
Wesley M. Eddy
Verizon Federal Network Systems, Cleveland, Ohio

Yogesh P. Swami
Nokia Research Center, Irving, Texas

Adapting End Host Congestion Control
for Mobility

NASA/CR—2005-213838

September 2005

https://ntrs.nasa.gov/search.jsp?R=20050215689 2019-08-29T20:58:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10515503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Wesley M. Eddy
Verizon Federal Network Systems, Cleveland, Ohio

Yogesh P. Swami
Nokia Research Center, Irving, Texas

Adapting End Host Congestion Control
for Mobility

NASA/CR—2005-213838

September 2005

National Aeronautics and
Space Administration

Glenn Research Center

Prepared under Contract NAS3–03100

Acknowledgments

Khiem Le, Nokia, helped develop the Internet draft that specifies the LMDR behavior. Several participants
in the IETF's TSVWG and TCPM groups provided feedback on this work. Joseph Ishac and other members of

NASA's ACAST Architectures and Networks group gave useful analysis of this work.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

Available electronically at http://gltrs.grc.nasa.gov

ABSTRACT
Network layer mobility allows transport protocols to maintain con-
nection state, despite changes in a node’s physical location and
point of network connectivity. However, some congestion-controlled
transport protocols are not designed to deal with these rapid and
potentially significant path changes. In this paper we demonstrate
several distinct problems that mobility-induced path changes can
create for TCP performance. Our premise is that mobility events
indicate path changes that require re-initialization of congestion
control state at both connection end points. We present the ap-
plication of this idea to TCP in the form of a simple solution (the
Lightweight Mobility Detection and Response algorithm, that has
been proposed in the IETF), and examine its effectiveness. In gen-
eral, we find that the deficiencies presented are both relatively eas-
ily and painlessly fixed using this solution. We also find that this so-
lution has the counter-intuitive property of being both more friendly
to competing traffic, and simultaneously more aggressive in utiliz-
ing newly available capacity than unmodified TCP.

1. INTRODUCTION
The Internet’s routing architecture is designed to statelessly move

packets between hosts at fixed locations. In this regime, IP ad-
dresses provide host identifiers for network layer routing, and trans-
port layer port number pairs are further used to identify individual
connections between hosts. The IP addresses and port numbers
must remain fixed for the lifetime of a connection, as the standard
inter-layer interfaces have no mechanisms for dealing with mid-
connection changes in a host’s address, or an application’s port
numbers. This makes the natural approach to mobility, where a
host’s IP address changes to represent its location, undesirable, as
it causes existing connections to break whenever either host moves.
For this reason, various network layer mobility schemes have been
proposed, that extend the routing infrastructure to allow a host to
keep a fixed address despite changes in its location.

Several protocols exist for enabling host mobility at the network
layer, including Mobile IPv4 (MIPv4) [22], Mobile IPv6 (MIPv6)
[13], mobile router techniques [11], all-IP cellular networks [5],
and HIP-based mobility [20]. The key feature shared by these pro-
tocols is that a mobile node retains some fixed address (or identi-
fier), regardless of the IP addressing structure at the point where it
is physically attached to the network. This feature allows transport
bindings to static addresses to remain intact, and thus keep connec-
tions alive, despite mobility across diverse networks. In this paper,
we show that hiding mobility events from the transport layer in this
way can be detrimental to performance.

In the Internet’s protocol stack, the transport layer is the low-
est layer with any view of the end-to-end network path between
two hosts. For this reason, the transport layer is a sensible place
to implement end-to-end congestion control, and modern transport
protocols for bulk-traffic include congestion control mechanisms
to perform in a manner friendly to the network and to other traffic
[8]. Presently-used congestion control techniques such as TCP con-
gestion control [3] or TCP-Friendly Rate Control (TFRC) [10] use
packet loss events (or ECN marks) as indications of a path’s con-
gestion level, and determine their sending behavior based on packet
losses. These techniques provide a roughly accurate estimation of
the path’s available capacity at any given time, although TCP con-
gestion control and TFRC differ widely in how they compute this
estimate.

TCP congestion control has two distinct phases, slow start and
congestion avoidance. TCP’s slow-start algorithm quickly probes
the amount of available capacity in a network path by doubling the
rate it sends segments every round-trip time (RTT). This allows an
upper bound to be quickly reached, when the first packet loss is
detected. The steady-state congestion avoidance algorithm is used
to keep the sending rate undulating near the rough capacity estimate
determined during slow start. During congestion avoidance, the
sending rate increases conservatively in a linear fashion.

Internet

N

N’
CN

MN

Figure 1: Host MN moves from network N to network N’ while
maintaining a TCP connection with host CN

Figure 1 illustrates a mobile node, MN, moving from a connec-
tivity point on subnet N to one on subnet N’. The mobile node
has an active TCP connection with some correspondent node CN,
which remains intact across the transition using a network layer
mobility protocol, such as MIPv4. The change in MN’s attachment
point, from subnet N to subnet N’, implies a change in the end-to-
end path that the connection’s segments follow. Since the conges-
tion control state (congestion window, slow start threshold, retrans-
mission timeout, etc) of a connection is based upon estimates of the

Wesley M. Eddy
Verizon Federal Network Systems

Cleveland, Ohio 44135

Yogesh P. Swami
Nokia Research Center

Irving, Texas 75603

Adapting End Host Congestion Control for Mobility

NASA/CR—2005-213838 1

end-to-end path, a path change may immediately invalidate some
portion of the congestion control state. In figure 1, the networks
are represented as clouds to signify that their topology is obscured
from the end nodes, and the degree of path change is unknown. We
assume that such mobility events occur relatively infrequently, no
more than once per several dozen RTTs.

Since the significance of the path change between two attach-
ment points is a mystery, there is no way for a connection to know
whether or not its old path property estimates from subnet N are
reasonable in subnet N’. For example, subnet N and subnet N’ may
be similarly configured and loaded networks who both attach to the
Internet via a common point. In this case the difference is insignif-
icant, and TCP’s congestion state remains accurate even after the
path change. However, there is no way of ensuring that this is the
case, and a mobile node may just as easily move from a 54 Mbps
802.11g link, to a 384 kbps cellular link. Such changes are entirely
possible, and are currently completely hidden from the transport
layer, so that TCP does not even get an indication from a lower
layer that a mobility event has occurred.

Regardless of whether or not subnet N and subnet N’ use vastly
different media, the end-to-end paths from them to CN may have
substantially dissimilar properties that negatively influence TCP
congestion control. For example, a mobile node might move from
one wireless LAN access point to another, and yet experience a
wide variation in path properties depending upon the network load
and number of users. In some cases, the routing between subnet N
and CN may be via an entirely different path than from subnet N’
to CN. There are no guarantees about the significance or insignifi-
cance of the path change corresponding to a mobile node’s chang-
ing points of attachment. They may lie anywhere on the spectrum
from trivial to severe, and TCP is left to infer and adapt on its own.

Apart from path-dissimilarity, a mobile node’s TCP performance
is also influenced by the underlying mobility management scheme1.
Broadly, the range of mobility management schemes can be classi-
fied into two categories, soft-handoff and hard-handoff, depending
upon whether or not packets in flight to MN’s old location on sub-
net N are lost after movement. In the case of a hard handoff, when
the MN moves to subnet N’, the access router in subnet N does not
keep any state about MN’s new location. Therefore, immediately
after subnet change, packets in flight destined to MN’s old location
are lost. Since a full flight of loss (whether loss of data segments,
or loss of acknowledgements) often results in an idle TCP retrans-
mission timeout (RTO) wait period, a hard handoff results in lost
throughput.

With soft-handoffs, the access router in subnet N keeps a soft-
state mapping between the mobile node’s old care-of address and
its new address [14]. When a packet destined to the mobile node’s
old address arrives, the access router in subnet N tunnels those
packets to subnet N’, preventing losses. Because less packets are
not lost during soft handoffs, there is less danger of a TCP retrans-
mission timeout, but it is more likely that the mobile connection
will temporarily behave unfairly if the new path is already con-
gested.

The hard/soft handoff terminology for describing network layer
mobility support should not be confused with similar link layer ter-
minology. In the case of the network layer, soft handoff refers to
the old access router’s ability to forward packets to the new access
router. In the link-layer, soft handoff refers to an interface’s ability
to re-associate with a new link without breaking the association on
the old link. It is possible to have both soft and hard handoffs at the
network layer with either kind of link layer technology.
1Appendix A provides brief descriptions of several mobility man-
agement schemes.

Although TCP behavior is influenced by the hardness or softness
of network layer handovers, it can have problems with both types
of underlying protocol, simply because TCP has no mechanisms
for dealing with the quick change of path properties presented to it.
Some protocols route all packets through an indirection point, like
a MIPv4 Home Agent when bi-directional tunneling is used [18],
while others provide a means of route optimization whereby a more
efficient path can be used. Although these protocol features have
some effect on the potential path change, they do not constrain it.
Additionally, some protocols provide means for “fast” or “smooth”
transitions. This may mitigate losses and latency during the change
of network attachment points, making TCP have less recovery work
to do, but it also does not limit the degree of potential difference
in end-to-end network path properties. The exact network-layer
mobility strategy used is mostly irrelevant to TCP, which always
has the task of quickly adapting to a new and potentially completely
unknown path.

Section 2 outlines a number of problems that arise when con-
gestion control is oblivious to mobility events. In Section 3, we
describe a means to make network layer mobility events less trans-
parent to TCP. We also outline a response algorithm for TCP-like
congestion control that should address the problems described in
this paper. The effectiveness of our approach is then evaluated in
Section 4, and some broad discussion of the mechanism is provided
in Section 5.

2. MOBILITY’S EFFECT ON CONGESTION
CONTROL

TCP has a feedback response of increasing its congestion win-
dow for successful transmissions, and decreasing the window for
losses (or ECN marks). This strategy is based upon the assumption
that future segments will traverse the same basic path as past seg-
ments. Yet, the IP architecture provides a datagram service where
each packet may be routed independently of all others, even when
their sources and destinations are the same. Despite the potential
independence in packet treatment, congestion control algorithms
assume that once a connection is established, all segments follow
the same path. More precisely, the assumption is that links, routing
tables, propagation delays, maximum buffer capacities, link MTUs,
and other path properties are mostly static, with the only variable
being the amount of other traffic filling links and buffers at any
time. This leads to the “network-pipe” model, described by Jacob-
son [12]. As demonstrated in figure 2(a), in this model, y-axis dis-
tances (pipe widths) represent link bandwidth, and x-axis distances
(pipe lengths) represent time (queueing and propagation delays).
The data stream flows through one set of pipes to the receiver, and
acknowledgements flow through another set of pipes back to the
sender.

Based on the network-pipe model, Jacobson’s principles for con-
gestion control can be understood as attempting to keep the net-
work’s pipes full, without overfilling them.

• To reach equilibrium, the sender should quickly probe the
network for a capacity estimate. TCP’s slow start algorithm
satisfies this need, and once this estimate is made, the con-
gestion avoidance algorithm takes over, and future probing is
much less aggressive.

• A sender in equilibrium should follow the conservation of
packets principle to avoid congestion. Conservation of pack-
ets is the idea that to maintain equilibrium, a new packet is
only put onto the network after an old packet has left the net-
work, keeping a constant number of packets in flight. TCP

NASA/CR—2005-213838 2

ACK

Data
Se

nd
er

R
eceiver

(a) Visualization of TCP segments and ac-
knowledgments moving through a network
path, using the network-pipe model

Data
Open on path

change

Close on
path change

Stale ACK

ACK

Pipe-1
Pipe-2

(b) The split-pipe model adaptation, in which
a valve switches packet flow from one pipe to
another at the time of a mobility event.

Figure 2: Adapting the network-pipe model to reflect mobility

achieves this packet conservation through its ACK-clocking
mechanism, sending new data upon receipt of acknowledge-
ments for old data.

When a mobile node moves during the course of a TCP connec-
tion, the network path between the hosts changes in a way that is
difficult to visualize using the standard network-pipe model. We
propose an extension, illustrated in figure 2(b) called the split-pipe
model, which captures this behavior. In the split-pipe model, mo-
bility between network attachment points corresponds to switching
the valve between the top and bottom pipes. Using this model,
we can re-examine Jacobson’s congestion control principles. Fig-
ure 2(b) has been simplified by abstracting out the ACK-carrying
pipes, to focus on the data-carrying pipes. In theory, changes to the
ACK path could be serious as well.

2.1 Problems with Soft Handoffs
If the underlying mobility management scheme allows soft hand-

offs, then for some period of time, acknowledgements for data seg-
ments sent through the top pipe will be received. We call these stale
acknowledgments. Stock TCP uses these stale acknowledgements
both to clock out data segments that travel through the bottom pipe,
and to increase its sending rate. This behavior is not in line with
the packet conservation principle, as stale acknowledgements do
not indicate that segments have left the bottom pipe, where new
segments are sent. Nor should stale acknowledgements be used
to increment the sending rate into the bottom pipe, as they repre-
sent feedback about the top pipe’s state, and convey no informa-
tion about the bottom pipe. Stale acknowledgments should be used
to indicate successful transmissions and remove data from the re-
transmission queue, but otherwise be ignored for the purposes of
congestion control and clocking out new data.

In addition to ignoring stale acknowledgments for congestion
control purposes, the behavior of attempting to maintain the equi-
librium achieved in the top pipe, after a change to the bottom pipe,
is unwise for a number of reasons. If the bottom pipe, is much
larger, or has more free space, then the conservative congestion
avoidance strategy can waste this by leaving it unused. In the op-
posite case, where the bottom pipe is much smaller than the top
pipe, then using the old equilibrium state in the new pipe can lead

to congestion losses. These problems are demonstrated quantita-
tively in Section 4. For now, we argue from the model and prin-
ciples that slow start should be re-initiated after the change to the
new path, from the connection’s initial congestion window, and not
the congestion window at the time of transition.

2.2 Problems with Hard Handoffs
Some network layer mobility protocols may cause up to an entire

window of segments or acknowledgements to be lost. If this degree
of loss occurs, then TCP senders may be forced to wait idly for a
full retransmission timeout before beginning the process of repair-
ing the losses and recalibrating the congestion window to the new
network. The retransmission timeout is a rather long time frame
for a sender with queued application data to pause for, typically
representing several RTTs [21] (as measured in the old network
before the transition). If a TCP sender has an amount of outstand-
ing data that fills its congestion window, and acknowledgements
for this data are lost due to the change in network paths, then this
entire time is wasted.

The RTO wait period is particularly a problem in wireless net-
works because the RTO duration tends to be longer than when tra-
ditional wired links are used. One reason for high RTO values in
wireless networks is that they often use link layer retransmissions
to mitigate the effects of high bit error rates [7]. Because of link
layer retransmissions, the measured RTT varies significantly caus-
ing the RTT-variance to increase. Since the RTO depends upon the
RTT-variance, the wait periods tend to be rather large. Addition-
ally, severe over-buffering of wireless links is a common practice,
which leads to longer RTOs [9, 17]. In a real EGPRS test network
at Nokia, retransmission timeouts have been routinely observed af-
ter handoffs between subnetworks.

Since outstanding data on the old network path does not con-
tribute to congestion on the new path, where the TCP connection
has no in-flight data, then this outstanding data should not prevent
new (acknowledgement-generating and RTO-avoiding) segments
from being sent over the new path. The ability to send data on
the new network allows acknowledgements to come back which
will indicate whether or not losses occurred during the transition
and need to be repaired, and in either case, will allow a wasteful
timeout to be avoided. In this case, avoiding the RTO itself is a

NASA/CR—2005-213838 3

more effective approach than trying to detect and correct for spuri-
ous RTOs after the fact, as many techniques have been proposed to
do [16, 23].

2.3 Invalid ssthresh After Handoff
The congestion control state of a TCP connection includes a vari-

able, ssthresh (for the slow start threshold), which sets the bound-
ary congestion window between TCP’s exponential and linear in-
creases in sending rate. When the congestion window is under
ssthresh, TCP rapidly probes available capacity using slow start.
When the congestion window reaches ssthresh, the more conser-
vative congestion avoidance algorithm takes over. Initially, at the
beginning of a connection, ssthresh is set to a high value. When a
loss is first inferred via the fast retransmit mechanism, ssthresh is
set to half of the present amount of outstanding data. After retrans-
mission timeouts, TCP resets the congestion window to a single
segment, uses slow start up to ssthresh and then enters congestion
avoidance.

Initially, the high ssthresh value allows the exponential increase
strategy during slow start to operate until the network’s limit is
reached. After this point, ssthresh is always set to some previously
attained rate, so slow start is never again used to probe for fresh
network capacity, but rather to simply get up to a previously known
“safe” speed. This strategy assumes that the amount of available
capacity remains somewhat close to the previously estimated val-
ues. With mobility between diverse networks, this may not be the
case. Newly attached networks may offer multiple orders of mag-
nitude in higher rates, which TCP congestion control will be unable
to utilize. Particularly with long RTTs and high network capacities,
the additive increase strategy is slow to explore higher rates.

Consider the case of a TCP connection that begins while two
hosts are connected via a 384 kbps link with 100 ms of one-way
propagation delay2. This scenario is designed to be simple for
demonstration, not necessarily realistic. Such a TCP connection
will have its ssthresh set to roughly 6 kB, assuming an RTT of
around 250 ms, which is sufficient for keeping its congestion win-
dow in the range to reasonably utilize this particular network.

If, at some point, one host changes connection points, such that
the new link (or path) between the two is identically configured
as the old one, aside from the available capacity, which increases
to 54 Mbps, keeping the stale ssthresh established on the old link
prevents the new capacity from being efficiently used. To fully uti-
lize the new network, the congestion window would need to reach
nearly 1700 kB. Even with multiple kB segments, the linear march
from 6 kB to 1700 kB would take an inordinate number of round-
trip times. Figure 3 plots this time as a function of the ratio between
RTT and segment size. Even with an RTT of only propagation de-
lay (200 ms) and a segment size of 8 kB, this takes over 42 seconds.
Using slow start, this time could be reduced to under 12 RTTs, or
around 3 seconds.

While the given example is somewhat contrived, similar real-
world scenarios are not altogether inconceivable. For example, sys-
tems supporting communications for space exploration or air traffic
management may have such widely varying types of links available
to them, and frequently transition connections between links due to
fading, line-of-sight blocking, noise in a frequency band, or other
link disturbances.

The slow start threshold is a TCP state variable whose purpose
is to prevent the large burst of losses that slow start can cause. The
adjustment rules do not allow for rapid probing of newly available

2Throughout this paper, all link buffers are configured using the
B = (RTT × C)/

√
n rule [4]

 10

 100

 1000

 10000

 100 200 300 400 500 600

Ti
m

e
re

qu
ire

d
to

 s
at

ur
at

e
ne

w
 li

nk
 (s

)

RTT / segment size (ms / kB)

Figure 3: Relation between segment size, RTT, and minimum time
to reach 54 Mbps when ssthresh is 6 kB

0

4

8

12

16

0 2 4 6 8 10 12 14

ssthresh on new path

ssthresh after timeout
C

on
ge

st
io

n
W

in
do

w

RTT

Wasted Time

RTO

Figure 4: Effect of RTO wait period and stale ssthresh on conges-
tion window, after a hard handoff.

capacity after the initial estimation. Since the available capacity
can significantly change with network layer mobility between dis-
tinct types of networks; when transitions take place, the slow start
threshold should be re-initialized to a large value to permit for rapid
probing of available capacity in the new network. This is perfectly
allowable under present congestion control principles, as it pro-
duces the exact same effect as a new flow starting up. Figure 4
illustrates an example time benefit that can be achieved by avoid-
ing an RTO and reseting ssthresh after a mobility event where more
capacity becomes available.

2.4 Network Design, Provisioning, and
Stability

We have assumed mobility events to be infrequent over the life-
time of an individual connection, but within the entire network
there may be many mobile hosts, each with several connections.
While a single host’s congestion control behavior will certainly in-
fluence the performance of its own connections and others sharing
the same links, the design and stability of the network as a whole
may be an issue as the number of mobile nodes or connections in-
creases.

Figure 5(a) shows two connections, C1 and C2 that are termi-

NASA/CR—2005-213838 4

x5

S1 R1

S2 R2

l0

x1x4

x3 x2

x0

Han
do

ff

Handoff

C1(t)

C2(t)

C1(t + δ)

C2(t + γ)

l1

(a) Set of routers that are affected by a path
change.

S(l0)

S(l1)
S(l2)

S(l3)

S(l4)
S(l5)

S(l6)

S(l...)

S(lN)

(b) System view when multiple connections
cross subnet boundaries.

Figure 5: System View of Subnet Change

nated at mobile nodes R1 and R2. At time t, C1’s segments flow
through routers x4 and x1, but at time t+ δ, R1 moves from link l1
to link l0. The new path which segments take is through routers x4,
x5, and x0. With soft-handoff support, x1 tunnels segments for R1

to x0. The link between these two routers must be adequately pro-
visioned to accept the sudden burst of tunneled traffic, which leads
the design of the network to include expensive high-speed links be-
tween access routers, which would otherwise not be needed.

The tunneled segments from the soft-handoff will generate ac-
knowledgements and cause data to be clocked out through the new
path, where some of the routers (x0 and x5) have not seen previous
segments from the connection, and may already be carrying a mix
of flows that can’t immediately accommodate the demands of C1.
While x0 handles soft-handoffs and could be specially designed
for such situations, x5 could be a generic router with no relation to
the portion of the network specifically designed for mobile nodes.
Over-designing the edge networks and routers (like x0) only pushes
the problem upstream to other routers (like x5).

Some networkers have argued that this is really not a problem, as
the core of the Internet is known to be well over-provisioned any-
ways. To rely on this property is dangerous and potentially expen-
sive. We cannot accurately extrapolate the current state of network
utilization to the future, as history has shown that new applications
and ways to use the network emerge and are adopted very quickly.
Furthermore, the Internet protocol suite is used in other realms than
the global Internet (for instance, military and space exploration net-
works), which have different requirements and may not be as over-
designed. We desire congestion controllers that behave reasonably
across all potential paths, not just the kinds that are presently most
likely on the Internet.

The problem of network design becomes even more difficult,
considering that in figure 5(a), connection C2 also sends segments
through x5 and x0 afterR2 moves at time t+γ. Even if the network
could handle C1, or if the disturbance from C1 were to subside af-
ter a short period of time, another disturbance would occur from
C2 some time later (γ − δ). Since the mobility of R1 and R2 may
be independent, there is no way to ensure that γ and δ are suffi-

ciently far apart for the network to handle. With even more mobile
nodes, or more connections per mobile host, the overall stability of
portions of the network could be at stake.

With some additional knowledge of average connections from
mobile nodes and frequencies of movement, the network design
problem is still not easy, even at the edges or between the access
routers that handle soft-handoffs. If S(li) is the set of mobile nodes
connected to some link li, any of those nodes may become con-
nected to other links, and any nodes from other links may become
members of S(li). Figure 5(b) shows the relation between a net-
work l0 and N surrounding networks l1...lN , for the purpose of
designing l0 to accommodate mobility to and from each of the
nearby networks. Not only would the soft-handoff links between
all these networks be expensive, and likely redundant, but for cost-
effectiveness, the provisioning would only be sufficient based on
some estimates of average (or worst-case) motion between l0 and
each neighbor and the number of new flows that start and old flows
that stop as nodes stay in each network. Given that with wireless
networks, the neighbor set can easily grow and that the system is
already provisioned based on several dicey estimates, the future
adequacy of the overall system design is questionable, even if it is
sufficient at some point in time.

Fixing end-host congestion control algorithms to respond to mo-
bility events seems like a far more fruitful, and cheaper, approach
than attempting to design the network infrastructure to accommo-
date sudden changes in offered loads. This puts the onus of respon-
sibility on the end hosts where mobility actually occurs and takes it
off innocent links and routers. Losses at properly configured static
links and routers are the fault of end hosts’ sending patterns, and
can be more easily prevented by the end hosts than inside the net-
work.

2.5 Other Path Properties
Aside from the congestion window and ssthresh variables that

store estimated path state information, TCP also makes an estimate
of the RTT. This RTT estimate is used to compute the retransmis-
sion timeout. Because instantaneously measured RTTs may vary

NASA/CR—2005-213838 5

widely due to network buffering for congestion, previous estimates
contribute to the current RTT estimate at any given time. This is
a desirable practice when the measured RTTs have only transient
or insignificant differences due to queueing; however, if a recently
measured RTT differs from the current estimate significantly due
to a path change, using the standard RTT update strategy is a hin-
drance. Given significant differences, convergence of the RTT es-
timate to a value representative of the new path may be slow. Up-
dating the RTT estimate based on stale acknowledgements can also
lead to a poor estimate.

An invalid RTT estimate makes the retransmission timeout either
too long or too short, depending on the direction the RTT estimate
is in error. If the RTT estimate is overly long for the new network,
then the RTO timer is slow to fire and the amount of idle time be-
fore retransmission is needlessly long. If the estimate is too short,
then segments may be spuriously retransmitted, with the conges-
tion window unnecessarily reduced. In either case, this is harmful
to TCP throughput. Both overly conservative and overly aggressive
RTOs can be mostly avoided in the case of mobility, though. If a
mobile host can simply re-initialize its RTT estimate with the first
available information it gets from a new path, then its RTO timer
will be reasonably set. When a path change is known to have oc-
curred, there is no logic behind letting old estimates from a defunct
path cloud TCP’s judgment.

To avoid IP fragmentation, some TCP implementations execute
path MTU discovery algorithms, although this can be problematic
[15]. Since the path MTU can change when the path does, the
discovery procedure should restart after mobility events. In ad-
dition, other more experimental path properties that are measured
by a particular TCP implementation should also be re-estimated.
For example, some experimental TCPs use estimations of a path’s
packet loss rate to alter congestion control behavior [2, 6]. In this
case, biasing estimates in the new network based on data collected
either in the old network or from stale acknowledgements could be
troublesome. These types of considerations are not nearly as im-
portant as reseting the congestion window, ssthresh, and avoiding
RTOs, but not to be ignored.

3. LIGHTWEIGHT MOBILITY DETECTION
AND RESPONSE

The Lightweight Mobility Detection and Response (LMDR) al-
gorithm has been proposed within the IETF as a way of avoiding
the TCP problems described in the previous section. LMDR is de-
signed to be independent of the underlying mobility management
protocol. LMDR’s only requirement is that a mobile node has some
means of detecting its own mobility. In most cases, this require-
ment is easily satisfied. For example, standard neighbor discovery
[19] procedures may be sufficient for this purpose3.

Although a mobile node can detect its own mobility, its peers
(e. g. the CN in figure 1) will often be unaware of this movement.
Since a path change influences the congestion state in both direc-
tions of the connection, a mobile node must somehow inform its
remote peers of local mobility events. To achieve this, LMDR uses
a TCP option, that is specified to be reliable, even in the case where
both nodes simultaneously move. This is the “mobility detection”
portion of LMDR, as described in detail in Section 3.1.
3In some cellular networks such as (E)GPRS networks, the mo-
bility information is not only hidden from the transport layer but
also from the IP layer. A path change in these networks will not
be detected by simple techniques like neighbor discovery. How-
ever, even in these networks it is possible to detect mobility events
with the help of link layer protocols. The exact mechanism of how
mobility events are detected is outside the scope of this document.

KIND LENGTH RES CNTR ECNT

0 8 16 2418 21

Figure 6: Wire-format of the LMDR TCP option

Once a host is able to detect potential path changes, either by
monitoring its own mobility, or by receiving an LMDR TCP op-
tion, it can easily take corrective measures to address the problems
sketched in Section 2. The “response” component of LMDR con-
sists of performing these actions, and is detailed in Section 3.2.
We consider LMDR to be a “lightweight” mechanism for several
reasons. First, it requires no additions to the network architec-
ture, and no changes to existing infrastructure components. Sec-
ond, LMDR does not burden the network with additional probes,
heartbeat timers, etc. And finally, LMDR does not introduce any
new protocols, but merely a simple TCP option whose processing
occurs infrequently and requires only a small number of state vari-
ables, and no expensive data structures or operations.

3.1 Mobility Detection
Detection of local mobility can be accomplished in numerous

ways, depending on the underlying network layer and mobility
management protocols. For example, there are neighbor, destina-
tion, and ARP caches in various protocols that can be consulted to
infer if a host has moved. Alternatively, changes in a default router
or observation of router advertisements might be used. Ideally, the
lower layer mobility code would propagate information on mobility
events up the protocol stack via some form of message passing or
data sharing, but this is not how current kernel implementations of
protocols work. How a transport layer infers mobility information
from lower layers is beyond the scope of this paper.

A single host can unilaterally detect its own mobility and locally
respond to it by fixing its own TCP state for the half-connection that
it sends data over. This can be accomplished without any changes
to the TCP wire protocol. However, if the half-connection in the
reverse direction carries a large amount of data, the remote peer
needs to be notified so that it can reset its TCP state. A new TCP
option (shown in figure 6) is introduced for this purpose.

As standard for multi-byte TCP options, the first byte identifies
the type (whose value is presently unassigned), and the second byte
gives its length — an invariant 3 bytes. The next two bits of the
third byte are reserved for future use, and should be set to zero by
senders and ignored by receivers. Possible uses for these two bits
are left for future work. The remaining 6 bits are divided into two
3-bit counters: CNTR and ECNT.

As with other TCP options, use of the LMDR option is negoti-
ated at startup time on the SYN and SYN-ACK segments. A host
wishing to use LMDR places an LMDR option on its SYNs. If the
remote host supports LMDR, it responds to received LMDR op-
tions on SYNs, by placing an LMDR option on SYN-ACKs. Upon
connection startup, CNTR is initialized to some random value, and
ECNT is left uninitialized until the first CNTR value is received
from the remote host. The ECNT field and variable are used to
echo received CNTR values. Each time a host moves, it decrements
CNTR (modulo 8), and advertises this by continuously transmitting
LMDR options on its outgoing segments (both data-bearing and
pure acknowledgements) until it receives back an LMDR option
with an ECNT value that matches the local CNTR value. Upon re-
ceiving LMDR options, a host sets its ECNT variable to the received

NASA/CR—2005-213838 6

CNTR value.
LMDR options are not sent on all segments. The only times

when hosts need to send LMDR options are when they are inform-
ing peers of their own mobility, or confirming the reception of a
peer’s mobility notification. During normal exchange of data be-
tween mobility events, there is no need to transmit LMDR options
on segments.

Figure 7: Example of MN notifying CN of a change in its attach-
ment point

The effectiveness of LMDR is limited to situations where end
hosts are the only mobile nodes, and the network infrastructure re-
mains fixed. If network path changes are not caused by the mobility
of an end host, but through attachment to a mobile router, then the
simplistic means we have described for detecting mobility will be
ineffective. The LMDR techniques could still be used, only if there
were some means for mobile routers to notify attached end hosts of
mobility events.

3.2 Mobility Response
Upon detection of local or remote mobility, several actions need

to be taken. We have previously discussed these, but lay them out
again here in a specific order for clarity.

1. Temporarily pause outgoing transmissions. Cancel the RTO
and delayed acknowledgement timers.

2. Update values of CNTR and ECNT as necessary.

3. Record the highest sent sequence number as stale. Received
acknowledgements for segments underneath stale will be con-
sidered stale and ignored for congestion control, RTT estima-
tion, and data clocking purposes.

4. Reset the congestion window, ssthresh, RTO, RTT estimate,
RTT variance, and other path properties as if this were a new
connection. This automatically puts the connection into slow
start territory, and allows at least one segment to be sent. This

segment carries the LMDR option that either notifies the re-
mote host of local mobility, or acknowledges receipt of an
LMDR option generated by remote mobility.

5. Resume normal outgoing transmissions

Even, if use of the LMDR option is not successfully negotiated
at connection startup, an individual host can still take most of the
LMDR mobility response (everything but sending LMDR options)
when it detects its own movement. This at least allows the half-
connection it sources data on to better deal with rough path transi-
tions.

Since this mobility response involves slow starting from the ini-
tial window, the impact of a mobile flow on the new network is the
same as that of a totally new flow starting up, which even heav-
ily congested networks are robust to. Furthermore, since slow start
exponentially increases the congestion window, for a bulk-transfer
flow, the amount of time required to reach the previous congestion
window should be negligible. For more interactive flows, the tem-
porary dip in the sending rate could be a problem, however few
interactive applications that require smooth high rates use TCP.

4. SIMULATION-BASED EVALUATION
In this section, we use simulations to show that stock TCP (with-

out LMDR) can behave undesirably after mobility events, and that
adding LMDR simultaneously mitigates the potential for both overly
aggressive and overly conservative behaviors.

4.1 Improving Friendliness to Competing
Traffic

Consider the case where a TCP connection endpoint moves such
that in the new path, less capacity is available to it than in the pre-
vious path. With an inappropriately high congestion window, the
connection will likely cause and experience some packet losses.
While TCP’s reaction to losses is a quick reduction in the conges-
tion window, whether by half or down to a single segment, the re-
duction is delayed until losses are inferred, and does not take place
either immediately when or before they occur. Mobility events that
result in substantial path changes can make previous congestion
window estimates invalid. Delaying the congestion window reduc-
tion until the first loss detection, rather than reducing it immedi-
ately after the change in attachment points, can lead to temporary
increases in loss rates observed by both the TCP flow and other
competing traffic on the new path.

Since TCP senses the losses caused by its inappropriate conges-
tion window, and adjusts it in a manner that quickly converges to
an acceptable level, a single flow transitioning between networks
is not a long-term threat to the congestion level or stability of the
end-to-end path. Transient bursts of packet loss are expected and
coped with relatively well by modern transport protocols. How-
ever, a node that moves once is likely to move again later, and if
one node is allowed to move, than many nodes may also move.
This makes the transient problem more serious, as it is bound to re-
occur, perhaps frequently. This is harmful to the performance and
fairness of TCP-like congestion control, the steadiness and friendli-
ness of equation-based congestion control (like TFRC), and partic-
ularly damaging to unreliable real-time protocols that rely on stable
path conditions.

Figure 8 shows the results from simulations4 where some num-
ber of TCP flows establish themselves on a 10 Mbps path with
4Throughout this paper, all simulations are run using the ns-2 net-
work simulator, with TCP/Sack1 senders, TCPSink/Sack1/Delack
receivers, and all results averaged over 30 trial simulation runs.
Simulation scripts are available from the authors upon request.

NASA/CR—2005-213838 7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
B

R
 P

ac
ke

ts
 L

os
t

Number of TCP Flows

2 Mbps CBR flow
4 Mbps CBR Flow
8 Mbps CBR Flow

(a) Average number of CBR flow’s packets lost during
120th second of simulation time, immediately follow-
ing path change

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
B

R
 P

ac
ke

ts
 L

os
t

Number of TCP Flows

2 Mbps CBR Flow
4 Mbps CBR Flow
8 Mbps CBR Flow

(b) Average number of CBR flow’s packets lost during
180th second of simulation time, 60 seconds after path
change

Figure 8: Increases in CBR loss rate due to temporarily unreasonable TCP congestion windows

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
B

R
 P

ac
ke

ts
 L

os
t

Number of TCP Flows

2 Mbps CBR flow
4 Mbps CBR Flow
8 Mbps CBR Flow

(a) Average number of CBR flow’s packets lost during
120th second of simulation time, immediately follow-
ing path change

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
B

R
 P

ac
ke

ts
 L

os
t

Number of TCP Flows

2 Mbps CBR Flow
4 Mbps CBR Flow
8 Mbps CBR Flow

(b) Average number of CBR flow’s packets lost during
180th second of simulation time, 60 seconds after path
change

Figure 9: Demonstration of LMDR effectiveness in reducing temporary congestion spikes

NASA/CR—2005-213838 8

100 ms of one-way propagation delay. After 2 minutes, the flows
are then moved to another identical path, where a constant bit-rate
(CBR) flow is already consuming some of the new path’s capacity.
Figure 8(a) plots the number of losses imposed on the existing CBR
flow, during the first second after the transition, versus the number
of TCP flows. The transitions are implemented such that there is
no disconnection time between networks, and there is no loss of
data segments, but all stale ACKs are lost (this is a hard handoff
with the mobile node as data source). For comparison, the number
of the constant bit-rate flow’s packets that are lost during a single
second a full minute after the transition, when the TCP congestion
windows have converged to appropriate values for the new path, is
plotted as well in 8(b). The difference between each set of lines
is due to the inappropriate TCP congestion windows immediately
after the transition.

One of the things this simulation shows us is that the problem
is less severe when a large number of flows simultaneously make
the path transition. This effect is due to the division of capacity be-
tween the flows. If more flows utilize the same capacity, then each
individual flow has a smaller congestion window. The smaller con-
gestion windows are more likely to result in RTOs on losses, which
causes them to be idle for much longer periods of time than a lesser
number of flows, which have large enough congestion windows to
repair most losses via fast retransmissions. Another important ef-
fect of having more flows, is that the acknowledgements are less
regularly spaced, causing the data segments that are lost and trig-
ger congestion window reductions, to be sent less synchronously
between flows. This allows flows to detect losses in a more stag-
gered fashion, keeping the overall congestion level a bit lower and
more stable than when all flows in unison blast out flights of pack-
ets into a congested network.

Figure 9 shows the results of the exact same simulations summa-
rized in figure 8, only in this case, the TCP flows all use LMDR to
rapidly adjust themselves to the new path. Comparing the results
shown in figure 9 to those in figure 8, the number of losses imposed
on competing smooth traffic in the second of time immediately after
the transition is greatly reduced in all cases with LMDR, while the
steady state behavior 60 seconds later is similar in both cases. With
the 4 and 8 Mbps CBR flows, the raw number of packet losses was
reduced by over 50% during the initial second after the transition.
This makes the transition much less disruptive to existing traffic on
the new network path, while attaining the same steady-state result.

4.2 Faster Utilization of Newly Available
Capacity

In Section 2.3, we demonstrated how not reseting ssthresh can
cause under-performance if a node moves into a new network path
that can accommodate a much greater rate. Although it is fairly
clear that reseting ssthresh in such a case allows for faster prob-
ing of available capacity, we provide simulation results here as an
example of the quantifiable gain that can be expected when using
LMDR in such situations, and look at the impact on performance
over several time-scales. Our simulation reproduces the scenario
described in Section 2.3, where a mobile node moves from a point
where 384 kbps is available, to a point where 54 Mbps is available,
with the same round-trip latency. This simulation is repeated 30
times with varying numbers of TCP flows simultaneously making
the transition, and with both LMDR support, and unmodified TCP.

Figure 10 illustrates the results of these simulations by plotting
the improvement in an average flow’s throughput when LMDR is
used by all connections compared to when it is not used by any of
the connections. This is computed using the total throughput over
various amounts of simulation time, with the transition between

networks happening after 2 minutes. If less time after the transition
is taken into account, then the LMDR advantage is more significant,
as shown in figure 10, This plots the gain in total throughput, as
computed 30, 60, and 120 seconds after the transition. Gains are
due to LMDR’s much more rapid convergence (exponential versus
linear) on the new available capacity. After stock TCP probes the
newly available capacity, there is no difference in behavior between
it and LMDR, and each reach nearly the same capacity.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
er

ce
nt

 G
ai

n
in

 T
hr

ou
gh

pu
t U

si
ng

 L
M

D
R

 (%
)

Number of TCP Flows

120 s later
60 s later
30 s later

Figure 10: Example throughput gain when using LMDR after mov-
ing from 384 kbps link to 54 Mbps link

If we zoom-in to a time-scale covering only several RTTs after
the transition, we can see that by resetting to the initial congestion
window, LMDR may temporarily send more slowly than stock TCP
(if the stock TCP isn’t in the midst of a retransmission timeout).
This is quickly reversed though, and the temporary degradation
in performance is a necessary product of taking the correct action
based on congestion control principles derived from the split-pipe
model in Section 2.

From these example simulations, we see that LMDR can cause
mobile connections to be less offensive to other traffic, and aid per-
formance when transitions create a path with much greater capac-
ity. The LMDR behavior is simultaneously advantageous for both
resource conservation and high utilization, satisfying both the com-
munity needs, by keeping the network stable, fair, and friendly, and
selfish individuals, by providing higher performance when avail-
able.

4.3 Multiple Node, Multiple Network Tests
To this point, the results we have presented have been from rather

simplistic simulations, with flows changing networks simultane-
ously. In this section, we introduce a slightly more complex simu-
lation topology and scenario, in which multiple mobile nodes ran-
domly move through multiple networks of differing uplink and
downlink capacities. In this particular case, the results still indi-
cate an average net gain from using LMDR, although it is more
modest (on the order of several percent).

Figure 11 illustrates the topology used in these simulations. Two
corresponding nodes (CN1 and CN2) have TCP connections to
three mobile nodes each (MN1 through MN6). The mobile nodes
are distributed amongst three access routers (AR1 to AR3). Ini-
tially, two mobile nodes connect to each access router, with mobil-
ity between access routers occurring randomly, with each mobile
node moving once ever 2 minutes on average. The access routers
are connected to the corresponding hosts using links of variable ca-
pacities (c1 through c3), and connected to each other for tunneling

NASA/CR—2005-213838 9

(c4 to c6). The simulator’s mobile IP support is used over dynamic
links, which produces hard handoffs.

Figure 11: Topology Used for Multiple Node, Multiple Network
Tests

We perform three different sets of simulations in this setup. In
one set, the MNs source traffic, in another the CNs do, and in the
final set, traffic is bidirectional. In each case, the link capacities c1
to c6 are set to particular values to make the experiment interesting.
Each set is run for 30 iterations with the same random seed used
in both a fully LMDR-enabled situation, and a fully LMDR-less
situation, with each simulation lasting 5 minutes. We record the
number of unique user data bytes transferred by each TCP flow
over this time period.

In the case where the MNs alone source traffic, c3, c4, c5, and
c6 were set to 500 Mbps, while c1 was set to 5 Mbps, and c2
to 50 Mbps. With this configuration, individual flows averaged a
14% gain in throughput by using LMDR, in comparison to their
counterparts with the same mobility pattern in the accompanying
simulation that did not use LMDR. Figure 12 plots the cumula-
tive distribution function of throughput improvements observed in
these simulations. Despite the solid improvement in average per-
formance, clearly LMDR did not always increase a flow’s through-
put, and in many cases it accounted for a degradation. The sum of
the throughputs in each simulation increased by 2.9%, on average.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.5 0 0.5 1 1.5 2 2.5 3

C
D

F

Throughput Improvement

Figure 12: Cumulative Distribution Function of Throughput Gain
With MNs Sourcing Data

When configuring the CNs to source data, we changed the topol-

ogy such that c1, c2, c3, and c6 were 500 Mbps, c4 was 5 Mbps,
and c5 was 50 Mbps. This caused all the flows to start out with fast
links, and then after mobility events, have their segments tunneled
through links of possibly much lesser capacity. This is different
from our topology where the MNs sourced data, as in that case the
tunneling links were all of high capacity, but the access links var-
ied. In this case, the results still show a positive average gain from
a flow using LMDR, of 3.2%. The CDF is not presented here, but
is very similar to that of figure 12, except with the upper tenth per-
centile representing lesser gains. This accounts for the decrease in
the mean.

For bidirectional traffic, we modified the link capacities with the
topology again. In this case, c1 and c4 were set to 500 Mbps, c2 and
c6 to 5 Mbps, and c3 and c5 to 50 Mbps. This set of simulations is
somewhat different from the others in that there can be congestion
in both the data and acknowledgement paths. With this configu-
ration, we observed individual flows gain an average of 8.5% in
throughput, although there were outliers that experienced large de-
creases. This further demonstrates that LMDR is not specifically
designed to improve the performance of all flows, and may result
in losses, but is gainful on average.

5. DISCUSSION
As mentioned previously, even though TCP can maintain con-

nections over transparent network layer mobility protocols, sim-
ply maintaining a connection is not the same as providing an ef-
ficient level of performance and acting as a good network citizen.
TCP continues to function without LMDR, and perhaps in the nor-
mal global Internet, the mobility scenarios we have shown to be
problematic, will only rarely or never occur. Core networks may
continue to be well-provisioned enough, that end-user demand and
connectivity will limit the danger to the core’s congestion level and
stability posed by mobility-induced TCP problems at the edge. In
this case, LMDR is probably not crucial to the architecture.

Unlike many other TCP extensions, LMDR is not explicitly in-
tended to improve the throughput of TCP connections. Its purpose
is to correct what we view as an oversight by the designers of trans-
parent network layer mobility protocols. The Internet protocols are
arranged in a stack, and changes to one layer should not be made
without consideration of how these changes may affect higher lay-
ers. LMDR assumes there is some way by which the network
layer’s transparency can be reduced slightly so that the transport
may know when local point of attachment changes occur. Since the
transport layer is typically tasked with keeping estimates of end-to-
end path properties, network layer protocols that knowingly change
that path in a completely transparent way, are behaving negligently.

Given the knowledge that a path change has occurred, LMDR’s
behavior can be described as an attempt to take the most correct
and conservative transport protocol behavior. As shown, LMDR is
a better neighbor to competing traffic than stock TCP, when mov-
ing into a congested network path. We have also shown cases where
by reseting ssthresh and avoiding retransmission timeouts, LMDR
can achieve better throughput than stock TCP. There may be cases
where using LMDR actually reduces a flow’s performance by some
small margin, however, this is clearly acceptable given the signifi-
cance of its positive impact in other cases.

We have raised the point that the magnitudes of capacity differ-
ences in some of the path transitions we’ve looked at is probably
unrealistic for today’s Internet and common mobile devices. The
IP protocol suite can be used in other environments than merely the
Internet, though. Transitions between vastly different networks are
not only possible, but highly likely for certain classes of military
communications and NASA space-exploration missions, for which

NASA/CR—2005-213838 10

TCP and IP may be used. Whether or not LMDR is needed for
reasons of reducing congestion or aiding performance in the global
Internet, it does not hurt in any way, and to not include it under the
assumption that rare cases of problematic mobility scenarios will
remain rare, is perhaps a mistake.

6. CONCLUSIONS AND FUTURE WORK
We have studied several problems TCP connections may expe-

rience after mobility events, and introduced the LMDR procedures
to correct these issues. Simulations have shown that LMDR is an
effective technique for combating these problems and improving
TCP performance in mobile environments.

Other transport protocols have similar mechanisms to TCP’s for
estimating various path state properties, and may experience simi-
lar negative effects after path changes. The LMDR option for TCP
offers no benefit to applications that do not use TCP as a transport.
Other transport protocols may require adaptations of LMDR. For
example, a “Reset Congestion State” option is present in an under-
development version of the DCCP base specification. This option
could be sent by a host after detecting its own mobility and reseting
its own invalid path state estimates, to ask the remote host to do the
same.

We have mentioned that mobility of routers can cause similar
path change problems as end host mobility, but that LMDR is help-
less in this case. Some provisions for notification or detection of
mobility inside the network path, and not just over links adjacent to
the end hosts, would be beneficial in such cases, and could likely be
easily incorporated into the LMDR detection facility. The LMDR
response would likely be able to remain unchanged.

7. REFERENCES
[1] I. F. Akyildiz, J. Xie, and S. Mohanty. A Survey of Mobil-

ity Management in Next-Generation All-IP-Based Wireless
Systems. IEEE Wireless Communmications Magazine, 11(4),
Aug. 2004.

[2] M. Allman, W. M. Eddy, and S. Ostermann. Estimating
Loss Rates with TCP. ACM Performance Evaluation Review,
31(3), Dec. 2003.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Con-
trol, Apr. 1999. RFC 2581.

[4] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router
Buffers. ACM SIGCOMM 2004, Stanford HPNG Technical
Report TR04-HPNG-060800, Aug. 2004.

[5] F. M. Chiussi, D. A. Khotimsky, and S. Krishnan. Mobil-
ity Management in Third-Generation All-IP Networks. IEEE
Communication Magazine, 40(9), Sept. 2002.

[6] W. M. Eddy, S. Ostermann, and M. Allman. New Techniques
for Making Transport Protocols Robust to Corruption-Based
Loss. ACM Computer Communication Review, 34(5), Oct.
2004.

[7] G. Fairhurst and L. H. Wood. Advice to link designers on link
automatic repeat request (ARQ). RFC 3366, Internet Engi-
neering Task Force, Aug. 2002.

[11] W. Ivancic, D. Stewart, T. Bell, K. Leung, D. Shell,
and B. Kachmar. Mobile Router Technology Development.
Fourth ACM International Workshop on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, July 2001.

[12] V. Jacobson. Congestion Avoidance and Control. In ACM
SIGCOMM, Aug. 1988.

[13] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6, June 2004. RFC 3775.

[14] R. Koodli and C. Perkins. Fast Handovers and Context Trans-
fers in Mobile Networks. ACM Computer Communication Re-
view, 31(5), Oct. 2001.

[15] K. Lahey. TCP Problems with Path MTU Discovery, Sept.
2000. RFC 2923.

[16] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making
TCP Robust Against Spurious Retransmissions. ACM Com-
puter Communication Review, 30(1), Jan. 2000.

[17] R. Ludwig, B. Rathonyi, A. Konrad, K. Oden, and A. Joseph.
Multi-layer Tracing of TCP Over a Reliable Wireless Link.
Proc. of ACM SIGMETRICS, May 1999.

[18] G. Montenegro. Reverse Tunneling for Mobile IP, Revised,
Jan. 2001. RFC 3024.

[19] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discov-
ery for IP Version 6 (IPv6), Dec. 1998. RFC 2461.

[20] P. Nikander, J. Ylitalo, and J. Wall. Integrating Security,
Mobility, and Multi-Homing in a HIP Way. Proceedings
of Network and Distributed Systems Security Symposium
(NDSS’03), Feb. 2003.

[21] V. Paxson and M. Allman. Computing TCP’s Retransmission
Timer, Nov. 2000. RFC 2988.

[22] C. Perkins. IP Mobility Support for IPv4, Jan. 2002. RFC
3220.

[23] P. Sarolahti, M. Kojo, and K. Raatikainen. F-RTO: An En-
hanced Recovery Algorithm for TCP Retransmission Time-
outs. ACM Computer Communication Review, 33(2), Apr.
2003.

APPENDIX
A. MOBILITY MANAGEMENT SCHEMES

Although most network layer mobility schemes achieve similar
basic results, there is substantial variation among these protocols.
In this appendix, we provide a brief overview of a small sample of
mobility management schemes. We have restricted our discussion
to IETF protocols only, although similar technologies exist [5, 1].

MIPv4 Mobile IPv4 hosts have static IP addresses. MIPv4 operation
can be thought of as a coordination of three processes. First,
a mobile host determines that it has moved from one network
(home) to another (foreign), and in the new network, the host
obtains a care-of address (either by obtaining a new IP ad-
dress on the foreign network or by locating a foreign agent).
Second, the mobile node registers its care-of address on the
new network with its Home Agent. The Home Agent is an
indirection point on the network that the mobile node’s static

NASA/CR—2005-213838 11

[8] S. Floyd. Congestion Control Principles, Sept. 2000. RFC

[10] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification, Jan.
2003. RFC 3448.

[9] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola. Multi-layer
Protocol Tracing in a GPRS Network. Proc. of IEEE Vehicu-
lar Technology Conference, Sept. 2002.

address belongs to. Third, as packets arrive on the home net-
work addressed to the mobile node’s static address, the Home
Agent intercepts them and tunnels them to the mobile node’s
current care-of address.
Several factors can slow the time between the node’s move-
ment to a new network, and registration with the Home Agent.
These include: detection of the network change (through router
advertisements, etc), acquisition of a new address (via DHCP
and duplicate address detection), authentication with the new
network, and latency or packet losses when registering the
care-of address with the Home Agent. During this time pe-
riod, all packets sent to the mobile node’s static address will
be routed to an old care-of address, and not to the mobile
node’s current location.

MIPv6 Basically, Mobile IPv6 works in a similar fashion to MIPv4.
Unlike MIPv4, MIPv6 includes route optimization, which can
be used to bypass the Home Agent and send packets directly
from corresponding nodes to a mobile node. This requires
a two-message exchange (one round trip) for authentication,
called the return routability test. This always adds an RTTof
delay before packets can be sent on the new path, which can
result in a full congestion window of data being sent to a stale
address and lost.
The latency involved in establishing a new tunnel in MIPv6
has motivated the design of fast-handover techniques that in-
volve coordination with access routers. This can prevent the
burst packet losses that may occur during stock Mobile IP
handovers.

HIP Mobility using the Host Identity Protocol is somewhat differ-
ent, in that each node has another identifier that is indepen-
dent from its IP address. Transports bind to these identifiers
and the HIP layer takes care of mapping these to IP addresses.

The update after an IP address change in HIP requires at least
a round trip before packets can be sent to the new address.
Since HIP identifiers are not used by routers, no mechanism
similar to fast-handovers for MIPv6 is available for HIP. This
means that mobility events always result in an RTTwhere any
data transmitted to a mobile node is lost.

NEMO The idea behind network mobility (NEMO) is to adapt the
Mobile IP protocols to allow not just single hosts, but entire
networks to be mobile, via the concept of a mobile router.
This approach has many of the same advantages and disad-
vantages as the Mobile IP protocols, and adds some additional
complexity, in that it may be more difficult for hosts to detect
their own mobility in a NEMO setting. The IETF’s NEMO
working group is actively testing NEMO concepts and work-
ing on producing a standard.

Changes to a node’s IP address are relayed to peers and cryp-
tographically authenticated by the HIP layer. Like Mobile
IP’s concept of the Home Agent, HIP also requires an indi-
rection point, called the Rendezvous Server. The Rendezvous
Server is only used to redirect the first packet to a mobile
node. After this, nodes always send packets directly to each
other.

NASA/CR—2005-213838 12

Despite the many technical differences, we can broadly cate-
gorize mobility protocols into two classes: hard handoff and soft
handoff. Hard handoff protocols may cause a large number of
in-flight packets to be lost as detection, configuration, and reg-
istration occur after network transitions. MIPv4, MIPv6 (with-
out fast-handover), and HIP are all hard handoff protocols. With
fast-handover, MIPv6 is a soft handoff protocol, because it does
not cause packets to the mobile node to be lost during transitions.
NEMO handoffs could be made either hard or soft. By influencing
packet loss, the distinction between hard and soft handoff protocols
can significantly affect TCP’s behavior.

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved
OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Final Contractor Report

Unclassified

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

September 2005

NASA CR—2005–213838

E–15208

WBS–22–184–10–06
NAS3–03100

18

Adapting End Host Congestion Control for Mobility

Wesley M. Eddy and Yogesh P. Swami

Computer networks

Unclassified -Unlimited
Subject Category: 62

Verizon Federal Network Systems
21000 Brookpark Road
Cleveland, Ohio 44135

Wesley M. Eddy, Verizon Federal Network Systems, 21000 Brookpark Road, Cleveland, Ohio 44135; and
Yogesh P. Swami, Nokia Research Center, 6000 Connection Drive, Irving, Texas 75603. Project Manager,
Will Ivancic, Communications Division, NASA Glenn Research Center, organization code RCN, 216–433–3494.

Network layer mobility allows transport protocols to maintain connection state, despite changes in a node's physical
location and point of network connectivity. However, some congestion-controlled transport protocols are not designed to
deal with these rapid and potentially significant path changes. In this paper we demonstrate several distinct problems that
mobility-induced path changes can create for TCP performance. Our premise is that mobility events indicate path changes
that require re-initialization of congestion control state at both connection end points. We present the application of this
idea to TCP in the form of a simple solution (the Lightweight Mobility Detection and Response algorithm, that has been
proposed in the IETF), and examine its effectiveness. In general, we find that the deficiencies presented are both relatively
easily and painlessly fixed using this solution. We also find that this solution has the counter-intuitive property of being
both more friendly to competing traffic, and simultaneously more aggressive in utilizing newly available capacity than
unmodified TCP.

