View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE
provided by NASA Technical Reports Server

NASA /CR—2005-213838

Adapting End Host Congestion Control
for Mobility

Wesley M. Eddy
Verizon Federal Network Systems, Cleveland, Ohio

Yogesh P. Swami
Nokia Research Center, Irving, Texas

September 2005

https://core.ac.uk/display/10515503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA'’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following;:

e Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA Access
Help Desk at 301-621-0134

e Telephone the NASA Access Help Desk at
301-621-0390

e Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076

NASA /CR—2005-213838

Adapting End Host Congestion Control
for Mobility

Wesley M. Eddy
Verizon Federal Network Systems, Cleveland, Ohio

Yogesh P. Swami
Nokia Research Center, Irving, Texas

Prepared under Contract NAS3-03100

National Aeronautics and
Space Administration

Glenn Research Center

September 2005

Acknowledgments

Khiem Le, Nokia, helped develop the Internet draft that specifies the LMDR behavior. Several participants
in the IETF's TSVWG and TCPM groups provided feedback on this work. Joseph Ishac and other members of
NASA's ACAST Architectures and Networks group gave useful analysis of this work.

This report is a formal draft or working
paper, intended to solicit comments and
ideas from a technical peer group.

Available from

NASA Center for Aerospace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076 Springfield, VA 22100

Available electronically at http:/ /gltrs.grc.nasa.gov

Adapting End Host Congestion Control for Mobility

Wesley M. Eddy
Verizon Federal Network Systems
Cleveland, Ohio 44135

Yogesh P. Swami
Nokia Research Center
Irving, Texas 75603

ABSTRACT

Network layer mobility allows transport protocols to maintain con-
nection state, despite changes in a node’s physical location and
point of network connectivity. However, some congestion-controlled
transport protocols are not designed to deal with these rapid and
potentially significant path changes. In this paper we demonstrate
several distinct problems that mobility-induced path changes can
create for TCP performance. Our premise is that mobility events
indicate path changes that require re-initialization of congestion
control state at both connection end points. We present the ap-
plication of this idea to TCP in the form of a simple solution (the
Lightweight Mobility Detection and Response algorithm, that has
been proposed in the IETF), and examine its effectiveness. In gen-
eral, we find that the deficiencies presented are both relatively eas-
ily and painlessly fixed using this solution. We also find that this so-
lution has the counter-intuitive property of being both more friendly
to competing traffic, and simultaneously more aggressive in utiliz-
ing newly available capacity than unmodified TCP.

1. INTRODUCTION

The Internet’s routing architecture is designed to statelessly move
packets between hosts at fixed locations. In this regime, IP ad-
dresses provide host identifiers for network layer routing, and trans-
port layer port number pairs are further used to identify individual
connections between hosts. The IP addresses and port numbers
must remain fixed for the lifetime of a connection, as the standard
inter-layer interfaces have no mechanisms for dealing with mid-
connection changes in a host’s address, or an application’s port
numbers. This makes the natural approach to mobility, where a
host’s IP address changes to represent its location, undesirable, as
it causes existing connections to break whenever either host moves.
For this reason, various network layer mobility schemes have been
proposed, that extend the routing infrastructure to allow a host to
keep a fixed address despite changes in its location.

Several protocols exist for enabling host mobility at the network
layer, including Mobile IPv4 (MIPv4) [22], Mobile IPv6 (MIPv6)
[13], mobile router techniques [11], all-IP cellular networks [5],
and HIP-based mobility [20]. The key feature shared by these pro-
tocols is that a mobile node retains some fixed address (or identi-
fier), regardless of the IP addressing structure at the point where it
is physically attached to the network. This feature allows transport
bindings to static addresses to remain intact, and thus keep connec-
tions alive, despite mobility across diverse networks. In this paper,
we show that hiding mobility events from the transport layer in this
way can be detrimental to performance.

NASA/CR—2005-213838

In the Internet’s protocol stack, the transport layer is the low-
est layer with any view of the end-to-end network path between
two hosts. For this reason, the transport layer is a sensible place
to implement end-to-end congestion control, and modern transport
protocols for bulk-traffic include congestion control mechanisms
to perform in a manner friendly to the network and to other traffic
[8]. Presently-used congestion control techniques such as TCP con-
gestion control [3] or TCP-Friendly Rate Control (TFRC) [10] use
packet loss events (or ECN marks) as indications of a path’s con-
gestion level, and determine their sending behavior based on packet
losses. These techniques provide a roughly accurate estimation of
the path’s available capacity at any given time, although TCP con-
gestion control and TFRC differ widely in how they compute this
estimate.

TCP congestion control has two distinct phases, slow start and
congestion avoidance. TCP’s slow-start algorithm quickly probes
the amount of available capacity in a network path by doubling the
rate it sends segments every round-trip time (RTT). This allows an
upper bound to be quickly reached, when the first packet loss is
detected. The steady-state congestion avoidance algorithm is used
to keep the sending rate undulating near the rough capacity estimate
determined during slow start. During congestion avoidance, the
sending rate increases conservatively in a linear fashion.

EMN
L

CN

4-----

Figure 1: Host MN moves from network N to network N’ while
maintaining a TCP connection with host CN

Figure([1]illustrates a mobile node, MN, moving from a connec-
tivity point on subnet N to one on subnet N’. The mobile node
has an active TCP connection with some correspondent node CN,
which remains intact across the transition using a network layer
mobility protocol, such as MIPv4. The change in MN’s attachment
point, from subnet N to subnet N’, implies a change in the end-to-
end path that the connection’s segments follow. Since the conges-
tion control state (congestion window, slow start threshold, retrans-
mission timeout, etc) of a connection is based upon estimates of the

end-to-end path, a path change may immediately invalidate some
portion of the congestion control state. In figure 1| the networks
are represented as clouds to signify that their topology is obscured
from the end nodes, and the degree of path change is unknown. We
assume that such mobility events occur relatively infrequently, no
more than once per several dozen RTTs.

Since the significance of the path change between two attach-
ment points is a mystery, there is no way for a connection to know
whether or not its old path property estimates from subnet N are
reasonable in subnet N’. For example, subnet N and subnet N’ may
be similarly configured and loaded networks who both attach to the
Internet via a common point. In this case the difference is insignif-
icant, and TCP’s congestion state remains accurate even after the
path change. However, there is no way of ensuring that this is the
case, and a mobile node may just as easily move from a 54 Mbps
802.11g link, to a 384 kbps cellular link. Such changes are entirely
possible, and are currently completely hidden from the transport
layer, so that TCP does not even get an indication from a lower
layer that a mobility event has occurred.

Regardless of whether or not subnet N and subnet N’ use vastly
different media, the end-to-end paths from them to CN may have
substantially dissimilar properties that negatively influence TCP
congestion control. For example, a mobile node might move from
one wireless LAN access point to another, and yet experience a
wide variation in path properties depending upon the network load
and number of users. In some cases, the routing between subnet N
and CN may be via an entirely different path than from subnet N’
to CN. There are no guarantees about the significance or insignifi-
cance of the path change corresponding to a mobile node’s chang-
ing points of attachment. They may lie anywhere on the spectrum
from trivial to severe, and TCP is left to infer and adapt on its own.

Apart from path-dissimilarity, a mobile node’s TCP performance
is also influenced by the underlying mobility management schemd.
Broadly, the range of mobility management schemes can be classi-
fied into two categories, soft-handoff and hard-handoft, depending
upon whether or not packets in flight to MN’s old location on sub-
net N are lost after movement. In the case of a hard handoff, when
the MN moves to subnet N’, the access router in subnet N does not
keep any state about MN’s new location. Therefore, immediately
after subnet change, packets in flight destined to MN’s old location
are lost. Since a full flight of loss (whether loss of data segments,
or loss of acknowledgements) often results in an idle TCP retrans-
mission timeout (RTO) wait period, a hard handoff results in lost
throughput.

With soft-handoffs, the access router in subnet N keeps a soft-
state mapping between the mobile node’s old care-of address and
its new address [14]. When a packet destined to the mobile node’s
old address arrives, the access router in subnet N tunnels those
packets to subnet N’, preventing losses. Because less packets are
not lost during soft handoffs, there is less danger of a TCP retrans-
mission timeout, but it is more likely that the mobile connection
will temporarily behave unfairly if the new path is already con-
gested.

The hard/soft handoff terminology for describing network layer
mobility support should not be confused with similar link layer ter-
minology. In the case of the network layer, soft handoff refers to
the old access router’s ability to forward packets to the new access
router. In the link-layer, soft handoff refers to an interface’s ability
to re-associate with a new link without breaking the association on
the old link. It is possible to have both soft and hard handoffs at the
network layer with either kind of link layer technology.

! Appendix [A] provides brief descriptions of several mobility man-
agement schemes.

NASA/CR—2005-213838

Although TCP behavior is influenced by the hardness or softness
of network layer handovers, it can have problems with both types
of underlying protocol, simply because TCP has no mechanisms
for dealing with the quick change of path properties presented to it.
Some protocols route all packets through an indirection point, like
a MIPv4 Home Agent when bi-directional tunneling is used [18],
while others provide a means of route optimization whereby a more
efficient path can be used. Although these protocol features have
some effect on the potential path change, they do not constrain it.
Additionally, some protocols provide means for “fast” or “smooth”
transitions. This may mitigate losses and latency during the change
of network attachment points, making TCP have less recovery work
to do, but it also does not limit the degree of potential difference
in end-to-end network path properties. The exact network-layer
mobility strategy used is mostly irrelevant to TCP, which always
has the task of quickly adapting to a new and potentially completely
unknown path.

Section 2] outlines a number of problems that arise when con-
gestion control is oblivious to mobility events. In Section [3} we
describe a means to make network layer mobility events less trans-
parent to TCP. We also outline a response algorithm for TCP-like
congestion control that should address the problems described in
this paper. The effectiveness of our approach is then evaluated in
Section[4] and some broad discussion of the mechanism is provided
in Section|5.

2. MOBILITY’S EFFECT ON CONGESTION
CONTROL

TCP has a feedback response of increasing its congestion win-
dow for successful transmissions, and decreasing the window for
losses (or ECN marks). This strategy is based upon the assumption
that future segments will traverse the same basic path as past seg-
ments. Yet, the IP architecture provides a datagram service where
each packet may be routed independently of all others, even when
their sources and destinations are the same. Despite the potential
independence in packet treatment, congestion control algorithms
assume that once a connection is established, all segments follow
the same path. More precisely, the assumption is that links, routing
tables, propagation delays, maximum buffer capacities, link MTUs,
and other path properties are mostly static, with the only variable
being the amount of other traffic filling links and buffers at any
time. This leads to the “network-pipe” model, described by Jacob-
son [12]. As demonstrated in figure[2(a)} in this model, y-axis dis-
tances (pipe widths) represent link bandwidth, and x-axis distances
(pipe lengths) represent time (queueing and propagation delays).
The data stream flows through one set of pipes to the receiver, and
acknowledgements flow through another set of pipes back to the
sender.

Based on the network-pipe model, Jacobson’s principles for con-
gestion control can be understood as attempting to keep the net-
work’s pipes full, without overfilling them.

e To reach equilibrium, the sender should quickly probe the
network for a capacity estimate. TCP’s slow start algorithm
satisfies this need, and once this estimate is made, the con-
gestion avoidance algorithm takes over, and future probing is
much less aggressive.

e A sender in equilibrium should follow the conservation of
packets principle to avoid congestion. Conservation of pack-
ets is the idea that to maintain equilibrium, a new packet is
only put onto the network after an old packet has left the net-
work, keeping a constant number of packets in flight. TCP

Data

Sende
IOATOOY

ACK

(a) Visualization of TCP segments and ac-
knowledgments moving through a network
path, using the network-pipe model

Stale ACK J

Close on
path change
s

1-adig

" Open on path
Data change

™ A

iy

(b) The split-pipe model adaptation, in which
a valve switches packet flow from one pipe to
another at the time of a mobility event.

-odiq

Figure 2: Adapting the network-pipe model to reflect mobility

achieves this packet conservation through its ACK-clocking
mechanism, sending new data upon receipt of acknowledge-
ments for old data.

When a mobile node moves during the course of a TCP connec-
tion, the network path between the hosts changes in a way that is
difficult to visualize using the standard network-pipe model. We
propose an extension, illustrated in figure[2(b)|called the split-pipe
model, which captures this behavior. In the split-pipe model, mo-
bility between network attachment points corresponds to switching
the valve between the top and bottom pipes. Using this model,
we can re-examine Jacobson’s congestion control principles. Fig-
ure has been simplified by abstracting out the ACK-carrying
pipes, to focus on the data-carrying pipes. In theory, changes to the
ACK path could be serious as well.

2.1 Problems with Soft Handoffs

If the underlying mobility management scheme allows soft hand-
offs, then for some period of time, acknowledgements for data seg-
ments sent through the top pipe will be received. We call these stale
acknowledgments. Stock TCP uses these stale acknowledgements
both to clock out data segments that travel through the bottom pipe,
and to increase its sending rate. This behavior is not in line with
the packet conservation principle, as stale acknowledgements do
not indicate that segments have left the bottom pipe, where new
segments are sent. Nor should stale acknowledgements be used
to increment the sending rate into the bottom pipe, as they repre-
sent feedback about the top pipe’s state, and convey no informa-
tion about the bottom pipe. Stale acknowledgments should be used
to indicate successful transmissions and remove data from the re-
transmission queue, but otherwise be ignored for the purposes of
congestion control and clocking out new data.

In addition to ignoring stale acknowledgments for congestion
control purposes, the behavior of attempting to maintain the equi-
librium achieved in the top pipe, after a change to the bottom pipe,
is unwise for a number of reasons. If the bottom pipe, is much
larger, or has more free space, then the conservative congestion
avoidance strategy can waste this by leaving it unused. In the op-
posite case, where the bottom pipe is much smaller than the top
pipe, then using the old equilibrium state in the new pipe can lead

NASA/CR—2005-213838

to congestion losses. These problems are demonstrated quantita-
tively in Section 4| For now, we argue from the model and prin-
ciples that slow start should be re-initiated after the change to the
new path, from the connection’s initial congestion window, and not
the congestion window at the time of transition.

2.2 Problems with Hard Handoffs

Some network layer mobility protocols may cause up to an entire
window of segments or acknowledgements to be lost. If this degree
of loss occurs, then TCP senders may be forced to wait idly for a
full retransmission timeout before beginning the process of repair-
ing the losses and recalibrating the congestion window to the new
network. The retransmission timeout is a rather long time frame
for a sender with queued application data to pause for, typically
representing several RTTs [21] (as measured in the old network
before the transition). If a TCP sender has an amount of outstand-
ing data that fills its congestion window, and acknowledgements
for this data are lost due to the change in network paths, then this
entire time is wasted.

The RTO wait period is particularly a problem in wireless net-
works because the RTO duration tends to be longer than when tra-
ditional wired links are used. One reason for high RTO values in
wireless networks is that they often use link layer retransmissions
to mitigate the effects of high bit error rates [7]. Because of link
layer retransmissions, the measured RTT varies significantly caus-
ing the RTT-variance to increase. Since the RTO depends upon the
RTT-variance, the wait periods tend to be rather large. Addition-
ally, severe over-buffering of wireless links is a common practice,
which leads to longer RTOs [9,/17]. In a real EGPRS test network
at Nokia, retransmission timeouts have been routinely observed af-
ter handoffs between subnetworks.

Since outstanding data on the old network path does not con-
tribute to congestion on the new path, where the TCP connection
has no in-flight data, then this outstanding data should not prevent
new (acknowledgement-generating and RTO-avoiding) segments
from being sent over the new path. The ability to send data on
the new network allows acknowledgements to come back which
will indicate whether or not losses occurred during the transition
and need to be repaired, and in either case, will allow a wasteful
timeout to be avoided. In this case, avoiding the RTO itself is a

more effective approach than trying to detect and correct for spuri-
ous RTOs after the fact, as many techniques have been proposed to
do [16,23].

2.3 Invalid ssthresh After Handoff

The congestion control state of a TCP connection includes a vari-
able, ssthresh (for the slow start threshold), which sets the bound-
ary congestion window between TCP’s exponential and linear in-
creases in sending rate. When the congestion window is under
ssthresh, TCP rapidly probes available capacity using slow start.
When the congestion window reaches ssthresh, the more conser-
vative congestion avoidance algorithm takes over. Initially, at the
beginning of a connection, ssthresh is set to a high value. When a
loss is first inferred via the fast retransmit mechanism, ssthresh is
set to half of the present amount of outstanding data. After retrans-
mission timeouts, TCP resets the congestion window to a single
segment, uses slow start up to ssthresh and then enters congestion
avoidance.

Initially, the high ssthresh value allows the exponential increase
strategy during slow start to operate until the network’s limit is
reached. After this point, ssthresh is always set to some previously
attained rate, so slow start is never again used to probe for fresh
network capacity, but rather to simply get up to a previously known
“safe” speed. This strategy assumes that the amount of available
capacity remains somewhat close to the previously estimated val-
ues. With mobility between diverse networks, this may not be the
case. Newly attached networks may offer multiple orders of mag-
nitude in higher rates, which TCP congestion control will be unable
to utilize. Particularly with long RTTs and high network capacities,
the additive increase strategy is slow to explore higher rates.

Consider the case of a TCP connection that begins while two
hosts are connected via a 384 kbps link with 100 ms of one-way
propagation dela. This scenario is designed to be simple for
demonstration, not necessarily realistic. Such a TCP connection
will have its ssthresh set to roughly 6 kB, assuming an RTT of
around 250 ms, which is sufficient for keeping its congestion win-
dow in the range to reasonably utilize this particular network.

If, at some point, one host changes connection points, such that
the new link (or path) between the two is identically configured
as the old one, aside from the available capacity, which increases
to 54 Mbps, keeping the stale ssthresh established on the old link
prevents the new capacity from being efficiently used. To fully uti-
lize the new network, the congestion window would need to reach
nearly 1700 kB. Even with multiple kB segments, the linear march
from 6 kB to 1700 kB would take an inordinate number of round-
trip times. Figure[3]plots this time as a function of the ratio between
RTT and segment size. Even with an RTT of only propagation de-
lay (200 ms) and a segment size of 8 kB, this takes over 42 seconds.
Using slow start, this time could be reduced to under 12 RTTs, or
around 3 seconds.

While the given example is somewhat contrived, similar real-
world scenarios are not altogether inconceivable. For example, sys-
tems supporting communications for space exploration or air traffic
management may have such widely varying types of links available
to them, and frequently transition connections between links due to
fading, line-of-sight blocking, noise in a frequency band, or other
link disturbances.

The slow start threshold is a TCP state variable whose purpose
is to prevent the large burst of losses that slow start can cause. The
adjustment rules do not allow for rapid probing of newly available

2Throughout this paper, all link buffers are configured using the
B = (RTT x C)/y/nrule [4]

NASA/CR—2005-213838

10000
@

X

£

3

&

S 1000 |

©

5

5

2]

2

°

e 100t 4
3

o

e

[0]

E

e

10 L L L L L

100 200 300 400 500 600
RTT / segment size (ms / kB)

Figure 3: Relation between segment size, RTT, and minimum time
to reach 54 Mbps when ssthresh is 6 kB

| Wasted Time |
16 []

ssthresh on new path

—_
[\

ssthresh after timeout

Congestion Window
IN)

RTO

RTT

Figure 4: Effect of RTO wait period and stale ssthresh on conges-
tion window, after a hard handoff.

capacity after the initial estimation. Since the available capacity
can significantly change with network layer mobility between dis-
tinct types of networks; when transitions take place, the slow start
threshold should be re-initialized to a large value to permit for rapid
probing of available capacity in the new network. This is perfectly
allowable under present congestion control principles, as it pro-
duces the exact same effect as a new flow starting up. Figure
illustrates an example time benefit that can be achieved by avoid-
ing an RTO and reseting ssthresh after a mobility event where more
capacity becomes available.

2.4 Network Design, Provisioning, and
Stability

We have assumed mobility events to be infrequent over the life-
time of an individual connection, but within the entire network
there may be many mobile hosts, each with several connections.
While a single host’s congestion control behavior will certainly in-
fluence the performance of its own connections and others sharing
the same links, the design and stability of the network as a whole
may be an issue as the number of mobile nodes or connections in-
creases.

Figure shows two connections, C; and C> that are termi-

(a) Set of routers that are affected by a path
change.

(b) System view when multiple connections
cross subnet boundaries.

Figure 5: System View of Subnet Change

nated at mobile nodes R; and R. At time ¢, C'1’s segments flow
through routers x4 and x1, but at time ¢ + J, R; moves from link /1
to link lo. The new path which segments take is through routers x4,
x5, and xo. With soft-handoff support, z1 tunnels segments for Ry
to xo. The link between these two routers must be adequately pro-
visioned to accept the sudden burst of tunneled traffic, which leads
the design of the network to include expensive high-speed links be-
tween access routers, which would otherwise not be needed.

The tunneled segments from the soft-handoff will generate ac-
knowledgements and cause data to be clocked out through the new
path, where some of the routers (o and z5) have not seen previous
segments from the connection, and may already be carrying a mix
of flows that can’t immediately accommodate the demands of C';.
While xo handles soft-handoffs and could be specially designed
for such situations, x5 could be a generic router with no relation to
the portion of the network specifically designed for mobile nodes.
Over-designing the edge networks and routers (like x¢) only pushes
the problem upstream to other routers (like xs5).

Some networkers have argued that this is really not a problem, as
the core of the Internet is known to be well over-provisioned any-
ways. To rely on this property is dangerous and potentially expen-
sive. We cannot accurately extrapolate the current state of network
utilization to the future, as history has shown that new applications
and ways to use the network emerge and are adopted very quickly.
Furthermore, the Internet protocol suite is used in other realms than
the global Internet (for instance, military and space exploration net-
works), which have different requirements and may not be as over-
designed. We desire congestion controllers that behave reasonably
across all potential paths, not just the kinds that are presently most
likely on the Internet.

The problem of network design becomes even more difficult,
considering that in figure[5(a)] connection C' also sends segments
through x5 and x after R> moves at time ¢+y. Even if the network
could handle C'1, or if the disturbance from C; were to subside af-
ter a short period of time, another disturbance would occur from
C> some time later (7 —). Since the mobility of R, and R2 may
be independent, there is no way to ensure that «y and ¢ are suffi-

NASA/CR—2005-213838

ciently far apart for the network to handle. With even more mobile
nodes, or more connections per mobile host, the overall stability of
portions of the network could be at stake.

With some additional knowledge of average connections from
mobile nodes and frequencies of movement, the network design
problem is still not easy, even at the edges or between the access
routers that handle soft-handoffs. If S(I;) is the set of mobile nodes
connected to some link /;, any of those nodes may become con-
nected to other links, and any nodes from other links may become
members of S(l;). Figure shows the relation between a net-
work lp and N surrounding networks [;...[xy, for the purpose of
designing Iy to accommodate mobility to and from each of the
nearby networks. Not only would the soft-handoff links between
all these networks be expensive, and likely redundant, but for cost-
effectiveness, the provisioning would only be sufficient based on
some estimates of average (or worst-case) motion between [y and
each neighbor and the number of new flows that start and old flows
that stop as nodes stay in each network. Given that with wireless
networks, the neighbor set can easily grow and that the system is
already provisioned based on several dicey estimates, the future
adequacy of the overall system design is questionable, even if it is
sufficient at some point in time.

Fixing end-host congestion control algorithms to respond to mo-
bility events seems like a far more fruitful, and cheaper, approach
than attempting to design the network infrastructure to accommo-
date sudden changes in offered loads. This puts the onus of respon-
sibility on the end hosts where mobility actually occurs and takes it
off innocent links and routers. Losses at properly configured static
links and routers are the fault of end hosts’ sending patterns, and
can be more easily prevented by the end hosts than inside the net-
work.

2.5 Other Path Properties

Aside from the congestion window and ssthresh variables that
store estimated path state information, TCP also makes an estimate
of the RTT. This RTT estimate is used to compute the retransmis-
sion timeout. Because instantaneously measured RTTs may vary

widely due to network buffering for congestion, previous estimates
contribute to the current RTT estimate at any given time. This is
a desirable practice when the measured RTTs have only transient
or insignificant differences due to queueing; however, if a recently
measured RTT differs from the current estimate significantly due
to a path change, using the standard RTT update strategy is a hin-
drance. Given significant differences, convergence of the RTT es-
timate to a value representative of the new path may be slow. Up-
dating the RTT estimate based on stale acknowledgements can also
lead to a poor estimate.

An invalid RTT estimate makes the retransmission timeout either
too long or too short, depending on the direction the RTT estimate
is in error. If the RTT estimate is overly long for the new network,
then the RTO timer is slow to fire and the amount of idle time be-
fore retransmission is needlessly long. If the estimate is too short,
then segments may be spuriously retransmitted, with the conges-
tion window unnecessarily reduced. In either case, this is harmful
to TCP throughput. Both overly conservative and overly aggressive
RTOs can be mostly avoided in the case of mobility, though. If a
mobile host can simply re-initialize its RTT estimate with the first
available information it gets from a new path, then its RTO timer
will be reasonably set. When a path change is known to have oc-
curred, there is no logic behind letting old estimates from a defunct
path cloud TCP’s judgment.

To avoid IP fragmentation, some TCP implementations execute
path MTU discovery algorithms, although this can be problematic
[15]. Since the path MTU can change when the path does, the
discovery procedure should restart after mobility events. In ad-
dition, other more experimental path properties that are measured
by a particular TCP implementation should also be re-estimated.
For example, some experimental TCPs use estimations of a path’s
packet loss rate to alter congestion control behavior [2, 6]. In this
case, biasing estimates in the new network based on data collected
either in the old network or from stale acknowledgements could be
troublesome. These types of considerations are not nearly as im-
portant as reseting the congestion window, ssthresh, and avoiding
RTOs, but not to be ignored.

3. LIGHTWEIGHT MOBILITY DETECTION

AND RESPONSE

The Lightweight Mobility Detection and Response (LMDR) al-
gorithm has been proposed within the IETF as a way of avoiding
the TCP problems described in the previous section. LMDR is de-
signed to be independent of the underlying mobility management
protocol. LMDR’s only requirement is that a mobile node has some
means of detecting its own mobility. In most cases, this require-
ment is easily satisfied. For example, standard neighbor discovery
[19] procedures may be sufficient for this purpostE.

Although a mobile node can detect its own mobility, its peers
(e. g. the CN in figure[1) will often be unaware of this movement.
Since a path change influences the congestion state in both direc-
tions of the connection, a mobile node must somehow inform its
remote peers of local mobility events. To achieve this, LMDR uses
a TCP option, that is specified to be reliable, even in the case where
both nodes simultaneously move. This is the “mobility detection”
portion of LMDR, as described in detail in Section[3.1]

3In some cellular networks such as (E)GPRS networks, the mo-
bility information is not only hidden from the transport layer but
also from the IP layer. A path change in these networks will not
be detected by simple techniques like neighbor discovery. How-
ever, even in these networks it is possible to detect mobility events
with the help of link layer protocols. The exact mechanism of how
mobility events are detected is outside the scope of this document.

NASA/CR—2005-213838

0 8 16 18 21 24

KIND LENGTH RES |CNTR |ECNT

Figure 6: Wire-format of the LMDR TCP option

Once a host is able to detect potential path changes, either by
monitoring its own mobility, or by receiving an LMDR TCP op-
tion, it can easily take corrective measures to address the problems
sketched in Section 2| The “response” component of LMDR con-
sists of performing these actions, and is detailed in Section
We consider LMDR to be a “lightweight” mechanism for several
reasons. First, it requires no additions to the network architec-
ture, and no changes to existing infrastructure components. Sec-
ond, LMDR does not burden the network with additional probes,
heartbeat timers, etc. And finally, LMDR does not introduce any
new protocols, but merely a simple TCP option whose processing
occurs infrequently and requires only a small number of state vari-
ables, and no expensive data structures or operations.

3.1 Mobility Detection

Detection of local mobility can be accomplished in numerous
ways, depending on the underlying network layer and mobility
management protocols. For example, there are neighbor, destina-
tion, and ARP caches in various protocols that can be consulted to
infer if a host has moved. Alternatively, changes in a default router
or observation of router advertisements might be used. Ideally, the
lower layer mobility code would propagate information on mobility
events up the protocol stack via some form of message passing or
data sharing, but this is not how current kernel implementations of
protocols work. How a transport layer infers mobility information
from lower layers is beyond the scope of this paper.

A single host can unilaterally detect its own mobility and locally
respond to it by fixing its own TCP state for the half-connection that
it sends data over. This can be accomplished without any changes
to the TCP wire protocol. However, if the half-connection in the
reverse direction carries a large amount of data, the remote peer
needs to be notified so that it can reset its TCP state. A new TCP
option (shown in figure|[6) is introduced for this purpose.

As standard for multi-byte TCP options, the first byte identifies
the type (whose value is presently unassigned), and the second byte
gives its length — an invariant 3 bytes. The next two bits of the
third byte are reserved for future use, and should be set to zero by
senders and ignored by receivers. Possible uses for these two bits
are left for future work. The remaining 6 bits are divided into two
3-bit counters: CNTR and ECNT.

As with other TCP options, use of the LMDR option is negoti-
ated at startup time on the SYN and SYN-ACK segments. A host
wishing to use LMDR places an LMDR option on its SYNs. If the
remote host supports LMDR, it responds to received LMDR op-
tions on SYNS, by placing an LMDR option on SYN-ACKSs. Upon
connection startup, CNTR is initialized to some random value, and
ECNT is left uninitialized until the first CNTR value is received
from the remote host. The ECNT field and variable are used to
echo received CNTR values. Each time a host moves, it decrements
CNTR (modulo 8), and advertises this by continuously transmitting
LMDR options on its outgoing segments (both data-bearing and
pure acknowledgements) until it receives back an LMDR option
with an ECNT value that matches the local CNTR value. Upon re-
ceiving LMDR options, a host sets its ECNT variable to the received

CNTR value.

LMDR options are not sent on all segments. The only times
when hosts need to send LMDR options are when they are inform-
ing peers of their own mobility, or confirming the reception of a
peer’s mobility notification. During normal exchange of data be-
tween mobility events, there is no need to transmit LMDR options
on segments.

MN CN
Time=T
E(’;I;'? B ;’ (MN and CN have an established (E:EJ'FI} - :
- TCP connection with the LMDR -
option negotiated)
Time = T+1
CNTR = 4 (MN moves to a new .connection CNTR = 3
ECNT = 3 point, decrements its CNTR) ECNT =5
segment with
LMDR option
CNTR =3
ECNT =4
ACK with LMDR
option
CNTR =4
ECNT =3

Figure 7: Example of MN notifying CN of a change in its attach-
ment point

The effectiveness of LMDR is limited to situations where end
hosts are the only mobile nodes, and the network infrastructure re-
mains fixed. If network path changes are not caused by the mobility
of an end host, but through attachment to a mobile router, then the
simplistic means we have described for detecting mobility will be
ineffective. The LMDR techniques could still be used, only if there
we