branch point is usually not sit-
uated at the point that has the highest probability of failure.
Now note that if the process of estimating a good branching
point does not forcely require to do the planning, it doesn't
cost much to pre-plan the branch once the point has been iden-
tified. Therefore, the branch can be pre-planned and its values
later updated during execution. As it will be explained later
in this paper, re-evaluation of a plan is in no way equivalent
to re-planning, but a re-evaluated plan can be found that is op-
timal w.r.t. the information on the uncertain system state and
the original plan.

We said that most planners do not handle well the complex-
ity due to the presence of faults in a model and therefore rarely
include faults within their planning domain. Moreover, major
faults are well known and recoveries can be efficiently con-

'Partially Observable Markov Decision Processes (POMDPs) al-
low the latter but are often untractable.

https://ntrs.nasa.gov/search.jsp?R=20050240158 2019-08-29T21:06:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10516102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strutted before execution. At runtime, a fault detection sys-
tem, or more generally, a state estimator will return a state
estimate that triggers one or more plan fragments for system
recovery or opportunistic science. These plan fragments are
often referred to as floating contingencies whose execution
can be conditionned upon resources (including time) andor
system behavioral modes. Therefore in this paper we will re-
fer to two types of contingencies: pre-planned branches on
resources that are part of the main plan, and floating contin-
gencies, that trigger in response to certain events and resource
values. The paper focuses on techniques to re-evaluate the for-
mer, and studies the complexity added to them by the latter.

The problem can be seen as one of re-evaluating the plan
values, such as its utility, and updating the plan conditionals,
i.e. the branch conditions. Typically, at runtime, the proba-
bility mass of the state estimate shifts among regions of the

I hybrid space (continuous resources plus discrete state). We
adapt the pre-computed branch conditions to these changes
by projecting the changes forward and backing up the result-
ing states. Our first approach is an adaptation of the clas-
sical Monte Carlo (MC) technique (Sutton & Barto 1998;
Thrun 2000). Our second approach is based on decision
theoretic techniques and converts the problem into a small
Partially Observed Markov Decision Problem (POMDP)(see
(Kaelbling, Littman, & Cassandra 1998) for an introduction
and more references) whose solving at runtime returns proba-
bilistic decision lines that are optimal given the initial plan.

I

I

Preliminaries
Here a plan can be seen as a tree whose nodes are known as
the branch points. The value function for a node is a continu-
ous function over the multi-dimensional resource state, i.e. a
mapping from the resource space to the utility space, and that
depends on downstream node value functions. Planning de-
termines a set ofpolicies that maximize the expected utility of
the plan. At branch points, this leads to conditions over the
resource space that discriminate among branches.

Typically, planning proceeds to a mapping from the system
state space to the utility space, i.e. the utility obtained by ex-
ecuting the plan, that it seeks to maximize. Noting the system
state s = (z , ~) with 2 E X the discrete state (or system
modes), and T E R the multi-dimensional continuous state
(including time), the utility earned by executing a branch b,
starting at s can be noted:

I

+ VB, (d, T’)]dT’ (1)
I

with a,l the first action of branch b,, B, the remaining portion
of the branch, U (a i ~ , (d , r ‘)) the utility earned, and s’ the
system state after executing a , ~ following the probability dis-
tribution p(s’ I s, Q) . Over a belief state ~ (s) , as estimated
by the health monitoring system, we have:

I

And at a branch point where n branches are available, the best
branch is decided according to:

(3)

This is similar to the Bellman equations for POMDPs (Boyan
& Littman 2000). Each value function V (b) maps the resource
space to the utility of the branch b. The max operator of re-
lation (3) defines an upper bound on the branch point overall
utility value, and branch conditions are found at the functions
intersections. At execution, deviations from the planning do-
main and information of the state estimate move these decision
lines.

There are several conditions and situations under which the
plan value must be re-evaluated. First, when the execution
encounters a branch point, any change in the Bellman equa-
tion functions, such as the belief b over the state s , the reward
model U , the action cost model, requires that all branch func-
tions at this branch point are re-evaluated. Second, if not at a
branch point, but if a floating branch has to be inserted, then
the plan equation is changed and the remaining portion of the
currently executed branch as well all future branch conditions
must be re-evaluated. For example, when inserting a branch
bf, equation (1) becomes:

vb, (3) = %, (s) + 1 ~ ((z ’ , T ’) I s , bf)Vg(x‘, r ’)d~’
X ’ E X R

(4)
where B is the remaining portion of the current plan to be ex-
ecuted after b f . The local value of b f is the expected reward
from the actions within the floating branch itself. The remain-
ing term is a representation of the end state of the local plan,
including the probability of the resources remaining after exe-
cuting the local plan.

The remaining of the paper studies approaches to the fast
re-evaluation of these decision lines.

The Monte-Carlo Approach to the
Re-Evaluation of Contingency Plans

Approximating branch average utility
Applying Monte Carlo techniques to the approximation of
equation (2) is straightforward: the integral over the multi-
dimensional continuous space is turned into a sum by sam-
pling N times from b (s) and p(s’ I s , a) , and the utility is
averaged over the successive runs. We note:

zEX X‘EX

where si - p(s’ I s j , ail) and s3 - b (s) . The larger the
N , the better the fit to the underlying probability distributions,
and the better the approximation.

Plan simulation
For simulating branches with MC, we use a prioretized pile of
events including plan actions, and a set of constraints among
them. The pile is filled up with actions whose execution is
simulated by testing their temporal constraints and sampling
their consumption before being rewarded and popped out.

Sampling decisions
We sample the decision by deciding the path with highest util-
ity for each sample. We write:

. N

In algorithm 1, each path is explored by each sample for the

1: foral l j<Ndo
2:
3:
4:
5:
6: Return the averaged utility of the plan.

Algorithm 1: Recursive pmcedure for sampling decisions

Proceed with MC on the first branch.
for all branches bi at branch point do

Apply this algorithm recursively to bi, with j = 1.
Return the highest utility at this branch point (max).

evaluation of the max operator. The averaged returned utility
is near optimal, but the sampled decision for the best branch
(the arg operator) depends on the sampled resource space that
must be partitioned into subregions of identical decision.

Floating contingencies
Floating contingencies are a challenge to the simulator be-
cause they can trigger at anytime. The simulator uses ran-
dom events to trigger these branches and specific dynamic
constraints to handle their insertion. The complexity increase
due to floating branches is a product of the number of plan ac-
tions, actions in the branch, and the number of these branches.
The next section covers the retrieval of the decision lines in
the multi-dimensional resource space.

Bounding the resource space for deciding future
branches
Decision at branch points can be made based on the simula-
tion results by executing the branch with the highest earned
utility average. Simulation provides sufficient information for
computing branch conditions at future branch points. This op-
eration is performed at virtually no cost and can spare future
simulations by constraining future decisions.

Approximating branch decision lines thru piecewise con-
stant value function approximation Our solution is to slice
the resource domain into rectangular bins and to fit the branch
value functions in each bin with a piecewise constant function,
based on the MC samples. Function intersections are found at
bin edges. Noting A,.a bin in the resource space, we can write
bi’s value:

AT zEX

i s . as the sum of the average utilities of bi in each bin when it
is the branch with the highest expected utility. More precisely:

with s = (z, r) and s j = (z’, r j) , is the average utility of bi
on bin A, from the n,,, samples T J it contains,

where S is the Dirac function, is the probability for bi to be the
branch with the highest utility over the samples of the bin,

is the probability of the bin itself. An optimal bin size W is

1: Proceed with algorithm 1 and collect samples at branch

2: for all branch points in the contingency plan do
3:

4:
5:
6:
7:

point.

Compute the optimal bin size and slice the space into
bins.
Compute statistics with equations (S), (9) and (10).
Evaluate equation (7) for each branch.
In each bin, identify the branch with the highest value.
Identify new branch conditions where successive bins
have different highest utility branches.

Algorithm 2: Branch conditions approximation thru piece-
wise constant value function approximation

obtained, in the sense that it provides the most efficient unbi-
ased estimation of the probability distribution function formed
by the samples. We used W = 3.49aN-lI3 where 0 is the
standard deviation of the distribution, here estimated from the
samples (D. 1976; A.J. 1991). The overall strategy is pre-
sented on algorithm 2.

Branch conditions are obtained by comparing the branch
with the highest utility for each bin: if two successive bins re-
turn different results, a branch condition exists at their edge.
Thus, the precision of the approximation is directly depen-
dent on the optimal bin size, that depends on the number of
samples. Stutter at decision point can be overcome by fitting
the successive piecewise constant approximations with more
smoothly curve.

Belief update on re-evaluated branch conditions The re-
evaluated decision functions are inequalities of the form r’ 5
(>)g(r) . Given a state estimate 7r(s) at branch point, decision
over n branches follows:

with T‘ such that Vr’ E A,/, r’ 5 g(r).

Discussion
The major drawback of the Monte-Carlo approach is that it
provides a probabilistic guarantee of its results, that is never
absolute. This is a problem that we partially address in the next

section with the use of a decision theoretic formulation. An-
other work, (Jain & Varaiya 2004) finds bounds on the number
of samples for the convergence of the expected reward for a

* class of policies.

Decision theoretic approach to plan
re-evaluation

Another problem with the MC approach is that the decision is
made based on a mapping from the continuous resource space
to the utility space that forces the approximation of the deci-
sion lines. An alternative is to use a mapping from the be-
lief space over the decisions to the utility space. The decision
space is finite, made of the branch conditions of the original
plan. The belief space over the decision is continuous and of
dimension the number of decisions minus one. This formula-
tion leads to an enlarged space but allows the use of decision
theoretic techniques to directly incorporate the belief space in
the computation of optimal decision lines. More precisely our
problem can now be casted into a small POMDP whose ac-
tions are the plan branches, the states the branch conditions,
the observations the system states.

Plan reduction to a POMDP
A standard POMDP is made of a set of actions, a set of states,
a set of transitions among states per action, and a set of obser-
vations. In our model, we abstract away the actions and use a
branch an action for the POMDP. Our POMDP is then defined
as a tuple (F , S, B.L, T , R) where:
0 F is a finite set of branch decision outcomes (as states),
0 S is a finite set of system states (as observations),
0 B is finite set of branches (as actions),
0 P(s 1 6, f’) is the probability of state s given that branch b

0 P(f ’ 1 b, f) is the probability of entering outcome f’ after

R (f , b) is the reward for taking branch 6 while in outcome

The POMDP belief update can be expressed as:

has been executed and has landed in j’,

taking branch b in outcome f,

f.

where T is a probability distribution (belief) over F , given s
and b, and:

The value of executing branch b under decision f and state s
is:

P’EF S’ES

where in the absence of floating contingencies (because f can
only lead to 6):

and R (f , b, s) = Vb(b(s)) , from equation (2). Finally the
value of executing branch 6 from some belief state T and ob-
serving s is:

(T b) = T(f, s)v(f, s) (16)
f E F

and the optimal value function is given by:

Simulation
The successor states s’ and and the p(s’) of equation (15) are
unknown and must be obtained through simulation. As a simu-
lator we use the MC algorithm of the previous section and gen-
erate both the vb(s) and the s‘ in a depth first forward search
in the plan tree.

Solving
The solving of this POMDP returns a piecewise linear convex
value function that is a mapping from the belief space over the
decision outcomes to the highest expected plan uility. Optimal
branch conditions are found at the intersections of maximized
value functions and are now conjunctions of inequalities of
the form P(T 5 h(r)) 5 c where T 5 h(r) is the branch
condition from the original plan and c a constan in [0,1]. For
any belief over an outcome, the solution returns the optimal
policy, w.r.t. the original plan.

Floating contingencies
Floating contingencies pose a serious problem to the decision
theoretic approach because the possible interruption of any
action within a branch leads to a potentially infinite number
of actions (brealung up a branch an infinite number of times
over resource and time values with non null probability). Ap-
proaches like (Younes & Simmons 2004) can be used here
to handle the asynchronous events, but do not allow to in-
clude the events (here floating contingencies) within the policy
(therefore the computation of their conditions is not possible).
While we are not yet sure about the range of solutions to this
problem, it seems realistic to research approximations of float-
ing conditions over a single branch.

Results
A contingency plan for the Mars exploration domain
Our application is on a planetary rover plan. Consider the plan
for a Mars rover on figure 1. It tells the rover to first navigate
to a waypoint wo, and there to decide whether to take a high
resolution image of the point (HI res) or to move forward to a
second waypoint w1 depending on the level of resources (here
energy and time). After reaching w1 and digging in the soil, it

.

A A L A
[20;7] [2.5;0.2] [5;2] [1;0.5]

L A
[4;1] [1;0.5]

bO [10;3] [1;6.2] b2 [10;2] [2;0.3] [4;1] [1;0.5]

b5

\ u=2 ,
HI res

[4; 11 [1;0.5]

(a) Contingency plan for the Mars rover domain

(b) Value functions of branches at branch
point 1 (bptl)

(c) Value functions of branches at branch
point 2 (bpt2)

Figure 1: Branch value functions at branch point for a detailed rover problem

must decide whether to move forward to waypoints w3 or w2
or to simply get an image at w1 and wait for further instruc-
tions. N I R is a spectral image of a site or rock. Action time
and energy consumptions are represented as Gaussian bumps
of empirical mean and variance. In this example branch con-
ditions at branch points bptl and bpt2 have the following pa-
rameters: al = 0.1, a2 = 2.1 and & = 2.2.

Decision sampling

Branch conditions re-evaluation at branch points: boundshins
are generated with the sampling decision algorithm, and veri-
fied by running a classical Monte-Carlo simulation, that does
not maximize the htility, but follows the new branch condi-
tions and averages the earned utility. Simulation also returns
the failure probability of the plan. The error is the difference to
the optimal plan value in percentage. The piecewise constant
approximation of the branch value functions returns godd util-
ity (Table 1). Figure 2 pictures results for the second branch
point of our rover problem (the energy is pictured and the time
line is omitted) and shows the shifting branch conditions on
the horizontal axis that is the energy line.

N l Value I Time I Vdec I err
100 I 14.21 1 0.03 I 10.9 1 23.3

0.16
0.78
4.08
20.79
120.3

223.89

9.732
1 1.2992
1 1.9542
12.156
12.1214
12.1814

28.53
18.26
13.27
11.8
12

11.58

Table 1: Monte-Carlo decision sampling and branch condition
re-evaluation based on MC samples. Results are as follows:
N is the number of samples, V is the mean expected highest
value obtained for the plan, Vdec is the value obtained when
using the re-evaluated branch conditions, err the enor per-
centage to the simulated best value.

Figure 2: Piecewise constant approximation of branch value functions from simulation samples.

Figure 3: Optimal value function over the original plan branch
conditions: x and y axis represent the probability of decision
outcomes P(r 5 a2) and P (a 2 2 T 5 ,&). P(T 2 p 2) is
deduced from them.

Decision theoretic approach
We converted our example to a POMDP and simulated the
observations and rewards, respectively the system states and
branch value functions. Starting from a fixed level of re-
sources, figure 3 shows the convex value function solution for
the second branch point (bptz).

Comparison and Discussion
To compare the two approaches, we moved a gaussian belief
of fixed variance 0.1 along the resource (energy) line and stud-
ied the decision for each resource value. Results are presented
on figure 4. V mc and dec mc respectively denote the value
obtained and the decision based on the Monte-Carlo method
with b5 = 1, b4 = 2 and b3 = 3; V dtp and dec dtp are based
on the decision theoretic planning (dtp) approach. First, the
difference in value between the two methods is due to the high
level of branch failure (i.e. resource gets to zero) in the sim-
ulation for the decision theoretic approach (since it is based
on the original branch conditions). This is of medium impor-
tance only when we study the decision making: we observe

1 1

IC

9

8

7

6

5

4

l i I. , I
0 2.5 3 3.5 4 0.5 1 1.5 2

Figure 4: Comparition between the Monte-Carlo and the deci-
sion theoretic re-evaluation methods.

that decisioii to go to Siafich b,j he:: tG b3 based on MC
respectively slightly early and slightly late, and this is visu-
alized as two sudden drops in expected value; the decision
based on dtp switches later to b4, and earlier to b5 right at
the highest value point. Overall the dtp-based decision leaves
less room for branch b4, which can be surprising when look-
ing at the large surface corresponding to bq on figure 3 but is
explained by the fact that a high probability for on decision
2.1 < T < 2.2 denotes a more accurate belief (given the fixed
variance) than for other branches. Finally it is difficult to filly
assess the dominance of one method over the other. At this
point of our research we lean in favor of the MC approach
for plans with a small number of actions and a high number
of decision outcomes, and for the dtp approach when a high
number of actions in a plan makes the price of successive MC
simulations costly.

Related Work and Conclusion
We have presented a simple strategy for the robust execution

, of contingency plans under uncertainty. It re-evaluates branch
value functions at branch point and re-estimates branch con-
ditions whenever necessary. The framework allows runtime
insertionheplacement of plan portion thru the use of floating

I

branches but much work on their full integration into the re-
evaluation process should follow. This is the first step towards
the development of more powerful techniques for planning
and execution under uncertainty. The MC approach is flex-
ible and provides good results in any situation given that a
sufficiently high number of samples is used. The algorithms
presented are a baseline capability, and will be used later to
assess the quality of more complex and focused approaches.

Center. The author thought it was time to bring some of these
ideas to life and share the accumulated experience, and thanks
R. Washington, R. Dearden, S. Narasimhan, H. Cannon, T.
Willeke and D. Roland.

References
A.J., I. 1991. Recent developments in non density
estimation. Journal of the American Statistical Association

Related Work
Other works on plan re-evaluation include (Gough, Fox, &
Long 2004) that studies plan execution with uncertainty on
the resource consumption. However, the executed plans are
no contingency plans as branch execution is not conditionned
on decision functions over the resource state. (Washington
& Lees 2004) develops a fast method for plan portions in-
sertiodreplacement, but partly fails here as it relies on pre-
computed value functions (this is not always possible as faults
change the model of actions).

Mixed planningjexecution include (Alami et al. 1998) that
uses a deliberative planner and an executive on top of a set of
reactive controllers. (Estlin et al. 2005) presents the Closed-
Loop Execution and Recovery (CLEaR) system that is in-
tended to run on rovers with little communication with ground.
CLEaR closely integrates the CASPER continuous planner
(Chien et al. 2000) and the TDL executive system (Simmons
& Apfelbaum 1998). Plan re-evaluation and the methods de-
scribed in this paper can be seen as an alternative to the iter-
ative plan repair of CASPER. We view plan re-evaluation as
an intermediate step between execution of pre-planned con-
tingencies and re-planning. Re-planning will always be neces-
sary as if a situation occurs on-board for which there is no pre-
planned contingency, the rover must wait for instructions. In
that sense, plan re-evaluation complements architectures such
as (Muscettola et al. 2002) and (Estlin et al. 2005).

For soiving the decision theoretic probiem, fast techniques
such as (Feng & Zilberstein 2004) allow the solving of rather
large problems. Given we abstract away actions within the
branches when formulating the POMDP, we see our problems
(not including the floating contingencies) as being of a small
size.

Future Work
Future work includes dealing with floating contingencies
within the decision theoretic framework, pre-computing more
advanced branch value functions at planning time (Feng,
Meuleau, & Washington 2004) and using them at runtime. An-
other hot topic remains the re-evaluation of plans that contain
concurrent actions. Also note tha new class of problems re-
cently arised in the rover domain, where the robot is able to
satisfy only a subset of the goals (Smith 2004). In that case,
re-evaluating the plan is not as efficient anymore because the
change in resource consumption would in general lead to the
selection of a different subset of goals.

Acknowledgements
Ideas in this paper are based on the experience and work of a
group of current and past researchers at NASA Ames Research

4 13(86):205-224.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. International Journal
of Robotics Research 17(4).
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent mdps. In Advances in Neural Information Pro-
cessing Systems 13, 1-7.
Bresina, J.; Dearden, R.; Ramkrishnan, S.; Smith, D.; and
Washington, R. 2002. P!anning u d e r cmthuous me and
resource uncertainty: A challenge for ai. In Proceeddings of
the Eighteenth Conference on Uncertainty in ArtiJcial Intel-
ligence.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the re-
sponsiveness of planning and scheduling. In Proceedings of
the Fifth International Conference on ArtiJcial Intelligence
Planning and Scheduling, Breckenridge, CO.
D., S. 1976. On optimal and data-based histograms.
Biometrika 66:605-610.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning. In
ICAPS-03: Proceedings of the Workshop on Planning under
Uncertainty and Incomplete Information, 415-428.
Estlin, T.; Gaines, D.; Chounard, C.; Fisher, E; Castano,
R.; Judd, M.; Anderson, R.; and Nesnas, I. 2005. En-

and scheduling. In to appear in IEEE Aerospace 2005.
Feng, Z., and Zilberstein, S. 2004. Region-based incremental
pruning for pomdps. In 20th Conference on Uncertainty in
ArtiJcial Intelligence (UAI-O4), 146-153.
Feng, Z.; Meuleau, N.; and Washington, R. 2004. Dy-
namic programming for structured continuous markov deci-
sion problems. In Proceedings of the 20th Conference on
Uncertainty in ArtiJcial Intelligence.
Gough, J.; Fox, M.; and Long, D. 2004. Plan execution
under resource consumption uncertainty. In Proceedings of
the Workshop on Connecting Planning Theory with Practice
at ICAPS-04,24-29.
Jain, R., and Varaiya, P. 2004. Simulation-based value
function estimates of discounted and average-reward mdps.
In Proceedings of the Conference on Decision and Control,
2004.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
ArtiJcial Intelligence 101:99-134.
Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and Plaunt,
C. 2002. Idea: Planning at the core of autonomous reac-

&ling aiitGnomous rGYer science thrangh dyII2EIic p!zr,r.ing

t

tive agents. In in Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Pedersen, L.; Bualat, M.; Lees, D.; Smith, D.; and Washing-
ton, R. 2003. Integrated demonstration of instrument place-
ment, robust execution and contingent planning. In Proceed-
ings of the 7th Int. Symp. on Art$cial Intelligence, Robotics
and Automation in Space.
Pedersen, L.; Smith, D.; Deans, M.; Sargent, R.; Kunz, C.;
Lees, D.; and S.Rajagopalan. 2005. Mission planning and
target tracking for autonomous instrument placement. In
Submitted to 2005 IEEE Aerospace Conference.
Simmons, R., and Apfelbaum, D. 1998. A task description
language for robot control. In Proceedings of the Intelligent
Robots and Systems Conference, VancouveK CA.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proceedings of ICAPS-04.
Sutton, R. S . , and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT Press, Cambridge, MA, 1998.
Thrun, S. 2000. Monte car10 POMDPs. In Solla, S.; Leen,
T.; and Muller, K.-R., eds., Advances in Neural Information
Processing Systems 12, 1064-1070. MIT Press.
Washington, R., and Lees, D. 2004. Utility-based plan in-
sertion for continuous resources. In Proceedins of the IEEE
2004 International Conference on Robotics and Automation.
Younes, H., and Simmons, R. 2004. Solving generalized
semi-markov decision processes using continuous phase-
type distribution. In In Proceedings of the NineTeenth Na-
tional Conference on Artificial Intelligence - AAAI-04.

