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reference model. Piloted simulation tests show that the adaptive predictor and state space 
predictor can achieve better compensation of transport delay than the McFarland predictor. 
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A  = state matrix of the reference model 

0 4c c−  = coefficients of the simplified state space predictor 
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I. Introduction 

IN the AIAA conference paper “New Predictive Filters for Compensating the Transport Delay on a Flight 
Simulator” published in 2004 (AIAA-5441 (2004)1, two novel predictors for compensating the transport delay in a 

flight simulator were introduced: the adaptive predictor and the state space predictor. The adaptive predictor makes 
use of the Kalman filter algorithm in a unique manner so that the predictor can provide the desired amount of 
prediction, significantly reducing the large spikes in the response, caused by the McFarland predictor. It also 
presents three simplified Kalman filter algorithms, i.e., the Karzmarz algorithm, the stochastic approximation 
algorithm, and the least mean squares algorithm. For the convenience of comparison with the McFarland 
compensator2, three consecutive steps of velocity are employed in the predictors. Therefore, the adaptive predictors 
and the McFarland predictor share the same structural expression; 

 
 ( ) ( ) ( ) ( ) ( )0 1 21py k y k b v k b v k b v k= + + − + − 2  (1) 

 
where  is the aircraft state to be predicted, v  is the corresponding velocity, y py  is the predicted aircraft state, k  is 
the iteration index. Different means of determining the coefficients b , b  and b  define the predictor types. The 
McFarland predictor coefficients are designed with sinusoidal tuning, and remain constant throughout the whole 
simulation. In contrast to the McFarland predictor, the adaptive predictors update the coefficients during each frame. 
If θ and 

0 1 2

( )k = ( ) ( ) ( )0 1 2
T

b k b k b k  
% ( ) ( ) ( ) ( )1 2kT k v k v k v= − −  j , then all four adaptive predictors can be 

expressed in a general mathematical expression; 
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where for different adaptive predictors, the only 
difference lies in the expression for kε . Table 1 lists the 
expressions for kε  for several adaptive predictors. Note 
the difference between the basic Kalman filter (2nd row), 
in which kε  represents a square matrix, and the 
stochastic approximation algorithms (5th row), which 

kε  represents a scalar. Notice also that this term 
becomes a constant for the least mean square algorithm. 
 With some examples, the paper AIAA-5441 (2004) 
shows that the adaptive predictors can significantly 
reduce the large spikes caused by the McFarland 
compensator, and the stochastic approximation 
algorithm achieves the best compensation among all 
adaptive algorithms. However, the paper did not 
investigate the underlying causes of the results. In the 
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Table 1. Expression of kε  in Eq. (2) for several
adaptive predictors 

Predictor Expression of kε  

Kalman Filter ( ) ( )
0

k
T

i k
i i

=
∑ j j  

Kalman with forgetting 
factor ( ) ( )

0

k
i k T

i k
i iλ −

=
∑ j j  

Karzmarz ( ) ( )T i ij j  

Stochastic approximation ( ) ( )
0

k
T

i k

i i
=
∑ j j  

Least mean square ε  

next section, this paper analyzes how the McFarland 

mpensator produces large spikes, how the adaptive predictors mitigates these spikes, and finally presents a 
athematical explanation for why the stochastic approximation algorithm works better than other adaptive 
edictors in compensating the transport delay by using its asymptotic ODE.        

The second novel predictor is the state space predictor that is, loosely speaking, an application of the 
biski/Cardullo3, 4 compensator in a flight simulator using a linear, time-invariant aircraft model called a reference 

odel. The Sobiski/Cardullo predictor is given by 

 ( ) ( ) ( )dt t t u t+ = +x Φx ΨB . (3) 
 

here and dte= AΦ ( )
0

d d
t te dτ τ−= ∫ AΨ are the state transition matrix and its integral matrix, where A is the state 

atrix of a linear system. A linear reference model is used to implement the Sobiski/Cardullo predictor when the 
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system dynamics are not linear, and for such a situation, the matrix A  is the state matrix of the reference model. 
Assume a 4th-order reference model has the following typical form: 

0
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1ψ+&

d k
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+ +
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then the state space predictor can be simplified to ([1]) 
 

 , (5) ( ) ( ) ( )11 12 3 13 2 12 13 3 13 13 2 14 0 0

T

py y y y u udtφ φ α φ α φ φ α φ φ β φ β= + + + + + − + ∫& &

 
in which T is the frame length, and the ijφ  and jψ  are elements of matrices Φ  and , which are functions of the Ψ

' sα  & ' sβ . Therefore, the coefficients of the five terms on the right side of Eq. (5) are closely related to the 
reference model. In other words, the quality of prediction of the state space predictor is determined by the choice of 
the reference model. This paper also investigates the relationship between the prediction quality of a state space 
compensator and the reference model it uses. 

II. Analyses of the Adaptive Predictor  
The biggest problem with the McFarland filter is the large spikes it produces. These spikes, stimulated by high 

frequency dynamics, are observable by the pilot in the visual scene. The longer the delay, the larger the magnitude 
of the spikes. The McFarland algorithm is a special integrator or an extrapolator. The simplest extrapolator to 
provide a prediction of  is   dt

 
 ( ) ( ) ( )py k y k t v= +  (6) 

 
If the velocity changes slowly (low frequency), this extrapolator works well, but if the velocity changes quickly, 

the prediction introduces error because the velocity may be quite different t  later. The McFarland filter is superior 
to the extrapolator given by Eq. (6) because it uses three consecutive steps of velocity that can extrapolate the future 
position better than a single velocity. Furthermore, the sinusoidal tuning of the coefficients contributes to the 
superiority of the McFarland compensator over others. For moderate frequencies (around 1 Hz), let the average of 
these three velocities be

d

v , then Eq. (1) reduces 
to ( ) ( ) ( )p dy k y k t v= +

0b 1b

1

0 1b

d

k

2b

2

, which is similar to 
Eq.(6), but the average velocity is used, resulting in 
a better prediction. Therefore, its working 
frequency range is wider than the simplest 
extrapolator given in Eq.  (6). However, spikes 
occur if the velocity changes rapidly (the frequency 
is higher). No matter what the delay is, the three 
coefficients ,  and  are always positive, 
negative and positive, respectively, and the absolute 
value of b  is always the largest, e.g., for t =0.2s, 

=2.9979, =-5.5197 and b =2.7219. The 
absolute values of them are at least 10 times greater 
than t . If the velocity changes by more than 10% 
in several iterations, spikes in the predicted value 
are likely to occur. Table 2 gives an example, where 
the two spikes are highlighted in orange color. 
From this example, the spikes in the McFarland compe

alternatively, and with alternative sign changes, the g

d
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Table 2.  Several iterations of McFarland prediction with
spikes 

t   
(s) 

 
(rad/s) 

1v  
(rad/s) 

2v  
(rad/s) 

py
 

(rad) 

59.776 0.1000 0.1015 0.1029 0.0115 

59.792 0.0877 0.1000 0.1015 -0.02 

59.808 0.0754 0.0877 0.1000 0.0085 

59.824 0.0630 0.0754 0.0877 0.0072 

59.840 0.0507 0.0630 0.0754 0.0056 

59.856 0.0504 0.0507 0.0630 0.0402 

59.872 0.0502 0.0504 0.0507 0.0080 
2
nsation are caused by: first, the three coefficients change sign 

reater the sum 0 1
0i

b b b b
=

= + + 2i∑  is, the more likely the 
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equation to generate spikes; secondly, the coefficients do not change with respect to the simulation conditions. One 
better choice for the three coefficients would be b = = b = /3. If, however, the coefficients are made to vary 
with the simulation conditions around

0 1b 2 dt
3dt , the prediction will be even better. 

2b+

3d

( )

( ) ( )
( )1 y k

k

i ij j

( )i
k

i k=

j

0 0,> = ,∑

Although the adaptive predictors cannot guarantee non-alternative sign changes, they indeed significantly reduce 

the sum 
2

0 1 2
0

i
i

b b b b
=

= + +∑ , and make the coefficients adaptable to the velocity changes. These are the two main 

reasons the adaptive predictors reduce the spikes, and cause smaller gain error than the McFarland predictor, 
especially for long time delay. While the adaptive predictors minimize the root mean squared gain error in every 
iteration, the coefficients are adjusted to some optimal pattern, so that even in the case of large velocity changes, 
such as the two cases shown in Table 2, spikes are 
less likely to occur.  

The fact that the adaptive predictors can 

significantly reduce the sum 
2

0 1
0

i
i

b b b
=

= +∑  

is illustrated in Table 3, which was obtained by 
averaging the converged coefficients across 16 
offline tests for all adaptive predictors. This sum is 
about 10 times larger for the McFarland predictor 
than for the basic Kalman predictor, which is still 
considerably greater than the stochastic 
approximation algorithms and the least mean 
algorithm. The basic Kalman filter and the 
Karzmarz algorithms still result in alternative 
coefficient sign changes. Although the least mean 
square algorithm gives all-positive coefficients in 
this table, but it has been demonstrated in other 
simulations that the coefficients of the least mean square algorithm have alternative sign changes. Only the 
stochastic approximation algorithm guarantees non-alternative sign changes of the coefficients, and hence produces 

the smallest sum
2

0
i

i

b
=
∑ , and the coefficients are closer to t  than other adaptive predictors.   This may be shown 

mathematically as follows. For convenience, the expression of the stochastic approximation used in the final piloted 
tests is given in Eq. (7)  

Table 3. The three coefficients calculated with different 
methods ( =192ms) dt

Algorithm 0b  1b  2b  Sum 
2

0
i

i

b
=
∑

McFarland 
Filter 2.8613 -5.2342 2.5650 0.192 10.660

5 
Kalman 
Filter -0.0030 -0.5894 0.7811 0.189 1.3735

Stochastic 
Approximation 0.0525 0.0571 0.0789 0.188 0.188

Karzmarz 
Algorithm -0.2064 0.0503 0.3485 0.192 0.6052

Least Mean 
Square 0.0284 0.0700 0.1066 0.205 0.205

 

 ( ) ( ) ( ) ( ) ( )

0

T
dk

T

i k

k k y k k k

=

 = − + − − − 
∑

j
θ θ j θ% % %  (7) 1

which was obtained by replacing kε  in Eq. (2) with ∑ ( )
0

T ij . This is just one version of a large family of 

stochastic approximation algorithms. Two other commonly used versions are the Saridis and Stein’s algorithm and 
the Kwatny’s form5. Robins and Monro have shown that the general Kalman filter algorithm given in Eq. (2) is a 
stochastic approximation algorithm if 

 

 2
1 1

1 1 1
k k k kk k k

, lim andε
ε ε ε

∞ ∞

→∞
= =

= ∞ ∑  (8) < ∞

 
Eq. (8) also gives the conditions of algorithm convergence. Under normal circumstances, the velocity in a flight 

simulation does not change exponentially, and therefore the parameter ( ) ( )
0

k
T

k
i k

i iε
=

= ∑ j j  in Eq. (7) satisfies Eq. (8), 

and hence the algorithm of Eq. (7) is indeed a stochastic approximation algorithm. On the other hand, in the 
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Karzmarz’s algorithm ( ) ( )
0

k
T

k
i k

i iε
=

= ∑ j j , and in the least mean square algorithm kε  is a constant, both of which do 

not meet the 1
k

k

lim
ε→∞

= 0  requirement. Therefore, they are not stochastic approximation algorithms. 

[= −

(y k

) ( ) ( )1Tk k k − − − j θ

( )1k −θ

( )1k +

) ( )1 2k v k −

)
4

4
dtdtAΦ

The ODE that characterizes the asymptotic behavior of the stochastic approximation algorithm is6 given in Eq. (9) 
 

 
[ ]{ }

( ) ( )

21
2

T
d

T T

E y y

E E y

∂
= − − −

∂
= −

θ j θ
θ

θ jj j θ

&

&
 (9) 

 
where “ ” is the mathematical expectation. The right side of the first equality of Eq. (9) is the negative gradient of 
the cost function, indicating that the stochastic approximation algorithm may be interpreted as a “stochastic” 

gradient descent algorithm. Though the gradient of the cost function 

E

]21
2 cI E y y

)

(  is the compensated y) 

with respect to θ  is unknown, the gradient at the current sample of 

cy

( ) ( ) ( ){ }2
1T k k− −   j θdy k− −  is 

just ( ) ( ) (dy
T

k y

dy

kj

( ) ( ) ( )y k k k− − j

 , the dynamic term in Eq.  (7). Because the quantity inside the brackets 

 is a scalar, from the asymptotic ODE, ( )kθ  is in the direction of & ( )kj . This means 

that the modifying term of θ  is in the direction of ( )kj . And since the recursive algorithm starts with an 
initial zero vector, it is logical that θ  is in a direction close to the average of j . Because 

, the average velocity does not change much within two iterations, and the three 
elements of θ  (or the coefficients of the adaptive predictor) do not differ much. This demonstrates why the 
stochastic approximation algorithm gives the best prediction. 

( ) ( )k= − (vTj k v 

 

III. Analyses of the State Space Predictor 
For all four 4th-order aircraft reference models that were applied to the state space compensator, the last two 

terms in Eq. (5) are very small compared with the first three terms, which come from the first term of Eq. (3). This 
shows that, in the state space compensation governed by Eq. (3), the second term contributes little to the prediction. 
In other words, the first term including the state transition matrix dominates the compensation. The state transition 
matrix plays a critical role in the predictive algorithm. By definition, the state transition matrix can be expressed as a 
Taylor series expansion 

 

 
( )

0

d

i
dt

i

t
e

i!

∞

=

= = ∑A A
Φ . (10) 

    
In this sense, the state space compensation may be viewed as a Taylor series extrapolation in the state space form. 
 Because this series is always convergent, it is usually approximated by truncating it to a finite series. The 
number of terms necessary to obtain satisfactory approximation depends on the matrix . For the four 4A th-order 
aircraft reference models, the first five terms are sufficient. Therefore, 
 

 ( ) ( ) (2 31 1 1
2 6 2d d de t t t= ≈ + + + +I A A A A  (11) 

 
In fact, the fifth term in the last equation contributes little to the final result. This can be shown by using of the 
Cayley-Hamilton theorem. For a 4th-order matrix , the Cayley-Hamilton theorem states A
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  (12) 
3

0

dt i
i

i
e α

=

= = ∑AΦ A

 
where the coefficients 0 3α α−  are the solution of the following coupled linear equations 
 

  (13) ( ) (
3

0
0 3i

i j j d
i

exp t , j ...α λ λ
=

= =∑ )

 
with jλ  being the eigenvalues of the matrix , provided that all eigenvalues are distinct. For all four reference 
models, it has been found that 

A

 

 2 3
0 1 2 3

1 11
2 6d d, t , t ,α α α α≈ ≈ ≈ ≈ dt

1

0

3

 (14) 

 
T
c
w

This illustrates that Eqs. (10) and (11) are almost equivalent, 
with the only difference lying in the fifth term of Eq. (10). 
Using Eq. (10), the coefficients of the five terms in the right 
side of Eq. (5) were derived and are listed in Table 4. 
Investigation of all state space predictors shows that for 
correct prediction, the coefficient of the proportional term 
must be either unity or close to unity, the coefficient of the 
derivative term is equal to or very close to the time delay, 
and all other coefficients are much smaller. From Table 4, 

 must be smaller than an upper limit that varies with the 
amount of time delay to be compensated, in order for the 
coefficient  to be close to unity. Usually a  must be 
small, especially for a long time delay. For the same reason, 

 also must be fairly small to make the coefficient c  
close to the time delay .  

1a

2a

0c

dt
 The restrictions on a  and  indicate that there must 
also be some restrictions on the eigenvalues of the reference 
model. For a 4

1 2a

0

th-order model, the following relationships 
between the four eigenvalues λ λ−  and ,  are held 1a 2a
 

 0 1 1 2 2 3 0 3

0 1 2 1 2 3 0 1 3

λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ

+ + + +
 + + +

 
For a stable model, all eigenvalues must have negative real pa
(14) means  
 

 
(
(

2

1

i j

i j k

a , i

a , i

λ λ

λ λ λ

 < ≠


< ≠
 

It shows the eigenvalues of the reference model must be small
predictor to function properly. Because the eigenvalues of 
bandwidth may also meet some conditions. This can be verifi
model and see how the state space compensation is affected.
satisfactory compensation in simulating the Boeing 757 can b
reference model bandwidth plays a major role in the compensa
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able 4. Approximate expressions of the 
oefficients of the simplified state space predictor 
ith a 4th-order reference model 

Coefficient Expression 

0c  3 41 3 011
6 24d d

a a aa t t−
− +  

c  3 42 3 12

6 24d d
a a aat t −

− + dt  

c  
2

2 33 3 21
2 6 24d d

a a at t −
− + 4

dt  

c  3 43 01
26 24 24d d

a ba t t b − + 
 

c  3 43
0

1
6 24d d

at t − 
 

b  

1

2

3
4
dt

4

 (15) 1 3 0 2 2

0 2 3 1

a
a

λ λ λ λ
λ λ λ

+ =
= −

rts. Because all eigenvalues have the same sign, Eq.  

)
)

j

j k≠
 (16) 

er than some upper limits in order for the state space 
a model are closely related to its bandwidth, the 

ed by gradually varying the bandwidth of a reference 
 Fig. 1 shows the results.  Investigation reveals that 
e achieve when the bandwidth is below 1 rad/s. The 
tion quality of the state space predictor.    

tics and Astronautics 



 A similar study of variations in the 
damping ratio was completed in a manner 
similar to varying the bandwidth. This study 
shows that the damping ratio of the reference 
model does not make a significant difference 
in the state space compensation. 
 The order of the reference model also 
affects the state space compensation. To 
demonstrate that, 3rd-order and 4th-order 
reference models were compared first. In 
order to accomplish this, a 3rd-order model 
was formed by reducing a 4th-order model in 
a manner such that the reduced-order model 
shares similar frequency characteristics with 
the original model. Then both models were 
used in the state space compensation. The 
result shows that the compensation error is 
considerably greater with the 3rd-order model 
than with its 4th-order counterpart. This 
agrees with the results of the offline 
simulation tests presented in AIAA 
5441(2004)1. 
 A 2nd-order reference model results in 
even poorer compensation quality than a 3rd-ord

given as ( )0 1 01py a y a y uα= + + −& , where 0α  a

1λ  being the two eigenvalues of the model. Th
with a 4th-order model (Eq.(5)) because less syst
 Finally, if a 5th-oder or higher reference m
frequency jerk component (derivative of accele
introduce computational artifacts. Therefore, the
 The gain of a reference model also influenc
function of the gain of the model (i.e., b ). Th
components in the control input u, but the effect

2

to the compensation. In addition, the sensitivity
gain depends on the individual model: some mo
gain of a reference model is much less significan
 In summary, the following points are the con
between the compensation quality and the refere

1) The state space predictor can be simplifi
2) The state space compensation may be vi
3) Satisfactory compensation in simulating

The reference model bandwidth plays a 
4) The damping ratio of the reference m

compensation. 
5) The 4th-order reference model is the best
6) The effect of the gain of a reference mod

IV. Tran
A series of tests were conducted to measure

NASA Langley Research Center, using a devic
SAIC for the Naval Air Warfare Center Traini
Force Base, SIMES is a comprehensive, non-int
cueing systems and dynamic models of various 

American Instit
0 10 20 30 40 50 60 70
-4

-2

0

2

4

6

8

10

12

14

16
State Space Compensation Using Model B with Varying Bandwidth

R
ol

l A
ng

le
, d

eg
t ,s

Undelayed
bdw=8.0561rad/s
bdw=5.3707rad/s
bdw=4.028rad/s
bdw=2.6853rad/s
bdw=0.8056rad/s

Fig. 1. State space compensation using model B with varying
bandwidth 
er model. With a 2nd-order model, the simplified state space filter is 

nd  1α  are solutions of equations ∑ , with (
1

0

0 1i j d
i

t , j ,α λ
=

= ) 0λ  and  

e compensation is inferior to that of the state space compensation 
em information is used for prediction.  
odel is employed, the filter state vector contains either a higher 
ration) or triple integration of the aircraft state, which is likely to 
 4th-order reference model is the best choice for this situation.  
es the compensation quality. From Table 4, the coefficient c  is a 
e large gain of the reference model amplifies the high frequency 

 is negligible since the 4

3

th term (with coefficient ) contributes little 
 of a reference model’s compensation quality to the variation of its 
dels are more sensitive than others. In other words, the effect of the 
t than its bandwidth. 

3c

clusions of this study on the state space predictor, and the relations 
nce model: 
ed to a general PID filter1. 
ewed as a Taylor series extrapolation in the state space form. 
 the Boeing 757 can be made when the bandwidth is below 1 rad/s. 
major role in the compensation quality of the state space predictor. 

odel does not make a significant difference in the state space 

 choice for this situation. 
el is much less significant than its bandwidth. 

sport Delay Measurement 
 the transport delays in the Visual Motion Simulator (VMS) at the 
e called SIMES7 (the SIMulator Evaluation System). Developed by 
ng Systems Division, in cooperation with the Wright-Patterson Air 
rusive, accurate and reliable system to test, debug, and document the 
kinds of simulators. SIMES also can generate control signal in place 
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of the operator to run unmanned tests. Thus the 
SIMES provides a combination of the functions of 
the control loader, logical analyzer and video level 
detector. It can generate and send sinusoidal signals 
and sweep signals to the simulator, and collect 
responses from it. Unfortunately the SIMES unit is 
not capable of frequency response analysis (it’s not a 
FRA). Figure 2 shows where the SIMES-generated 
input was added as well as where various data were 
collected on the VMS. The control signal was 
inserted either at point A, so that the aircraft states 
were input to the cueing systems directly from the 
SIMES (Scenario I), or at point B, so that the aircraft 
states were provided by the EOM. In the latter case 
the aircraft model was either in use (Scenario III) or 
bypassed by replacing it with a constant gain K 
(Scenario II). The SIMES generated input and 
collected the data (except those EVDAS visual 
signals) at the speed of 1000 Hz; the mainframe 
computer update frequency was 40 Hz, and the 
visual computers ran at a rate of 60 Hz. Therefore, 
some asynchronous communication delays exist. 
The EVDAS signals were recorded at 60 Hz.      

The numbers in Fig. 2 indicate the points at 
which the data were collected from the VMS by the 
SIMES, and they are tabulated in Table 5. 
Specifically, the five EVDAS signals were obtained in  
transport delay; a photodiode was used to measure the i
measure the motion system delay. Points labeled 14-19
the lower half of Fig. 2.  

 

The leg positions (labeled 19) were 
measured with potentiometers, and were 
then transformed to the position and the 
orientations of the payload platform using 
a recursive inverse Newton-Raphson 
transformation. The transformed position 
and orientations were then used to 
determine the delay of the motion system. 
In addition, six accelerometers mounted on 
the payload platform sensed accelerations 
that were transformed to the payload 
platform accelerations in all six DOF’s 
(labeled 20) using kinematic 
transformation. The motion system 
transport delay was also measured from 
the leg positions sensed by the 
potentiometers. Because the potentiometer 
caused larger error than the accelerometer, 
the final measure result of the motion 
system delay was from the accelerometer 
data. A 2nd-order filter was applied to the 
accelerometer data to reduce the 
measuring noise caused by the 
accelerometers (labeled 21).      

A. Scenario I 

American Institute of A
the visual system and were used to measure the visual system

Table 5. The three coefficients calculated with different
methods ( t =192ms) d

   No. Name 

1 Control Device Position Over Drive 

2 Control Device Position 

3 Accelerations 

4,5,6 Rates, Attitudes, Pilot Eye Point 

7-11 EVDAS Signals 

12 Attitude Indicator 

13 Photo Diode 

14,15 Attitude& Rate Motion Commands 

16 Leg Drive Commands 

17 Simulator Leg Commands 

18 Accelerometers 

19 Leg Positions 

20 Accelerations from the Accelerometers 

21 Filtered Values of 20 
nstrument system transport delay; signals 14-19 were used to 
 are located sequentially in the motion system, as depicted in 
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Fig. 2.  Signal flow diagram of the delay measurement in the VM
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For scenario I, because both the aircraft model 
and the EOM were skipped, the output signals of 
the visual system and the instrument system 
resemble the input. The measurement of the visual 
delay is based on the EVDAS Y2 signal. The 
transport delay in the two cue channels were 
obtained as the average of the delays determined 
from the 10 transition points, and were further averag
Table 6.  

The delay is 58 ms in the visual channel and 40 ms
In this test, the sampling latencies in the two channel
(16.7 ms). They are not counted because the sampling 
addressed later. The theoretical average time delay in t
the visual system is 16.7 ms. Therefore, the measuring 

The input signal used to measure the delay in the
responses of the motion system were sensed us
potentiometers (for leg positions). The accelerometer r
Because of the measuring noise in the accelerometers,
Both the raw and filtered data were employed to dete
alone with both step input and doublet input are averag
is not included.   

B. Scenario II and III 
In both scenarios, the SIMES input 

signal was injected at point B (Fig. 1), 
and the difference is whether the 
aircraft model was skipped (scenario 
II) or in use. In both cases, the onset of 
the response was difficult to identify. 
Therefore, a least squares curve fit 
was employed to fit different time 
segments of the responses so that the intersections
corresponding to the onset of the input. Doublet signa
transport delays from the aircraft control input to the 
uncertainty and the asynchrony, are given in Table 7. 
coordinate transformations are completed in a single 
determined with small errors. Processing of the aerodyn

C. Summary 
Notice that the values in the Table 7 are averages 

onset of the response and the measurement noise. It su
scenarios II and III is not a good solution. This asse
simulation mainframe computer may be altered occas
(More complex aircraft models may require longer a fr
in one situation does not necessarily apply to another
visual system computer’s frame is fixed to 16.7 ms
measured accurately; 2) the delays associated with the
determined with high accuracies. Therefore, a good m
steps: first, measure the individual cueing subsystem de

 
 1dt =
 

where  is the frame cycle of the mainframe compumT
delay in a cueing channel. On the average it takes h

American Institute of A
Table 6. Transport delays in the three cueing channels 

Visual 
Cue Channels 

Visual Motion Instrument 

Delay (ms) 58 56 40 
ed across the five test runs conducted. The result is given in 

 in the instrument channel, with a cueing mismatch of 16 ms. 
s were 14 and 12 ms, both of which are less than one frame 
latency behaves as communication asynchrony, which will be 
he visual is 3.5 frames, that is, 58.4 ms if the update cycle of 
error for the visual delay is small.  
 motion system was either a step or a doublet. The terminal 
ing accelerometers (for the platform accelerations) and 
eadings were favored due to the large potentiometer latency. 
 the data were filtered before determining delays from them. 
rmine the delay. The transport delays in the motion system 
ed to be 56 ms (Table 6). Again, a sampling latency of 10 ms 
Table 7. Transport delay in the three basic channels 

Delay (ms) Aerodynamics 
Skipped? Motion Visual 

Yes (Scenario II) 88 106 

No (Scenario III) 101 132 
 of the fitting curves were treated as the starting point 
ls with varied duration were used as input signals. The total 
motion terminal and visual terminal, including the sampling 
All dynamic model processes, EOM integrations and various 
frame, and the delay of most intermediate variables can be 
amic model only consumes 7 ms of a frame.  

with large variances due to the difficulty of determining the 
ggests that measuring the total transport delay as was done in 
rtion is confirmed by the fact that the frame length of the 

ionally, depending on the aircraft model and simulation task 
ame time). This means that the total transport delay measured 
. Fortunately, this problem may be solved given that: 1) the 
, and the delays in the individual cueing channels can be 
 aircraft states from the aerodynamics and the EOM can be 
easure of the total transport delay can be obtained using two 
lay as in scenario I, and second, calculate the total delay with 

5 m a. T t ct+ +  (17) 

ter, at  the average asynchronous delay, and  t  the transport 
alf a frame for a control input change to be sensed by the 

c
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mainframe computer (this is known as sampling latency), and one frame to complete the aerodynamics and the 
EOM, so that the total average delay in updating the aircraft states is 1.5T . m at  may be calculated with Eq. (18).  

 

 ( )a
M Mt m T m m
N N

  = −    
 (18) 

where  is the iteration index of the visual computer, T  is the update period of the host computer, and m M N  is the 
minimal fraction equal to the ratio of T '  (T '  is the update period of the visual computer), or T M  and  must be 
relatively prime

N
8. For this measurement, T  is 25 ms, and the for the final piloted tests, it was set to 16 ms. The 

values of all three terms in Eq. (17), the maximums and minimums, if any, and the total delays in the three basic 
cueing channels for these two mainframe computer frames are summarized in Table 8.  

m

 Therefore, the average total delay (baseline delay) in the visual channel in the final tests will be 90 ms 
(approximation of 89.7 ms highlighted in red).   
 

Table 8.  Time delays of different sources and the total delays 

Delay (ms) 

mt  at  Total t  d

Main 
frame 
(ms) 

Cue 

Max Ave. Min Max Ave. Min 
ct  

Max Ave. Min 

Visual 58 124.7 103.8 93 

Motion 56 122.7 101.8 91 25 

Instrument 

50 37.5 25 16.7 8.3 0 

40 106.7 85.8 75 

Visual 58 105.3 89.7 84 

Motion 56 103.3 87.7 82 16 

Instrument 

32 24 16 15.3 7.7 0 

40 87.3 71.7 66 

V. Results of Final Piloted Tests 
The purpose of the piloted tests was to assess the effectiveness of the two novel predictors along with the 

McFarland compensator, and to compare the results with those of the offline tests that were introduced on AIAA 
5441 (2004)1. In addition to the above three predictors, an expedient algorithm was applied to the McFarland 
predictor in an attempt to reduce the spikes which result from high frequency input. Thus, four distinct compensators 
were tested: McFarland predictor, spike-reduced McFarland predictor, adaptive predictor, and state space predictor. 
For the remainder of this paper, they may be called MF, MFR, AP and SS, respectively.  

A. Test Procedure 
Thirteen subjects with varying aircraft and flight experience flew the NASA Langley Research Center Visual 

Motion Simulator (VMS) running a high fidelity, highly nonlinear mathematical model of a Boeing 757-200.  The 
pilots consisted of three NASA simulator engineers, three NASA research pilots, two corporate pilots, one FAA 
pilot, and four commercial pilots. The schedule for each pilot was: on the first day, three hours for training; on the 
second day, six hours for experiment. 

Each pilot executed two flight scenarios—a straight-in approach and an offset approach. Wind was added to the 
straight-in approach, rotating 180 degrees from head on to tail. Turbulence and a gust at the threshold were added to 
the offset approach. Artificial delays of 0, 48, 96 and 192 ms, all integer multiples of the update period (16 ms), 
were inserted into the visual channel in addition to the 90 ms baseline delay, resulting in total delays of 90, 138, 186 
and 282 ms. The added delay will be referred to as “short” delay when it is 0 or 48 ms, or “long” delay when it is 96 
or 192 ms. There were five compensation options: no compensation (NC), MF, MFR, AP and SS. Therefore, in each 
maneuver, there were 20 test runs [4 (delays) by 5 (compensation algorithms)]. Therefore, each pilot ran 40 tests in 
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total. For convenience of statement, the four added delay cases from 0 to 192 ms will be referred to as case I to case 
IV for the straight-in approach, and case V to VIII for the offset approach.  

Four types of analyses of the collected data were completed in order to evaluate the results. They are: 1) the 
pilots’ performance in minimizing the glide slope error (GSE) and touchdown point error (TDE); 2) the pilots’ 
handling qualities rating from the Cooper-Harper Ratings (CHR) on the glide slope and touchdown; 3) the pilots’ 
workload from the NASA Task Load Index (TLX); and 4) the pilots’ control workload based on the power spectral 
density (PSD) of the simulator control inputs. The first and last assessments are objective evaluations and the mid-
two are quasi-objective evaluations. In all these metrics, larger value implies poorer simulation performance. The 
succeeding sub-sections treat the analyses and the results of the final tests in this order. The analyses and 
comparisons fall into two categories: 1) compare each compensation case with the no-compensation case; 2) 
compare the MFR, AP and SS with the MF. 

B. Analyses of the Glide Slope Error (GSE) 
 In both approach maneuvers, the aircraft, starting from an initial altitude of 1303 ft, descends gradually to 
approach the designated runway for landing. The angle that the aircraft deviates from the ideal glide slope defines 
the glide slope error. The integrated PSD and root mean squared error (RMSE) of the GSE were calculated, and 
because the PSD pf the GSE shows more 
distinction among cases, the analysis is 
based on the PSD of the GSE. The 
integrated PSD is the integration of the PSD 
over the frequency range in which it is 
distributed (it usually is from 0 to 1 Hz).  
 Because the 13 pilots revealed large 
variations in the GSE due to the widely 
differing control strategies employed, the 
GSE data from five pilots, i.e., pilots # 1, 2, 
5, 11 and 12 were selected since they 
resulted in more positive compensation in 
terms of the GSE.  Figure 3 shows the mean 
values and standard deviations (STD) of the 
glide slope error of the selected pilots with 
different compensation algorithms. 
Compared with the no-compensation case, 
the McFarland predictor revealed decreased 
mean GSE for six cases (case I, III, IV, V, 
VII & VIII), the MFR revealed decreased 
mean GSE for five cases (case III, IV, V, VI 
& VII), the adaptive predictor revealed 
decreased mean GSE for six cases (case I, IV, V, VI, VII & VIII), and the SS revealed decreased mean GSE for 
seven cases (case I, III, IV, V, VI, VII & VIII).  Significant compensation is found for the MFR and AP for case 
VIII. All compensators resulted in better glide slope performance in terms of mean GSE. Compared with the MF, 
the MFR showed lower mean GSE for five cases (case III, IV, VI, VII & VIII), the AP showed lower mean GSE for 
six cases (case II, IV, V, VI, VII & VIII), and the SS showed lower mean GSE for all eight cases. The MFR slightly 
improved McFarland compensation results. Improved effectiveness with the two new novel predictors is apparent.      

G
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Fig. 3. Mean & STD of the glide slope error for pilots #1, 2, 5, 11
& 12  

C. Analyses of the Touchdown Error (TDE) 
 As the aircraft touches down, the difference between the actual aircraft x and y position and the ideal x and y 
position is defined as the touchdown errors. The subjects were instructed to touchdown within the “touchdown box” 
of 1000 ×  140 . The 2ft x  touchdown error is defined as the absolute value of the difference between the x  
coordinates of the touchdown point and the center of the box. Because the pilots were instructed to pay more 
attention to the x TDE, only the x TDE is illustrated here. For the remainder of this paper, the TDE only indicates 
the x TDE. The TDE results also were from all 13 pilots. 
 Figure 4 shows the mean values and standard deviations of the x touchdown error of the selected pilots with 
different compensation algorithms. Compared with the no-compensation case, the McFarland predictor revealed 
decreased mean TDE for two cases (case IV & VIII), the MFR revealed decreased mean TDE for four cases (case I, 
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VI, VII & VIII), the adaptive predictor revealed decreased mean TDE for six cases (case I, III, IV, VI, VII & VIII), 
and the SS revealed decreased mean TDE for f
compensation results, because it increased the 
mean TDE for six cases. The two novel 
predictors resulted in good compensation. 
Compared with the MF, the MFR showed 
lower mean TDE for five cases (case I, II, III, 
VI & VII), the AP showed lower mean TDE 
for seven cases (case I - VII), and the SS 
showed lower mean TDE for seven cases 
(case I, II, III, V, VI, VII & VIII). The MFR 
slightly improved the McFarland 
compensation. Improved effectiveness with 
the two new novel predictors is apparent. 

D. Analyses of the Cooper-Harper Rating 
(CHR)   
 Two sets of CHR were collected in the 
final piloted tests: the CHR of maintaining the 
glide slope and the CHR of manipulating the 
touchdown point. The difference between the 
two Cooper-Harper ratings reveals no 
considerable difference. Therefore, only the 
CHR on the touchdown is illustrated here. Figure
touchdown for different compensations in the s
shown in the lower half of this figure. Compared
decreased mean CHR for six cases (case I, II, III
cases (case III, IV, VI, VII & VIII), the adaptive 
VII & VIII), and the SS revealed decreased me
several cases for which some predictors showed 
for the MF, case VI for the AP, and cases II 
& V for the SS. Compared with the MF, the 
MFR showed lower mean CHR for three 
cases (case III, VII & VIII), the AP showed 
lower mean CHR for three cases (case IV, 
VII & VIII), and the SS showed lower mean 
CHR for six cases (case III - VIII). In terms 
of the CHR, the MF was slightly better in 
compensation than the MFR and AP. 
Improved effectiveness with the SS is fairly 
apparent.  Comparing the results of CHR 
with those of TDE and GSE shows that the 
objective performance metrics showed more 
obvious improvement of the two novel 
predictors. 

E. Analyses of the NASA TLX 
The NASA Task Load Index (Hart and 

Staveland in 19889) is a multi-dimensional 
quasi-objective metric to rate the overall 
workload of the operator in a man-machine 
interaction. The TLX is a weighted average 
of six ratings of six subscales of 
workload10: mental demand, physical demand, t
indicates high pilot’s workload. 
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 5 shows the mean values and standard deviations of CHR on the 

traight-in approach. As a comparison, the corresponding TDE is 
 with the no-compensation case, the McFarland predictor revealed 
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predictor revealed decreased mean CHR for four cases (case III, IV, 
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Figure 6 shows the difference in the mean value and standard deviation of the TLX when using the four types of 
compensators. Compared with the no-compensation case, the McFarland predictor revealed decreased mean TLX 
for four cases (case III, IV V & VII), the 
MFR revealed decreased mean TLX for six 
cases (case I, II, III, IV, VII & VIII), the 
adaptive predictor revealed decreased mean 
TLX for five cases (case III, IV, V, VII & 
VIII), and the SS revealed decreased mean 
TLX for five cases (case II, III, IV, VI & 
VIII). Compared with the MF, the MFR 
showed lower mean TLX for five cases 
(case I, II, III, VII & VIII), the AP showed 
lower mean TLX for five cases (case IV - 
VIII), and the SS showed lower mean TLX 
for five cases (case I, II, III, VI & VIII). The 
MFR, AP and SS showed fairly improved 
the compensation compared with MF. The 
results from the TLX analyses were similar 
to those from the other quasi-objective 
metric, the CHR.   

F. Analysis on PSD of Pilot Controls 
Smoothed periodogram algorithms were 

used to evaluate the PSD of the pilot 
controls: the roll and pitch sticks, the rudder pe
from 0 to 1 Hz because the power outside this r
little obvious and consistent changes with the a
only the integrated roll stick PSD is 
illustrated here.   
Figure 7 shows how the compensators affect 
the mean values and standard deviations of 
the integrated PSD of the roll stick. In the 
following statements in this subsection (F), 
PSD implies PSD of the roll stick. 
Compared with the no-compensation case, 
the McFarland predictor revealed decreased 
mean PSD for five cases (case III, IV, V, 
VII & VIII), the MFR revealed decreased 
mean PSD for six cases (case II, III, IV, V, 
VII & VIII), the adaptive predictor revealed 
decreased mean CHR for six cases (case II, 
III, IV, V, VII & VIII), and the SS revealed 
decreased mean PSD for six cases (case III - 
VIII).  Compared with the MF, the MFR 
showed lower mean PSD for four cases 
(case I, II, IV & VI), the AP showed lower 
mean CHR for five cases (case I, II, IV, VI 
& VIII), and the SS showed lower mean 
CHR for six cases (case II, III, IV, V, VI, 
VIII). In terms of the PSD, the MFR 
produced inconsistent comparison results comp
obvious with the SS, and is fairly obvious with 

F
P

G.    Summary of Piloted Tests Results 
 For compactness, not all results of the pilo

whole piloted tests analyses is presented as fo
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ared to the MF. Improved effectiveness over the MF is considerably 
the AP.   

ted tests are illustrated in this section. Therefore, a summary of the 
llows. The summary is based on analyses with respect to ten sub-
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metrics: GSE, TDE (in X direction), CHR on GS (CHRGS), CHR on TD (CHRTD), TLX, integrated PSD of the roll 
stick (IPSDRS), pitch stick (IPSDPS) and rudder pedal (IPSDRP), and the frequencies of the highest PSD peak of 
the roll stick (FPSDRS) and pitch stick (FPSDPS). 

1) In general, inserting artificial time 
delay increased mean measures in 
all sub-metrics. However, the 
increase is not obvious for short 
delay cases in terms of most sub-
metrics (Figure 8 shows one 
example). 

2) The time delay tends to move the 
highest PSD peak to higher 
frequency, and longer delay 
produced larger movement, 
whereas the compensation moves 
the highest PSD peak back to 
lower frequency, and the 
movement is slightly more obvious 
with the two novel predictors than 
with the MF. These results agree 
with the preliminary tests11. 

3) On average, the delay increases the 
integrated PSD in the frequency 
interval from 0.022 to 0.614 Hz for 
the straight-in approach, and the 
interval is from 0.08 to 0.528 Hz 
for the offset approach. On the other 
from 0.068 to 0.559 Hz for the straig
The effective intervals for the offse
addition, the SS showed wider effe
showed slightly wider intervals than t
can achieve better compensation resul

4) The overall analyses based on all ten 
poorer compensation for short adde
McFarland compensator, the state sp
superior for “long” delays to the Mc
compensation than the adaptive pred
predictors in the piloted tests agree w
simulation aircraft states. 

5) Large variation in the STD in almos
employed by different pilot subjects
variation with the effect of the time de
with 192 ms added delay than with
sufficiently effective. The variations w
delay, because no compensation can r

V
The paper demonstrated mathematically

compensation results among all the adaptive p
algorithm. The relationship between the ref
investigated in great detail, showing that the 
compensation quality of the state space predict

Piloted simulation tests were conducted 
comparison to the McFarland predictor and no
executed straight-in and offset approaches, at
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the time delay 
hand, the compensation decreases the integrated PSD in the interval 
ht-in approach, and from 0.078 to 0.524 Hz for the offset approach. 
t approach are narrower than those of the straight-in approach. In 
ctive intervals than all other compensators. Both novel predictors 
hat of the MF. This is further evidence that the two novel predictors 
ts than the McFarland predictor. 
sub-metrics show that while the adaptive predictor results in slightly 
d delay and better compensation for long added delay than the 
ace predictor is fairly superior for “short” delays and significantly 
Farland compensator. The state space predictor also achieves better 
ictor. The results of the evaluation on the effectiveness of these 
ith those in the theoretical offline tests conducted with the recorded 

t all sub-metrics might result either from different control strategies 
, or from the metrics being inconclusive. Figure 8 shows larger 
lay. It indicates that for some pilots, the performance was even better 
out added delay. This demonstrates that the metrics used are not 
ith compensation are expected to be greater than those with the time 

estore the system performance one hundred percent.  

I. Conclusion 
 why the stochastic approximation algorithm achieves the best 
redictors using the asymptotic ODE of the stochastic approximation 
erence model and the state space compensator performance was 
bandwidth of the reference model plays a key role in deciding the 
or. The baseline visual image delay was measured to be 90 ms.  
for assessing the effectiveness of the two novel compensators in 
 compensation. Thirteen pilots with heterogeneous flight experience 
 various delay configurations, on a flight simulator where different 
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predictors were applied to compensate for transport delay. Four metrics—the glide slope and touchdown errors, 
power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating on the 
handling qualities were employed for the analyses. The overall analyses show that while the adaptive predictor 
results in slightly poorer compensation for short added delay and better compensation for long added delay than the 
McFarland compensator, the state space predictor is fairly superior for short delay and significantly superior for long 
delay to the McFarland compensator. The state space predictor also achieves better compensation than the adaptive 
predictor. The results of the evaluation on the effectiveness of these predictors in the piloted tests agree with those in 
the theoretical offline tests conducted with the recorded simulation aircraft states. 
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