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Abstract

Most practical engineering systems design problems have multiple and conflicting
objectives. Furthermore, the satisfactory attainment level for each objective
(“requirement”) is likely uncertain early in the design process. Systems with long
design cycle times will exhibit more of this uncertainty throughout the design process.
This is further complicated if the system is expected to perform for a relatively long
period of time, as now it will need to grow as new requirements are identified and new
technologies are introduced. These points identify a need for a systems design technique
that enables decision making amongst multiple objectives in the presence of uncertainty.

Traditional design techniques deal with a single objective or a small number of
objectives that are often aggregates of the overarching goals sought through the
generation of a new system. Other requirements, although uncertain, are viewed as
static constraints to this single or multiple objective optimization problem. With either
of these formulations, enabling tradeoffs between the requirements, objectives, or
combinations thereof is a slow, serial process that becomes increasingly complex as more
criteria are added.

This research proposal outlines a technique that attempts to address these and other
idiosyncrasies associated with modern aerospace systems design. The proposed
formulation first recasts systems design into a multiple criteria decision making
problem. The now multiple objectives are decomposed to discover the critical
characteristics of the objective space. Tradeoffs between the objectives are considered
amongst these critical characteristics by comparison to a probabilistic ideal tradeoff
solution.

The proposed formulation represents a radical departure from traditional methods. A
pitfall of this technique is in the validation of the solution: in a multi-objective sense,
how can a decision maker justify a choice between non-dominated alternatives? A series
of examples help the reader to observe how this technique can be applied to aerospace
systems design and compare the results of this so-called Decomposition-Based Decision
Making to more traditional design approaches.
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CHAPTER I

INTRODUCTION

Most practical engineering systems design problems have multiple and conflicting objectives.
Furthermore, the satisfactory attainment level for each objective (“requirement”) is likely
uncertain early in the design process. Systems with long design cycle times will exhibit
more of this uncertainty throughout the design process. This is further complicated if the
system is expected to perform for a relatively long period of time, as now it will need
to grow as new requirements are identified and new technologies are introduced. These
points identify a need for a systems design technique that enables decision making amongst
multiple objectives in the presence of uncertainty.

Traditional design techniques deal with a single objective or only a few objectives that
are often aggregates of the overarching goals sought through the generation of a new system.
Other requirements, although uncertain, are viewed as static constraints to this single- or
multi-objective optimization problem. With this formulation, enabling tradeoffs amongst
the requirements, objectives, or combinations thereof is a slow, serial process that becomes
increasingly complex as more criteria are added.

The research in this document outlines a technique that attempts to address these and
other idiosyncracies associated with modern aerospace systems design. The proposed for-
mulation first recasts systems design into a fully multiple criteria decision making problem.
The now multiple objectives are decomposed to discover the critical characteristics of the
objective space. Tradeoffs amongst the objectives are considered amongst these critical
characteristics by comparison to a probabilistic ideal tradeoff solution.

The proposed formulation represents a radical departure from traditional methods. A
pitfall of this technique is in the validation of the solution: in a multi-objective sense, how
can a decision maker justify a choice between non-dominated alternatives? A series of
examples help the reader to get a feel for how this technique can be applied to aerospace
systems design and compare the results of this so-called Decomposition-Based Decision
Making to more traditional design approaches.

1.1 Motivation

The motivation for this research began with the author’s involvement in a first-year graduate
design competition involving a multi-mission aircraft. This competition required the design
team to determine the salient characteristics of a vehicle with multiple, conflicting mission
requirements and subsequently to design an aircraft to these features. The identification
of these features followed an analysis of the vehicle’s “mission space” to determine which
requirements would be the design drivers [Mavris and Borer, 2001].

This first approach at multi-mission sizing represented a technique that is most typical
of modern multi-mission vehicle design; that is, to design the aircraft to only the most
stringent requirements. Though effective, it does little to accommodate tradeoffs and can
quickly result in an infeasible design. If nothing else, this initial design project broached two
subject areas critical to the development of a new technique: the need for a multi-mission
sizing method and for the ability to capture uncertainty in requirements specification.



1.1.1 Multi-Mission Sizing

The first 11 seconds of manned heavier-than-air flight began on 17 December 1903, now
over a century ago. Since those first flights off the dunes of Kill Devil Hills, aircraft have
evolved into massive, complex, and versatile machines. The first practical use of aircraft for
carrying passengers or cargo was realized within a decade, and its military applications for
observation and attack soon after. By the fourth decade of powered flight aircraft were used
for a variety of missions: cargo and troop transport, precision bombing, aerial photography,
escort, interception, and many others. By the end of the sixth decade of powered flight
manufacturers were building aircraft for every conceivable mission.

However, as the number of missions for aircraft increased, manufacturers and operators
found that production and operations costs increased and tactical redundancy suffered. This
problem was compounded as advances in technology required a wider array of missions, such
as supersonic attack, airborne early warning, and electronic surveillance. Certain aircraft
were tasked with synergistic missions in an effort to alleviate these problems.

The notion of the multi-role aircraft, though not new, has seen increased emphasis over
the years. This trend, though difficult to explicitly document, can be exemplified in the
composition of aircraft carrier air wings. Figure 1 compares the number of different types of
aircraft aboard an aircraft carrier versus the number of missions performed by these aircraft
for different historical periods, compiled from several different resources [Department of the
Navy, 2005; Federation of American Scientists, 2005; Toppan, 2003].
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Figure 1: Carrier Air Wing Composition

This figure shows that the number of missions has climbed rapidly and levelled off with
respect to aircraft carrier operations, yet the number of different aircraft types saw a short
increase followed by a steady decrease. The carrier air wing of the future will deploy even



fewer craft as new programs such as the multi-mission capable F/A-18E and F-35C aircraft
enter service and replace aging airframes [Young et al., 1998; Sherman and Hardiman, 2003].
The increased emphasis of multi-role capability for aircraft can be traced to two principal
reasons: affordability and redundancy. Employing a single aircraft type or variant of said
type for several roles reduces the need for specialized equipment, personnel, training, and
spare parts, among other resources. It also enables economies of scale through larger-
scale mass-production of the same airframe. All of these attributes point to a reduction in
overall life-cycle costs at tactical (and higher) levels. Redundancy is increased for many of
the same reasons. As an example, consider two squadrons: one with 10 dedicated attack
and 10 dedicated fighter aircraft, and one with 20 multi-role fighters. If five aircraft are
lost on a fighter mission, the squadron with dedicated aircraft exhibits a 50% loss in fighter
capability, while the multi-role squadron can spread that loss out evenly over its attack
and fighter capability as needed. This is important not only in military applications but
also civil applications as many passenger air carriers begin to investigate the feasibility of
intermodal (passenger by day, cargo by night) transports [Nelson et al., 2001].
Unfortunately, multi-mission capability comes at a price. One maxim in aerospace de-
sign is that every additional requirement imposed on a system will compromise the design
in some way. This concept of “no free lunch” will manifest itself as a decrease in effec-
tiveness in another requirement, such as a performance or vehicle-level cost measure. The
only exception to this rule is in the trivial case of a completely dominated or redundant
requirement, in which case the true multi-role capability of the system is not expanded.

1.1.2 Requirements Uncertainty

Successful design of any system begins with specification of requirements. These require-
ments are composed of one or more objectives and zero to many constraints. As aerospace
vehicle design has progressed, the requirements imposed on vehicles have become more
numerous and stringent. Requirements are influenced by advances in technology, the envi-
ronment, politics, and many other factors.

Most engineering problem solving techniques begin with a static set of requirements.
Any change to these requirements can change what was once the best solution to a dif-
ferent solution. As design cycle times increase, there is a larger chance that the various
factors shaping the requirements will change as well, thus resulting in changes to the orig-
inal requirements. This can have a substantial effect on modern aerospace vehicle design.
To compare design cycle times, consider that the Lockheed P-80 Shooting Star, the first
operational jet fighter made in the United States, went from drawing board to first flight in
143 days [Rich and Janos, 1994]. Compare this to a modern jet fighter, the F-22 Raptor.
The Raptor itself was conceived in 1983 and first flew in 1997, and as of this writing in 2005
the first squadron is becoming operational. This example, though radical, exemplifies the
increase in design cycle time: 143 days to 14 years! Even in this vein, one must consider
that the original requirements for the F-22 date back to the Advanced Tactical Fighter
concept first proposed in 1971 [Piccirillo, 1998]. Over that time numerous changes have
been seen in the technological environment (stealth), political environment (the fall of the
USSR), and the fiscal environment, to name a few.

Further complicating requirements specification is the concept of growth potential.
Aerospace vehicles, at their extraordinary expense and complexity, are expected to per-
form for a relatively long period of time. Over this time the operational environment and
associated requirements will change. Commercial operators will be faced with a different



market, more stringent environmental regulations, and safety regulations. Military opera-
tors will face new enemies and weapons systems. Overall, a successful aircraft will need to
have the ability to grow and change throughout its life cycle. Compare the service of the
B-52 subsonic strategic bomber to that of the B-58 supersonic bomber: both were contem-
poraries; the earliest operational B-52 first flew in 1955 and the B-58 in 1960. The latest
models of both aircraft were produced in 1962. However, the B-52 is so effective, affordable,
and adaptable for strategic bombing that it is planned to remain in service until 2040, 85
years after the first model and 78 years after the last of the current models entered service!
The B-58 only lasted until 1970, 10 years after entering service simply because it was not
nearly as versatile or adaptable in its future environment [Baugher, 2005; Federation of
American Scientists, 2005].

These all point to another maxim related to aerospace vehicle design: The requirements
specified for the system today will be different than those faced at the beginning of its oper-
ational life, which will further change throughout the system’s entire life cycle.



CHAPTER II

REQUIREMENTS AND AIRCRAFT SIZING

The bases of multi-mission sizing have to do with the broader spectrum of systems de-
sign methods and requirements specification. Therefore, to gain an appreciation of the
issues associated with multi-mission sizing one must first understand the idiosyncracies as-
sociated with the engineering design process, requirements specification, and vehicle sizing
methodologies. Each of these areas has evolved over the years to take advantage of a larger
body of knowledge and better resources to tackle these various problems. What follows
is an overview of the origins and growth experienced in these fields, though the reader is
cautioned that this is by no means a comprehensive review.

2.1 The Engineering Design Process

Several models exist for the engineering design process related to aerospace vehicles. Raymer
suggests a serial, three-tiered process of conceptual design, preliminary design, and detail
design, with requirements feeding into the conceptual design process and fabrication fol-
lowing detail design [Raymer, 1999]. This text, meant as a single source for undergraduate
engineering students, presents a deliberately simplified process. More rigorous techniques
involve more stages, such as detailed requirements generation studies and considerations of
the entire life cycle of the vehicle. Asimow enumerates an eight-phase design process to
embody all of these concepts, from feasibility studies to planning for retirement [Asimow,
1962]. Dieter revives and modernizes these concepts in his text on systems design [Dieter,
2000]. Of particular interest are the initial phases of what Dieter refers to as conceptual
design and embodiment design. This refined design process is illustrated in Figure 2.

The life-cycle approach to engineering design is imbedded into the concept of systems
engineering. The Defense Systems Management College [Leonard, 1999] defines systems
engineering as:

...an interdisciplinary engineering management process to evolve and verify
an integrated, life cycle balanced set of system solutions that satisfy customer
needs.

The text further discusses four phases in the development of a design. The process
first starts with concept studies, resulting in a functional baseline. This baseline is used
in the system definition phase until an allocated baseline is defined, which carries over to
the preliminary design stage. Here, the process continues until the definition of a product
baseline, used in the final detail design phases. In general, these phases follow the same
general approach as those reference by Raymer and Dieter above (requirements, conceptual
design / system definition, preliminary / embodiment design, detailed design). However,
the Department of Defense greatly elaborates on methods for identifying requirements for
systems engineering. The core process involves requirements analysis, functional analysis,
system synthesis, and system analysis and control. This process is illustrated in Figure 3.
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The systems engineering approach is among the first to identify the need to include
tradeoffs of functional requirements. However, as discussed later, the overall system re-
quirements (“measures of effectiveness” in Figure 3) remain largely static after the initial
requirements specification stage.

2.1.1 Requirements Specification

The objective of engineering design is to produce a product (mechanical or otherwise) capa-
ble of satisfying a need. This can be a new need brought about by scarcity, an improvement
to an existing need brought about by technology, and any other number of cases. Alone,
these needs are generally vague and do not necessarily imply a solution. The engineer then
has a variety of tools available to translate these needs, “the voice of the customer,” into
technical requirements, “the voice of the engineer.” Often in order to do this a few solution
configurations are necessary, though the specific parameters of said configurations need not
be determined. For example, there is a need to transport people across the Atlantic Ocean.
There are a huge number of solutions available, however impractical: by sea, by air, by a
giant bridge, by space, and more. With the configurations narrowed down, one may begin to
create technical requirements. If the solution is an aircraft, what range should it be capable
of? How many passengers should it carry? What safety features must be incorporated?
These and other questions form the basis of the generation of top-level requirements.

For small systems, requirements specification is relatively straightforward. Often there
are a few constraints and one objective. These requirements (constraints and objective
function) follow from a relatively simple set of rules - do not exceed the maximum stress, do
not buckle under load, minimize cost of manufacture, etc. However, more complex systems
involve multiple requirements that may be difficult to characterize. Thus, numerous meth-
ods have been developed within systems engineering to handle the translation of “needs”
into “requirements.” The needs may be characterized through items such as market surveys
and customer questionnaires. This “voice of the customer” can be mapped to the “voice of
the engineer” through Quality Function Deployment (QFD). This technique uses a series
of “House of Quality” worksheets to determine relevant engineering requirements [Dieter,
2000]. These represent but a few options available when determining overall engineering
requirements. Several other techniques used in systems engineering around outlined by
Brassard [Brassard and Ritter, 1994].

Requirements specification techniques have evolved in step with design methods. Air-
craft sizing, to be covered in greater detail in the subsections that follow, has advanced
substantially as the statistical database and computer power have grown. As such, those
setting the requirements are able to see the physical effects of “pushing the envelope” when
specifying what it is a vehicle can do [Czysz et al., 1973; Parker, 1986; Gerhards et al., 2000].
Advanced systems engineering techniques have evolved such that requirements specification
and systems design have become codependent [Schrage, 1999].

The design of aircraft often begins with the specification of several specific requirements.
Some of the most basic requirements are related to the missions the aircraft is expected
to perform. These missions are in fact nominal abstractions of reality; a “slice” of the
vehicle’s overall mission capability. These mission requirements are added to the aircraft’s
performance, economic, and operational needs to create an overall requirements set. Some
methods to design or “size” an aircraft to these requirements are expanded upon below.



2.2 Traditional Single-Objective Approaches

The earliest approaches to systematic aircraft sizing revolved around the minimization of
a single objective. This objective had to be an aggregate measure of development, produc-
tion, and operating cost. It could be minimized subject to critical performance parameters
borne of the mission the vehicle was expected to accomplish. This would help the engineer
determine the most “affordable” vehicle, where “affordability” is thought of as ratio of per-
formance to life-cycle cost. The wealth of data and relatively homogenous vehicle designs
post-World War II provided engineers with the data to provide such an objective, and it
was found that Takeoff Gross Weight (TOGW or GW) seemed to vary linearly with most
cost metrics. The era of single-objective sizing was born.

One problem with single-objective optimization at the time was the lack of reliable
numerical methods (or the machines to work them) for optimization. Thus, most techniques
were graphical. The first sizing methods were therefore graphical as well. These first
systems engineering techniques sought to bring together the multiple disciplines related to
aircraft sizing into a few parametric “scaling laws” related to TOGW. Hiller Helicopters
published their Ry method in the mid-1950s as a graphical technique for minimum gross-
weight estimation [Joy and Simonds, 1956; Simonds, 1956]. In this work, R referred to
the various scaling laws for the fraction of fuel weight to gross weight. These were mostly
statistical regressions with respect to dimensional parameters, environmental parameters,
other constants, and, of course, gross weight. In this work, the idea was to graph the curves
of fuel required and fuel available. The point where they met would therefore be the right
“size” to best meet the requirements, hence the moniker “sizing.” The Ry method would
further be used for minimization of gross weight by plotting several fuel required and fuel
available curves for different settings of critical sizing variables such as thrust-to-weight
ratio and wing loading (or disk loading for rotorcraft).

The purely graphical methods began to give way to numerical schemes combined with
graphical aids as the availability of numerical methods (and machines to handle these com-
putations) increased. Most notably, the fuel-balance technique evolved. This was a numer-
ical scheme used to automatically evaluate vehicle scaling laws and find the gross weight
where fuel required and fuel available met, hence, “fuel balance.” This age also saw the
increased emphasis on synthesis, the act of bringing together multiple disciplinary analyses
into a single, integrated scheme. This enabled the initial scaling laws to expand to include
more sophisticated terms for aerodynamics, propulsion, weight, structures, cost, and others.
This in turn made more design variables available to the systems engineer while optimizing
the vehicle to its requirements. Now the design engineer could make decisions from carpet
plots of weight versus performance metrics. Some basic fuel-balance parametric sizing and
synthesis techniques are illustrated by Pugliese [Pugliese, 1971].

In the years since, the statistical database for aircraft has increased substantially, al-
lowing for more accurate and detailed scaling laws. Engineers sought to create better fits
through more detailed, computer-assisted statistical techniques as well as by classifying var-
ious scaling laws for different classes of vehicles [Greenway and Koob, 1978]. Now “basic”
techniques taught to today’s undergraduate aerospace engineers include the tools provided
by Roskam [Roskam, 1989], Mattingly [Mattingly et al., 2002], and Torenbeek [Torenbeek,
1982], to name a few. These techniques continue to work well for sizing single-mission
aircraft, especially those that fall within the realm of vehicle classes described thus far.
However, these methods are becoming increasingly limited as engineers seek revolutionary
concepts and configurations that are outside of the statistical database.



2.3 Modern Sizing Methods

The further increases in computational power over the years prompted the development of
several stand-alone aircraft sizing codes. These monolithic codes are often semi-empirical,
relying on statistical data and physics models that range from crude to highly sophis-
ticated. Some examples of highly developed sizing and synthesis codes include NASA’s
FLight Optimization System (FLOPS) [McCullers, 1984] and AirCraft SYNThesis (AC-
SYNT) [Myklebust and Gelhausen, 1994] programs. Furthermore, these monolithic codes
allow an engineer to track more than just gross weight; rather, they can have almost instant
computation of other cost and performance metrics for more informed decision making and
tradeoff analysis [Eckels, 1983; Simos and Jenkinson, 1986].

As advanced as they are, monolithic codes still suffer a lack of flexibility. Often, the
codes contain assumptions that limit the diversity of configurations that can be investigated.
Other times, in the name of generality or computational efficiency, these codes contain
deliberately simplified analyses. In either case, they may not be appropriate on their own
for the investigation of radical concepts or for higher-fidelity design exploration. However,
they often have “handles” built in to allow for higher-fidelity results to be directly input
into the system. This has allowed for the next evolution in systems synthesis and design:
the integrated environment.

An integrated environment is a collection of disciplinary analyses capable of direct com-
munication with one another. However, analysis codes use a variety of input and output
formats, so it can be difficult to get the various codes to communicate effectively with any
flexibility. Recent years have seen the development of environments capable of “wrapping”
each code in such a way that inputs and outputs can be readily swapped amongst the
codes. These codes (and wrappers) are available on a common server available to multiple
workstations so that several engineers can access and change the data and run the sizing
programs as needed. Some environments used include Phoenix Integration’s ModelCenter
[Phoenix Integration, 2005] and Engineous Software’s iSIGHT [Engineous Software, 2005].
These environments provide wrappers for a variety of programs, allow users to create cus-
tom wrappers, and give the user control over inputs and output parsing. They have been
used to great effect as illustrated in a case study by Lockheed Martin [Carty, 2002]. Cur-
rent developments in integrated environments cite the use of specialized formats that can
be used without a central server, instead relying on distributed networks or the internet via
XML protocols [Lin and Afjeh, 2002; Kam and Gage, 2003].

2.3.1 Multidisciplinary Design Optimization and Statistical Techniques

The availability of a suitable integrated environment gives the engineer enormous flexibil-
ity in the range of concepts that may be investigated. However, once this environment
is available, dozens of systems engineering, decision making, and optimization techniques
are available to further assist the engineer. Perhaps the most fundamental is the Design
Structure Matrix or n? diagram [ATAA Technical Activities Committee, 1991]. This tool
allows for the analyses within the integrated environment to be moved in such a way as to
eliminate as many feedbacks as possible (where iteration is present) and to allow analyses
to be executed in parallel to save overall system evaluation time. An example of this is
presented in Figure 4. This formulation also opens up many different Multidisciplinary
Design Optimization (MDO) tools such as Collaborative Optimization [Braun et al., 1996;
Sobieszczanski-Sobieski et al., 1998], Optimizer Based Decomposition [Ledsinger and Olds,



1998], Systems Sensitivity Analysis [Sobieszczanski-Sobieski, 1990; Olds, 1994], and others.
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Figure 4: Sample Design Structure Matrix Before and After Restructuring

One drawback of working directly with the integrated environment is that the overall
system evaluation time may be relatively long due to the execution times of the individual
analyses, in series or parallel. Even modern MDO methods may not enable an engineer to
rapidly investigate the entire design space available to a given concept. Therefore, high-
fidelity approximations and statistical techniques can be used to speed up system execution
time and explore every concept available within the design space. Three principle methods
are capable of this: Monte Carlo Simulation (MCS) of the design space combined with the
original integrated environment, MCS of the design space combined with a surrogate model
(approximation) of the original environment, or Fast Probability Integration (FPI) of the
design space combined with the original environment [Fox, 1994; Mavris and Bandte, 1997].
The first is the highest fidelity solution but takes the most time; the latter two provide
time savings at reductions in fidelity. All of these techniques rely on the generation of
Cumulative Distribution Functions (CDFs) to determine the portion of the design space
that can satisfy the specified requirements. These CDFs can be viewed individually to
determine the probability of success for a given metric. However, this does not determine
the probability of meeting more than just one particular metric. Bandte’s Joint Probability
Decision Making (JPDM) technique combines the Probability Density Functions (PDF's)
generated during probabilistic design to determine the portion of the design space that can
meet more than one requirement [Bandte, 2000]. An illustration of a single CDF and a
joint distribution function is given in Figure 5.

Several studies have been made using MCS with polynomial approximations [Mavris
and Bandte, 1995; DeLaurentis et al., 1996], as well as MCS with FPI [Mavris et al., 1997].
A popular method for approximation of relatively well-behaved systems is Response Surface
Methodology (RSM) [Neter et al., 1996] because it is capable of capturing linear, non-linear,
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and interaction effects amongst the design variables. This technique is ultimately of great
importance to this research.

The use of CDFs or JPDM also allows for probabilistic design of uncertain systems.
There is usually some degree of uncertainty associated with various constants used within
an analysis, especially those related to economic or environmental factors. These “noise”
variables can be assigned ranges and probabilistically explored, much like a design space
exploration. In this case, the CDF or JPDM environment does not give the portion of the
design space capable of meeting a design goal; rather, it enables the designer to choose
values for design variables that minimize the risk associated with uncertainty in the noise
variables.

Design space exploration is only one of the uses of an integrated environment and ap-
proximation methods with statistical techniques. Technology forecasting is becoming in-
creasingly popular as new requirements and operating environments push towards more
radical solutions. Often, the state-of-the-art technologies embodied within the design space
exploration exercises outlined above cannot meet these radical targets without some sort
of technology infusion. Therefore, a method such as Technology Integration, Evaluation,
and Selection (TIES) is used to identify promising technologies in conjunction with design
space exploration [Mavris and Kirby, 1999]. TIES can be used probabilistically to deter-
mine the effect of uncertainty in the effect of each technology and thus pick the most robust
suite available, ultimately reducing the risk of the design program [Kirby and Mavris, 1999].
Technology forecasting can also work in the other direction. That is, if an agency has a goal,
such as reducing emissions or noise by a specified amount, Technology Impact Forecasting
(TIF) can be implemented to identify the improvement required in individual technical
metrics to meet this goal [Kirby and Mavris, 2002].

An area of recent interest within design space exploration methods is that of the role of
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requirements in systems design. Often, the methods outlined above refer to static require-
ments. The same statistical techniques can be applied to systems with varying requirements,
and have been demonstrated with some success in conjunction with technology integration
[Mavris and DeLaurentis, 2000; Baker and Mavris, 2001; Baker, 2002]. The research con-
ducted within this document extends the work in the field.

2.3.2 Evolving Techniques

Of final interest in modern sizing methods is the recent introduction of volume-based tech-
niques. Before, the vehicle scaling laws considered were simply based on gross weight.
Now, an increased emphasis is being placed on how the system scales volumetrically. Some
preliminary “volume-balance” methods have been proposed by Raymer [Raymer, 2001].
Volume-based methods will continue to evolve as more radical, low fuel density concepts,
such as hydrogen-powered low-emission vehicles, are considered [Guynn and Olson, 2002].

2.4 Multi-Mission Approaches

From its inception, sizing an aircraft required an enumeration of mission requirements.
This “design mission” thus formed the basis of the fuel-required curve in the range (or
endurance) related vehicle scaling laws. The design mission is met when the fuel required
to propel the vehicle along the specified mission profile matches the fuel available within
the vehicle. Over time, the design mission began to resemble less of what mission the
vehicle would actually fly, but rather became a series of limiting conditions for what the
vehicle could be expected to accomplish over a series of similar missions. As identified in
the previous chapter, aircraft are increasingly being tasked with a wider variety of missions.
This can make specification of a design mission difficult. One can envision several ways of
incorporating disparate mission profiles into a single sizing mission, but each will likely fall
under one of two main headings: size to the most critical mission, or size to a composite
mission.

Sizing to the most critical mission is perhaps the simplest of these techniques and most
similar to current practices. In this method, the designer first defines the necessary mission
profiles and associated mission-specific performance, payload, and cost constraints. The
vehicle is sized to each of these secondary missions subject to the various point-performance
constraints associated to that particular mission, as well as the general non-mission specific
constraints. Ultimately, the mission resulting in the largest gross weight vehicle becomes the
only mission capable of meeting all of the other mission (fuel) requirements, and therefore
becomes the de facto design mission. In this way, the vehicle is “overdesigned” with respect
to some mission performance (range and endurance) metrics, though often others will suffer,
such as off-design performance on the secondary missions and program cost.

One way to eliminate the potential for overdesign is to build a composite mission profile
capable of parametrically modeling each of the specified missions. This composite mission
would contain variable-length segments where necessary. These variables form a “mission
space” that can be evaluated separately or together with the design space of the vehicle
[Baker and Mavris, 2001]. Variation of both design and mission space values gives the
designer a tool to further envision tradeoffs amongst the design variables and requirements.
Ultimately, this can be quite helpful in choosing the final design mission when sizing the
vehicle, and is the first step in eliminating the concept of a design mission entirely. Each
point within the mission space represents a unique design mission to which the vehicle is
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sized. Secondary performance variables can be tracked and traded off in such a way that a
solution may not meet the most stringent mission requirements, but may be able to more
affordably meet most of them.

2.4.1 Shortfalls

By its vary nature, multi-mission systems design fits naturally into the realm of Multiple
Criteria Decision Making (MCDM) techniques, including such aspects as the relative impor-
tance of each mission. This frame of mind is largely ignored through sizing-based techniques
listed above as they always boil down to specification of a single design mission meant to
encompass all of the vehicle requirements. As system concepts become more radical and
the specific missions required of the vehicle become more diverse, the chance of meeting
all mission requirements (as in the first multi-mission sizing method) becomes improbable.
Furthermore, “sizing” generally implies a fuel balance, which requires iteration and con-
vergence to solve correctly. In a composite mission approach, large diversity in individual
missions may entail composite mission parameter ranges that lead to numerical instability.

A final point worth mentioning is that neither of these techniques is fully adaptable
to design with uncertain requirements. Certainly, the mission space model can capture
uncertainty in mission-related elements, but other constraints, such as point-performance
and cost may pose problems. The constraint lines can be moved, but constrained optimiza-
tion techniques are not necessarily the best suited for probabilistic constraint evaluation.
Instead, an unconstrained or penalty-function approach may be more appropriate for cap-
turing uncertainty in system-level requirements.

2.4.2 Requirements Fitting for Multi-Mission Design

One problem with any form of multi-mission “sizing” is that a fuel balance is always implied.
In order for a fuel balance to have any meaning, a unique design mission must be specified
that may or may not accurately represent the overall mission expectations of the aircraft.
As mentioned above, the fuel balance was originally created as a method to estimate gross
weight for mostly single-mission aircraft based on statistical scaling laws. It is possible to run
this process in reverse; that is, specify a gross weight and other pertinent design parameters
and attempt to find what sorts of mission profiles the vehicle can fly. This is especially
well-suited for multi-mission vehicle design because it becomes a simple matter to track
pertinent individual mission performance parameters (such as segment range, endurance,
and point performance). Instead of a fuel balance, a parametric sweep of gross weight and
other design parameters can be made, and mission performance tracked in each case. The
best multi-mission aircraft would then be the vehicle with the design parameters and gross
weight that best “fit” the individual mission requirements.

This approach is attractive because it makes MCDM an integral part of the design
process. Now it is possible to directly tradeoff mission performance metrics for all of the
individual missions as well as other, non-mission specific metrics. This approach also mimics
the “true” behavior of the system since the designer is virtually creating and test-flying a
series of vehicles that make up a decision-making environment. Finally, it is well-suited
for automation as most aircraft analysis codes work much better and faster without the
iteration and convergence required for a fuel balance.
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CHAPTER III

DESIGN AND DECISION MAKING

Almost every aspect of life involves some form of decision making, whether it is large choice
such as what job to pursue or a small choice such as what type of shirt to wear. Large
or small, each decision has consequences that require us to forecast the effect of various
alternatives. Once the choice is made, it is a matter of time to find whether the forecast
was spot-on or far off due to some unexpected event.

Engineering design also involves decision making and forecasting, though the methods
used appear to be far more concrete, at least on the surface. However, when one digs down
further, the number of assumptions within an analysis that is the basis of a design decision
may be inaccurate. Thus, engineering design will have some degree of uncertainty.

Many design decisions involve the use of mathematical or numerical optimization to
reach an “ideal” setting of variables with respect to a single criterion. Unfortunately,
optimization is not a substitute for decision making. Zeleny [Zeleny, 1982] challenges his
readers with the statement:

No decision making occurs unless at least two criteria are present. If only one
criterion exists, mere measurement and search suffice for making a choice.

This implies that single-objective optimization is not decision making at all. An analogy
for the existence of multiple criteria in decision making can be made in the choice of shirt
to wear. One may consider comfort, appearance, setting, and many other criteria even in
this simple case. If only comfort were important than one would simply have to search
through their closet and find the most comfortable shirt. Thus, optimization is more about
developing and executing the right search algorithm for a single-objective problem whereas
decision making is concerned with making a choice from multiple objectives.

Another necessary condition for decision-making is the availability of at least two distinct
alternatives. Obviously, choosing which shirt to wear is a moot point if an individual only
owns one shirt or 100 identical shirts. Of course, if the option exists to not wear a shirt at
all, then a decision can be made amongst differentiated alternatives.

Unfortunately, humans are poor at making rational, repeatable decisions despite the fact
that they experience decision making on a daily basis. This is especially true when there
are many more than two criteria to consider. The subjective nature of decision making,
along with inherent biases and lack of proper processing of information, can lead to poor
judgement. Shepard [Shepard, 1964] notes:

At the level of the perceptual analysis of raw sensory inputs, man evinces a
remarkable ability to integrate the responses of a vast number of receptive ele-
ments according to exceedingly complex nonlinear rules. Yet once the profusion
and welter of this raw input has been thus reduced to a set of usefully invariant
conceptual objects, properties, and attributes, there is little evidence that they
can in turn be juggled and recombined with anything like this facility.

Shepard continues in this work by referring to a two-dimensional experiment with lin-
early correlated attributes. The subjects surveyed would make a plethora of choices related
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to individual biases in one or the other dimensions. He concludes that while humans are
capable of making subjective decisions, one should have some sort of computational aid to
the process if at all possible.

Certainly, one needs some sort of analytical means to help evaluate and select concepts
with multiple attributes. What follows is a description of some important components and
a few selected techniques in Multiple Criteria Decision Making (MCDM).

3.1 Pareto Optimality

An attractive concept in MCDM is the reduction in number of alternatives one evaluates.
One such reduction concept is to only choose from concepts that are Pareto optimal. A
Pareto-optimal solution, also known as an efficient or nondominated solution, is an alter-
native that is not dominated in at least one criterion. That is, there is no other feasible
alternative with the same or better performance considering all criteria [Zeleny, 1982]. The
locus of these points is known as a Pareto frontier (also efficient frontier, efficient surface,
nondominated surface, and other permutations). This moniker refers to the work on eco-
nomic theory by the Italian economist Vilfredo Pareto with regards to economic efficiency
[Pareto, 1971]. A schematic of a two-dimensional “larger-is-better” Pareto frontier is given
in Figure 6.
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Figure 6: Two-Dimensional Pareto Frontier

In the strictest sense, one always wants to choose a solution from the Pareto frontier.
Choosing another feasible solution not on the frontier implies that the decision maker is
giving up some “free” performance in at least one of the decision metrics. In practice,
however, this may not necessarily be the case. In order for Pareto optimality to hold, one
must ensure that all of the decision metrics of interest are present, no matter what the
nature of the data: cardinal, ordinal, and otherwise. Often, a decision maker may choose
an alternative not on the Pareto frontier simply because another decision metric may be
hard to quantify mathematically or may not be present in the data set. The remedy for
this is to attempt to capture all of the decision criteria no matter what the nature of the
data. In cases where subjective criteria emerge one can at least attempt to quantify the
ranking relationship of the alternatives.
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3.2 Axiomatic Design

While not explicitly under the heading of MCDM, Axiomatic Design is a process that seeks
to resolve some of the issues with designing to multiple requirements. Notably, it attempts
to remove conflict by maintaining independence amongst requirements. Suh defines two
design axioms [Suh, 1990] as:

The Independence Axiom: Maintain the independence of the Functional Re-
quirements (FRs).

The Information Axiom: Minimize the information content of the design.

The independence axiom ultimately establishes that the Functional Requirements must
be independent such that only one is modified for any perturbation of a Design Parameter
(DP). The information axiom states that the best design is the one which minimizes the
number of FRs and DPs required to define the design.

An oft-used axiomatic design example is the choice of water faucet for household use as
seen in Figure 7. In this case, the FRs are to control water temperature and water flow rate.
A typical, “bad” design for a faucet has two handles and one spigot; one handle controls
the flow of hot water and one of cold water. Here, one cannot independently control either
temperature or flow rate; rather, the user must modify inputs to both handles to change one
of the outputs. The Axiomatic Design approach would select a more modern faucet with a
two-degree of freedom handle. In the latter case, the vertical rotation of the handle controls
the flow rate and the horizontal rotation controls the temperature. Here, the independence
of the FRs is maintained with respect to the DPs.

Standard design Axiomatic design

Figure 7: Axiomatic Faucet Design [MIT Axiomatic Design Group, 2005]

In theory, Axiomatic Design seems to be a good approach for design. In practice it may
be much harder to enforce, especially in systems engineering situations where the design
parameters are high-level abstractions of individual systems and the functional requirements
are industry or government standards. Often it becomes impossible or improbable to discern
individual inputs for the design parameters. An aggregate set of requirements may be
possible but difficult to relate. If a decomposition-based approach were used, it may become
possible to create a set of independent functional requirements with transparency to the
original requirements, though it would be much harder to enforce independence of design
parameters. The attractive feature of independent requirements lies in the decision-making
itself: if the requirements are truly independent there should be no bias from one solution
to the next.
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3.3 Multiple Criteria Decision Making Techniques

Multiple Criteria Decision Making is a necessarily broad subject area. There are many
classes and subgroups of methods depending on the nature of the criteria considered, the
involvement of the decision maker, and the nature of the objective sought. Though the
opinions of many authors differ on the subject, in this document MCDM will be used
to refer to two different classes of methods: Multiple Attribute Decision Making (MADM)
and Multiple Objective Decision Making (MODM) [Yoon and Hwang, 1995]. Some consider
Multiple Attribute Utility Theory (MAUT) to be under this heading as well, but this subject
will not be covered in detail here.

The principle difference between MADM and MODM techniques is the pertinent ap-
plication. MADM techniques are focused on ranking and selection of a few options from
a discrete pool of alternatives, usually not subject to constraints [Hwang and Yoon, 1981].
On the surface, MADM is more appropriate when a decision maker must choose from a
pool of predefined concepts, such as the government’s choice of five competing fighter con-
figurations from different companies or one’s choice of a stock portfolio. MODM techniques
are more appropriate for design applications, as they focus on multiple objectives within
a continuous space and are subject to active constraints [Hwang and Masud, 1979]. Both
techniques capitalize on various weighting techniques to determine ranking or preference
relationships between the various criteria.

A variety of techniques are available for both MADM and MODM depending on the
nature of the information available to the decision maker or algorithm. Figures 8 and 9
are reproduced from the work of Hwang and his colleagues [Hwang and Yoon, 1981; Hwang
and Masud, 1979] and display a taxonomy of MADM and MODM techniques, respectively.
Note that MADM techniques vary by the type of information available whereas MODM
techniques are categorized by both the type of information and the stage at which this
information is needed.

The decisions made within aerospace systems design usually refer to cardinal data;
that is, data associated with a quantity but not necessarily a preferential order (note that a
ranking relationship may be derived from cardinal data if a goal or direction of improvement
is noted). The data retrieved from engineering analyses are, with few exceptions, cardinal.
Examples include gross weight, cost, sustained turn rate, and takeoff field length, to name
a few. Some more subjective criteria may be ordinal in nature, that is, simply ranked with
respect to the other alternatives. An example may be a qualitative measure of reliability
as low, medium, or high. This is far less common in engineering analysis. Therefore, only
some of the cardinal methods shown in Figures 8 and 9 or their associated outgrowths will
be elaborated upon further. For a more complete description of these techniques the reader
is directed to more comprehensive references [Hwang and Masud, 1979; Hwang and Yoon,
1981; Zeleny, 1982; Triantaphyllou, 2000].

3.3.1 The Ideal Solution

A powerful concept in cardinal MCDM techniques is that of the ideal solution. This is the
solution that embodies the best answer within the design domain for each of the attributes.
Mathematically, the ideal solution can be stated as

Y* = (yfv y;: SR y;) (1)

where Y* is the ideal solution and g is the best value of the n!* attribute. This solution
is often made up of attributes from multiple alternatives (if such a solution was available
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with one alternative, it becomes the obvious choice). Sometimes the concept of the negative
ideal solution becomes necessary for certain MADM techniques. As its name implies, the
negative ideal solution has the opposite definition as the positive ideal. This represents an
aggregate of the worst attributes from the available alternatives. Figure 10 shows a simple
schematic of the positive and negative ideal solutions for a finite set of alternatives in two
“larger is better” dimensions.
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Figure 10: Positive and Negative Ideal Solutions from Several Alternatives

3.3.2 Simple Additive Weighting

Perhaps the most elementary, and most popular, cardinal MADM technique is the Simple
Additive Weighting (SAW) method, also known in various forms as the Weighted Sum (WS)
or Overall Evaluation Criterion (OEC) method. In these techniques, the attributes of each
alternative is normalized first, usually with respect to the best attribute value amongst the
pool of alternatives (i.e. the respective value in the positive ideal solution). Sometimes
the values are normalized by a vector sum of the characteristics of each attribute. Next, a
series of numerical weights are prescribed by the decision maker. These can be based on
subjective observations by experts or on more advanced weight generation methods, to be
covered later. These weights are usually normalized such that their sum is equal to one.
Each alternative is evaluated by multiplying the weights times the normalized score in each
respective attribute, then summing up the total. The alternative with the highest score is
considered most preferable. Mathematically, SAW (when normalized by the best attribute)
figures as

Z?:l (w; Y;5)
Z?:l (w;)

where A* is the best alternative, A4; is the i** alternative, n is the number of attributes, wj is
the weight of the j* attribute, and Y,j 1s the 4" normalized attribute of the i*" alternative.

A" = A; | max (2)
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If “larger is better” for all y;, then the normalization follows as

_ Yij
Uij = y? 3)

where y;; is the “raw” value of the gt attribute of the it" alternative. For a “smaller is
better” case, the reciprocal of (3) is used.

Though simple and easy to understand, SAW and related methods are not well suited for
rigorous decision making. Most notably, these methods will never pick a non-convex point
on a Pareto frontier and will instead only choose the extremes [Mullur et al., 2003]. This
is best visualized by projection of a non-convex frontier onto a series of SAW indifference
curves. An indifference curve is a line along which a method will receive the same score.
Figure 11 shows this for a two-dimensional “larger is better” series of alternatives with
a non-convex Pareto frontier. Here, SAW will always rank alternatives A and B higher
than alternative C, even though the latter alternative may be the best available mix of
performance available.
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Figure 11: SAW Indifference Curves Projected Onto Non-Convex Pareto Frontier

3.3.3 TOPSIS

One MADM technique that attempts nonlinear decision-making is the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS). The basic idea of TOPSIS is to rank
the solutions based on the combination of Euclidean distance from the positive and negative
ideal solutions. The concept of Euclidean distance fits well into the spatially-oriented minds
of most decision makers.

Conceptually, TOPSIS does not begin much differently than the SAW-related methods.
Of primary importance is the normalization of the individual attributes, though TOPSIS
accomplishes this through the 2-norm via

Yij

Yij = —F/—
2
> Yij

(4)

where m refers to the number of alternatives and the other notation is as in (3). Once
normalized, the separation from the positive and negative ideal solutions is measured for
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each alternative through

Sr= > (wi@y; — )’ (5)
Jj=1

Sy = (w; @iy — 7)) (6)
j=1

where S; refers to the separation measure, the subscript ‘*’ refers to the positive ideal
solution, and ‘—’ refers to the negative ideal solution. All other notation is as before.

These separation measures are combined into a single measure dubbed the closeness to
the ideal solution for each alternative. This is figured from

= 7)
S;+5;
where C} is the closeness measure for the ith alternative. The solutions are then ranked in
descending order; i.e. the alternative with the highest value for C is considered the “best,”
with the next-highest value as the “second-best,” and so on.

The 2-norm would seem to indicate that this method is capable of capturing some non-
convex Pareto optimal solutions. However, the use of both the positive and negative ideal
solution measures flattens the indifference curves halfway between the positive and negative
ideals. Therefore, this still leads to poor resolution and ranking of solutions on non-convex
Pareto frontiers. Figure 12 shows two cases of TOPSIS, both for “larger is better” cases in
two dimensions.
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Figure 12: TOPSIS Solutions for Two Non-Convex Pareto Frontiers

Figure 12 shows that TOPSIS does indeed have different indifference curves than SAW
but is still not capable of ranking non-convex alternatives and instead will rank one of the
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extreme alternatives in this situation. The behavior of TOPSIS indifference curves is cited
by Yoon [Yoon and Hwang, 1995] as being rational. He states:

When a [decision maker| recognize’s ones solution is closer to the negative-ideal
than to the positive-ideal, the [decision maker] is inclined to pick an alternative
that consists of the best and worst attributes rather than one with two worse
attributes. For example, one might want to get one A grade and one F grade
rather than two D grades.

This choice reflects one of the caveats of TOPSIS: the assumption of monotonically
increasing utility. Unfortunately, this may not always be a valid assumption. Therefore,
methods that are able to capture some shallow non-convex solutions may be more appro-
priate when a decision maker is willing to enable larger tradeoffs to achieve a compromise.

3.3.4 Compromise Programming

Compromise Programming (CP) is a quasi-MODM technique that is a combination of Multi-
objective Linear Programming and Goal Programming [Zeleny, 1982]. The former approach
is an extension of the popular linear programming techniques, such as the Simplex method
[Chvatal, 1983] for problems with multiple objectives, hence its MODM identification. Goal
programming is usually a linear programming technique as well, except with modified ob-
jective functions to reflect a specific goal. This is more of a “nominal the best” style of
optimization where the goals frequently lie within the design domain but may not neces-
sarily be a maximum or minimum of the alternatives within the concept space (hence the
quasi-MODM identification). Compromise programming is very flexible and can be used
for nonlinear problems. It too uses the concept of the positive ideal solution and in some
cases the negative ideal solution, sometimes referred to in the literature as the “anti-ideal.”

A popular method for CP uses the positive and negative ideal solutions (or, in a con-
tinuous space, the “best” and “worst” values) and has an objective function of the form
[Zeleny, 1982; Vanderplaats, 1999

n wi(EF: (%) — F*)]P %
F(f)z{Z[ (F(_)F)] } ®)

=1

where F'(Z) is the overall objective function to be minimized, Z is a vector of the design
variables, F;(%) is the j* objective (attribute) function, F? is the “best” value of F}(7)
(analogous to y; in (3)), F ; is the “worst” value of F;(Z), and p is a parameter dependent
on the type of norm to be used in the optimization. The most common values for p are 1, 2,
and co. When p = 1 the CP algorithm is essentially a weighted sum technique. For p = 2
CP finds the solution the minimum Euclidean distance away from the positive ideal, and for
p = oo CP will find a solution that minimizes the maximum deviation from the ideal. The
changes in solution for different values of p is demonstrated for a two-dimensional “larger
is better” convex and non-convex case in Figure 13.

Compromise programming seems well-suited for design problems because it is essentially
a MODM (hence continuous) technique but allows the user to specify goals. It also allows the
decision-maker to tailor preferences in solution method via p. Furthermore, it is adaptable
to a variety of normalization methods in addition to the ideal solution method in (8).
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Figure 13: Compromise Programming Solutions for Different Values of p

3.3.5 MCDM for Systems Design

Systems design is not necessarily well-suited to a traditional design and decision making
environment. Most detail design environments require fixed requirements and constraints,
one or very few objectives, and a continuous or mixed continuous-discrete design space. The
solution is often based on closed-form analysis. In contrast, most decision making environ-
ments are set up to handle a discrete solution space, have several attributes to consider for
each alternative, and are reliant on highly subjective methods. The former is well-suited
to detail design optimization and the latter is better for making decisions from a pool of
predefined concepts and “what-if” scenarios such as risk assessment. Effective systems
design is often a combination of both environments. Some design and MDO frameworks
were mentioned in Chapter II; these, combined with the MCDM techniques outlined in this
chapter, form the building blocks for effective multiple criteria systems design.

3.4 Case Study: Notional Multi- Role Fighter

A case study was performed on the requirements selection and design of notional multi-role
fighter in an attempt to gain more information on the pertinent issues associated with large-
scale systems design problems. This fighter was based on the requirements growth of the
McDonnell-Douglas F/A-18C Hornet configuration to the F/A-18E Super Hornet series of
aircraft proposed by Boeing. The Super Hornet is supposed to supplement and eventually
replace the missions currently performed by three aircraft in the U.S. Navy’s inventory
[Young et al., 1998]: the F/A-18C Hornet, A-6F Intruder, and F-14D Tomcat. The general
idea of this study was to attempt to “grow” an existing aircraft configuration to attempt
to meet or exceed the mission capabilities of the legacy aircraft. The study was conducted
in such a way as to keep the growth configuration flexible to eventually investigate if the
F/A-18C was the most effective configuration to work from. The study that follows is a
summary from some recently published literature on the subject [Borer and Mavris, 2003,
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2004]. The reader is referred to these documents for a more comprehensive review.

3.4.1 Problem Formulation

The main formulation of this study involved six steps: Requirements Classification, Base-
line Concept Definition, Creation of Integrated Environment, Decision Space Population,
Exploration of Requirements Tradeoffs, and finally, Decision Making. The first step was
universal for all configurations, while steps two through five could be repeated for different
concepts if necessary. The final decision could be based on the results from several con-
cepts. This study only considered the F/A-18C configuration but the overall formulation
was generic enough that any (or several) baselines could be used.

The requirements classification followed from examination of the missions of the legacy
aircraft the Super Hornet was meant to replace. However, some of the latest data on
the legacy aircraft was not available, so data was used from earlier models of the same
aircraft. The mission requirements and profiles were collated from the Standard Aircraft
Characteristics (SAC) charts of the F/A-18C [Naval Air Systems Command, 1996], A-6E
[Naval Air Systems Command, 1984], and F-14A [Naval Air Systems Command, 1976]. In
total, these aircraft performed 21 missions, though there was redundant capability amongst
the legacy aircraft so they only accounted for nine distinct mission profiles (albeit with
different individual capabilities). For the most part, the most critical (in terms of payload-
range) mission parameters were chosen when multiple airframes flew the same mission
profile. These missions are depicted in Table 1 with the “dominant” configuration in bold.

Table 1: Notional Multi-Role Fighter Missions

Mission Aircraft
F/A-18C
Hi-Hi-Hi F-14A
A-6E
F/A-18C
Lo-Lo-Lo F-14A
A-6E
. . F/A-18C
Hi-Lo-Hi A-6E
F/A-18C
Hi-Lo-Lo-Hi / Interdiction F-14A
A-6E
Lo-Lo-Hi F-14A
F/A-18C
Close Support F-14A
A-6E
. ] F/A-18C
Fighter Escort F-14A
F/A-18C
Deck-Launched Intercept Fo14A
. F/A-18C
Combat Air Patrol F14A
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The analysis environment utilized the requirements fitting formulation for multi-mission
design outlined in section 2.4.2. This served as a test for the requirements fitting technique
and ensured that the analysis codes would run smoothly for all nine missions. A total of 44
decision metrics were tracked: four mission performance metrics for each of the nine mis-
sions, five individual mission performance metrics, and three non-mission specific metrics.
These are listed in Table 2. Note that some of these metrics were inputs into the analysis
code. Also, no explicit cost metric was available so gross weight was used as an estimate of
life-cycle cost. Though perhaps a poor estimate, this exercise was meant to be exploratory
in nature and therefore appropriate enough.

Table 2: Notional Multi-Role Fighter Decision Metrics

Description Units | Total #
Maximum Mach number - 9
Maximum sustained load ,
g’s 9
factor
Specific excess power ft / sec 9
Total range nmi 9
Combat Air Patrol i 1
acceleration Mach number
Combat Air Patrol time on )
. min 1
station
Clos:e Air Support time on min 1
station
Deck-Launched Intercept 1
dash Mach number )
Hi-Lo-Lo-Hi / Interdiction .
. nmi 1
low-level dash distance
Approach speed kts 1
App'roach single engine rate ft / sec 1
of climb
Takeoff gross weight lbs 1

The core of the analysis was NASA Langley’s FLOPS [McCullers, 1984, 1998]. This code
is capable of fuel-balance sizing or direct mission analysis of a configuration for specified
gross weight, so it was used in the latter mode in keeping with the ideas of the require-
ments fitting process. A baseline input file for the F/A-18C configuration was calibrated to
actual performance and aerodynamic data [Naval Air Systems Command, 1996; McDonnell-
Douglas Corporation, 1996]. A series of spreadsheets were used to scale the input FLOPS
file for the various system-level inputs and to figure changes in store drags for the various
missions. These files were wrapped in a ModelCenter [Phoenix Integration, 2005] environ-
ment for ease of execution and parsing data.

This integrated environment was executed multiple times for various settings within a
Design of Experiments (DoE) table for creation of quadratic Response Surface Equations
(RSEs). The Design of Experiments and subsequent creation of the RSEs was handled
with JMP [SAS Institute, 2005], a statistical analysis software package. Once created, the
RSEs were validated through a series of statistical tests within JMP and finally through
a comparison of several random input cases. All tests indicated that the RSEs were good
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approximations to the data provided by the original analysis environment.

The RSEs served as a rapid way to evaluate the various responses in a probabilistic
MCDM environment. The overall scheme involved creation of a random population of
100,000 data points. The RSEs were used to rapidly create a 44-element vector of attributes
for each of these 100,000 alternatives. Note that no screening was performed on these
alternatives to determine which, if any, were not Pareto optimal. This was due to resolution
issues associated with generating a Pareto frontier in very large problems (this will be
discussed in general later). TOPSIS was used to rank each of the alternatives subject to a
complex scheme for determination of weighting factors. Ultimately, each of the 44 metrics
had its own importance weight factor. The uncertainty in the actual requirements was
simulated via uncertainty in the weight factors. As such, 5,000 quasi-random weighting
scenarios were developed in a Monte Carlo Simulation for TOPSIS evaluation; hence, each
of the 100,000, 44-metric alternatives were ranked 5,000 times via TOPSIS. In this fashion,
the idea was not to pick the design that was ranked first in any individual TOPSIS execution,
but rather the design that most often appeared in the top few percent of every TOPSIS trial.
This design would be the most robust with respect to unexpected changes (uncertainty) in
the requirements. Figure 14 illustrates the prominent features of this analysis.

Response surface
equations

-= Random population
Bounded uniform of 100,000 members

distributions of inputs

*
L 2 L 2
AR
* o . :
(44 L 4
——\ <
Vector of randomly
L generated weights TOPSIS ranking of population

Bounded uniform
distributions of weights Record top 1% of
ranked designs

Repeat 5,000 times

Figure 14: Notional Multi-Role Fighter Problem Formulation and Execution

3.4.2 Results and Implications

The top one percent of the TOPSIS-ranked population were recorded for each of the 5,000
MCS trials. Of these 5,000 trials, one particular alternative appeared in the top one percent
of the population 2,365 times, and 26 alternatives appeared over 2,000 times. If the top
designs all have similar inputs and outputs, then any one of these designs represents one
that will be invariant with small changes in preference.

Unfortunately, this was not the case. The resulting input and output histograms for the
top recurring designs showed considerable spread, including gross weight. Furthermore, the
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recurrence was much smaller than hoped. At best, the top recurring design was in the top
one percent 2,365 out of 5,000 trials, slightly more than 47% of the time. This level of risk
is likely unacceptable for most programs. This could perhaps be increased with a smaller
range and refined distributions within the MCS trials, but seemed to be indicative of bigger
problems.

One such problem with this formulation was the incredible number of requirements.
Unfortunately many of the requirements were highly dependent on the same parameters as
others, potentially creating “double-weighting” (and more) situations within the TOPSIS
trial. That is, if two requirements were essentially the same metric, then including them in
any MCDM approach will act as if that one metric were twice as important.

One final problem with any MCDM formulation is a lack of threshold values. Often,
there is a threshold beyond which a decision maker becomes indifferent to the value of a
particular metric. TOPSIS and other MCDM formulations will essentially try to exploit the
responses with the greatest slope in finding a solution (this slope may be partially mitigated
with the weighting factors). However, this may not be desirable once a metric reaches or
approaches a certain value, and instead the optimization effort should be spent in other
dimensions even if they have a lower slope.

3.4.3 Research Directions

In all, the notional multi-role fighter case study was a success. Though the results themselves
were inconclusive, the exercise demonstrated some of the issues associated with bringing
MCDM to large-scale systems design problems.

Systems design involves decisions made early on in a process considering such things
as risk, performance, and cost. As mentioned before, aircraft design is often fraught with
uncertainty, especially with respect to requirements and constraints. As such, an effective
multiple criteria systems design environment would be one that could handle uncertainty
in requirements specification. It would also need to be capable of identifying key tradeoffs
and the requirements which drive these tradeoffs.

As a systems design problem grows to encompass more requirements, the complexity
associated with its MCDM environment grows. More solutions become Pareto optimal, and
the addition of uncertainty further muddies the water when attempting to find the best
compromise solution.

Four principal questions arise from the observations made thus far. These have to do
with the idiosyncracies associated with probabilistic design and MCDM for many require-
ments. These research questions are identified as follows:

(R1) Is there a design formulation that is better suited to integration of proba-
bilistic MCDM techniques?

(R2) What is the best solution to MCDM with uncertain requirements?
(R3) What are the key tradeoffs amongst a large set of requirements?
(R4) Is it possible to identify an ideal tradeoff?

The reader is asked to keep these questions in mind as the research plan unfolds through-
out the rest of this document. The first two questions relate to some of the probabilistic
design methods already identified, but the latter two invite a new formulation for MCDM
to help determine relative importance of metrics and the selection of tradeoff values.
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CHAPTER IV

DECISION MAKING FOR LARGE-SCALE PROBLEMS

The techniques described in Chapter III begin to give an appreciation for the choices avail-
able when choosing a formulation for design and decision making. The MCDM methods
especially have a unique taxonomy depending on the nature of the decision data: discrete,
continuous, ordinal, cardinal, and more. Unfortunately, all decision making methods have
some prominent drawbacks, especially with respect to large-scale problems. Some of these
issues were discussed in the notional multi-role fighter case study presented in the previous
chapter. The most notable drawbacks are the assumption of monotonically increasing utility
for each metric and also the dependence of the decision metrics on others. However, these
issues are not insurmountable and can be dealt with within the appropriate framework.
What follows is the development of a probabilistic MCDM model that is better suited to
large-scale problems. This formulation is developed and demonstrated in parallel with an
example problem to further illustrate the principles at work.

4.1 Generalized Probabilistic MCDM Formulation

Fundamental to the description of a large-scale MCDM environment is the creation of a
generalized probabilistic MCDM formulation. This environment should be able to capture
uncertainty in the requirements themselves or in the decision maker’s preference regarding
one metric over another. Three salient characteristics of such a formulation are as follows:

e Probabilistic
e Lack of internal constraints;

e Implicit tradeoffs.

As with the notional multi-role fighter, the probabilistic portion of this formulation can
be handled through the relative weights in the MCDM environment. A probabilistic relative
weight is analogous to the decision maker’s uncertainty regarding the relative importance
of one metric to the next. It follows that the consistently higher-ranked solution is robust
(relatively invariant) with respect to the decision metrics and therefore represents the best
probabilistic solution.

Lack of internal constraints is very important in such a formulation because these can
bias an integrated environment or cause bad fits to data if surrogate models are used (as
is often necessary for probabilistic analyses; refer to Chapter II for more details). These
internal constraints may require iteration and convergence that are not transparent to the
designer and therefore can cause problems when specifying other requirements. Further-
more, many constraints may actually be requirements or decision metrics and therefore it
is important to allow the decision maker external access to these values.

Finally, any non-trivial decision making formulation requires tradeoffs. For large prob-
lems, the sheer number of tradeoffs is a combinatorial of the number of metrics, i.e.
four requirements involves up to 3 + 2 + 1 = 6 tradeoffs, ten requirements can involve
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9484+7+6+5+4+ 3+ 2+ 1 =45 tradeoffs, and so on. Therefore, it quickly becomes
difficult to handle explicit tradeoffs. These can be made implicit with many MCDM for-
mulations simply through definition of a positive and negative ideal solutions along with
relative weights. Compromise programming is an attractive option because it can normal-
ize the data to the positive and negative ideal solutions, is a continuous formulation, and
allows the decision maker flexibility regarding the type of tradeoff to be made via the 1-, 2-,
or co-norm. Compromise programming will also always capture a nondominated solution
[Ismail-Yahaya and Messac, 2002].

The generalized probabilistic MCDM formulation can be formally summarized via the
statement of three hypotheses:

(H1) Effective Multiple Criteria Decision Making requires an open, internally
unconstrained integrated environment.

(H2) Requirements uncertainty can be captured through probabilistic relative
importance weights of the individual metrics. It follows that the concept
that is most robust with respect to change in the requirements is the concept
whose ranking is most invariant with respect to changes in these weights.

(H3) Tradeoffs amongst multiple requirements can be implicitly handled through
a decision-making algorithm capable of compromise. This compromise is best
characterized with respect to the positive and negative ideal solutions.

4.1.1 Generating Alternatives

All MCDM techniques require a dataset from which to make decisions. This dataset is
generally discrete for MADM techniques and continuous in MODM, though this is not a
rule. It is possible to represent a continuous space with a collection of random discrete
points and just as possible to represent most discrete points with some form of continuous
function if necessary. In this vein, “generating alternatives” need not necessarily mean the
generation of discrete alternatives. Rather, it may just as likely refer to characterization of
the overall continuous decision space for later MCDM evaluation.

Ideally, a decision maker wishes to choose from those solutions that are Pareto optimal.
Choosing from this subgroup ensures that all tradeoffs, implicit or otherwise, would occur
amongst nondominated alternatives. While an attractive option in theory, resolution of
the Pareto frontier becomes difficult as the number of objectives increases. This has been
documented for multiobjective problems where evolutionary algorithms are used to glean
information on the Pareto frontier [Deb, 2001]. Here, an initial population is necessary and
an estimate can be made as to what fraction of the population size will be nondominated.
Guidance for population size selection for up to 10 objectives can be found in Figure 15.

Furthermore, the computational effort required to resolve nondominated solutions in-
creases nonlinearly as the population size increases. As can be inferred from Figure 15,
even large populations contain mostly nondominated solutions. This seems to imply that
pre-screening dominated solutions is not worth the computational savings realized from a
reduction in number of decision alternatives for problems with many objectives. The anal-
ogy of fraction of nondominated population size can be carried over to continuous decision
spaces. Here, the Pareto optimal solutions would be a continuous subset of the decision
space. As the number of decision metrics (objectives) increases, the portion of the decision
space that is completely dominated decreases until it is insignificant. This leads to the next
hypothesis regarding large-scale MCDM:
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Figure 15: Nondominated Population Fraction for Increasing Number of Objectives [Deb,
2001]

(H4) Resolution of the Pareto frontier becomes inconsequential as the number
of decision metrics increase. For a large number of metrics, the complete
design space is an adequate representation of the subset of nondominated
solutions.

4.2 MCDM Example Problem: Beam Design

An example problem will be used throughout the rest of this chapter to further illustrate
some of the issues and new approaches for large-scale MCDM. This example is a beam design
problem with requirements calculated from simple structural analysis principles. These
closed-form requirements are easily understood and should resonate with most engineers.

The design problem is a three-dimensional vertical beam with a fixed end condition.
The beam has two design variables, both relating to cross-section. These are width (w) and
aspect ratio (AR), the latter of which is defined as the ratio of width to depth. The beam
length and material properties are constants. Figure 16 gives the pertinent information for
this example problem.

Its requirements are characterized in three different loading conditions: one end-loaded
compressive case and two cantilever cases. Each of these loading conditions has specific
requirements for displacement and factor of safety for ultimate failure (maximum stress).
The compressive case has an Euler buckling factor of safety requirement. Finally, the beam
is to be designed to minimize weight. Figure 17 illustrates the beam loading conditions.

Inspection of Figure 17 shows that loading conditions two and three are redundant. The
maximum stress factors of safety for these two cases will be identical and the maximum
displacement of loading condition three will be dominated by loading condition two. This
is deliberate; the idea is to demonstrate the issues associated with redundant requirements
in cases where they may not be so apparent. To further simplify notation, these eight
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Figure 16: Pertinent Dimensions and Material Properties of Beam Design Problem
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Figure 17: Loading Conditions for Beam Design Problem
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requirements are labeled as follows (with LC referring to the appropriate loading condition):
e R;: Euler buckling factor of safety (LC1)
e Ry: ultimate compressive failure factory of safety (LC2)
e R3: ultimate bending failure factor of safety (LC2)
e R,: maximum compressive displacement (LC1)
e R;: maximum bending displacement (LC2)
e Rg: total beam weight (all loading conditions)
e R;: ultimate bending failure factor of safety (LC3)
e Rg: maximum bending displacement (LC3)

The functional form of the eight requirements are found from classical structural analysis
techniques [Young and Budynas, 2001; Hibbeler, 1997]. Before discussing the functional

form of the equations, there are some preliminaries to consider:
w

A = wd (10)
1

I, = Ewd3 (11)

I; = %w?’d (12)

where d is the depth of the beam as indicated in Figure 16, A is the cross-sectional area,
I, is the second moment of area about the width axis, and I is the second moment of area
about the depth axis. With these in mind, the functional form of the eight requirements
can be stated both with respect to the notation of equations (9) through (12) and with
respect to the design variables w and AR:

T E1, w?
m=Tpr 7 (AR3> (13)
2
Oult w
Ry = % / <AR> (14)
Ou AR
Hs = P2<l%t) f (w3> (15)
Iq
P AR
PL3 AR
Bs=3er, 7 <w4> 17)
w?
Re = pAL f (AR) (18)
Oult AR
_ Ak 1
=5mm f<w > (19)
Iq
5 3
2) PsL AR
re=BDE (A0 (20
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where E refers to the Young’s modulus of elasticity, P, through Pj is the load associated
with loading conditions one through three, respectively, L refers to the beam length, and p
refers to the material density.

Inspection of the functional forms given in equations (13) through (20) indicates that
only five of these requirements are linearly independent. As expected, all of the LC3 re-
quirements are the exact same functional form as the LC2 requirements; Ry will be perfectly
correlated with R3, and Rs will be perfectly correlated with Rg. Furthermore, two seem-
ingly independent requirements, Ry and Rg, are perfectly correlated. However, they are
exactly opposite in terms of direction of improvement, but they will effectively cancel each
other out if the assumption of monotonically increasing utility is made. Also, the presence
of two functionally opposing objectives indicates that every solution within the design space
is Pareto optimal since at least one of these two requirements will always be nondominated.

Basic engineering intuition leads to some assertions regarding this problem. First, the
requirements of loading condition three should be completely dominated by loading con-
dition two and therefore should not be a factor in the design problem (as long as the
constraints, if any, for LC3 are the same or lower than those for LC2). Further, the ap-
parent “design drivers” appear to be Euler buckling and bending stress or displacement.
Compressive failure factor of safety and compressive deflection should be minimal, and
therefore inconsequential to the final design.

4.2.1 Beam Analysis and Design Procedure

The MCDM formulation of the beam design problem emulates that of the notional multi-role
fighter as well as the general procedure outlined in section 4.1. The beam analysis code was
a series of files and functions created in Matlab [The Mathworks, Inc., 2005]. Though this
analysis environment was very fast, this environment was used to create response surface
equations of the eight requirements for a specified range of the design variables. The region
of interest was for a value of w from 0.05 to 0.10 meters and a value of AR from 1.0 to
2.0. These values were varied within a five-level design of experiments to create third-order,
fully interacting response surfaces for each requirement. Third-order response surfaces were
used because second-order surfaces could not provide a good approximation of the original
equations. These response surfaces are shown in Figure 18 for normalized inputs from -1.0
to 1.0. The answers of the response surfaces were compared randomly to determine their
error with respect to the original anlayses. The actual results are plotted versus the RSE
results in Figure 19.

Unless otherwise specified, the surrogate models of the requirements were used in all
of the MCDM formulations. This ensured that the example problem would be executed
similarly to a large-scale design problem (normally plagued with long execution times).
These surrogate models form the objectives for the compromise programming algorithm,
with the target values set at the positive ideal solution (always at the extreme of the
equation). Each of the response surfaces are normalized by their mean and variance, so they
can never result in a value higher than 1.0 or lower than -1.0. They are also normalized such
that all are “larger is better,” hence the deflection and weight equations are switched in sign.
This is simply a matter of convention. The CP algorithm utilized the objective function from
equation (8) and minimized with a built-in Matlab function utilizing Sequential Quadratic
Programming (SQP) algorithm. SQP is a powerful gradient-based optimizer and is discussed
at length in numerical optimization literature [Vanderplaats, 1999].
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Figure 19: Actual versus Predicted Results for Surrogate Models
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4.2.2 Initial Results

The initial results for the beam design problem involved using a compromise programming
algorithm with evenly weighted objectives, such that the relative weights added to one. The
CP algorithm was first tested with all eight requirements, then again only with requirements
one through six (representing only loading conditions one and two). These results were
compared to a “control” experiment of typical constrained single-objective optimization. In
this case the single objective was weight and the constraints were set at 1.5 for all of the
factors of safety and and 0.1 meters for all of the deflection requirements. A comparison of

these three methods is presented in Table 3.

Table 3: Single and Multi-Objective Results for Beam Design Problem

Single Objective | Single Objective Compromise Compromise
Value | Constrained: 6 Constrained: 8 |Programming: 6 | Programming: 8| Units
Requirements Requirements Requirements Requirements
AR 1.865 1.865 1.000 1.119 -
w 0.0558 0.0558 0.0920 0.0990 m
R4 1.50 1.50 36.00 35.86 -
R, 26.45 26.45 132.27 137.54 -
Rs 1.50 1.50 12.19 13.62 -
Ry 0.000249 0.000249 5.101E-05 4.670E-05 m
Rs 0.05603 0.05603 0.00583 0.00309 m
Rg 4.72 4.72 23.61 24.55 kg
R, N/A 1.500 N/A 13.617 -
Rg N/A 0.03502 N/A 0.00193 m

Several interesting observations result from this table. The multi-objective solutions are
far larger, heavier, and overdesigned than the single-objective constrained solution. This
is largely because all of the objectives are opposed in direction of importance in some
way to the beam weight objective. Since all of these objectives are evenly weighted (even
relative importance), the assumption of monotonically increasing utility now makes mini-
mizing beam weight much less important than before. Beyond this, the two compromise
programming solutions are different for the six- and eight-requirement cases. This contrasts
engineering intuition, which would normally have designed both beams the exact same and
indicates a potential issue in the objective functions of the CP formulation. The objec-
tive functions for the six- and eight-requirement CP cases is shown in Figures 20 and 21,
respectively.

The difference in these objective functions is a result of the “double-weighting” of the
bending requirements. Though the intuitive solution for both is the same, the compromise
programming solutions are different. The current formulation does not support the choice of
“requirements groups” or other “characteristic directions” amongst dependent requirements
and is thus prone to such errors. The creation of such characteristic requirements could
follow from decomposition of the original requirements. These characteristic requirements
would be a subset of the originals and would enable tradeoffs amongst key metrics.

Both objective functions also show a highly undesirable region near the minimum weight
solution and a preference for higher-weight solutions. Certainly, the minimum-weight so-
lution may not be the best compromise alternative, but the assumption of monotonically
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Figure 20: Objective Function of Compromise Programming Solution to Six-Requirement
Beam Design Problem
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Figure 21: Objective Function of Compromise Programming Solution to Eight-
Requirement Beam Design Problem
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increasing utility may not hold beyond a “threshold” value of the other requirements. The
current formulation does not handle threshold or constraint values in the weighting scheme,
instead having a static value for relative importance.

Two pertinent hypotheses can be formulated to better reflect the decision-makers pref-
erence with respect to relative importance, threshold and constraint values, and the key
tradeoffs in the decision process.

(H5) Dynamic relative importance weights better reflect the decision maker’s
preference for constraints and threshold values.

(H6) Key tradeoffs can be identified and ranked through decomposition of the
original requirements. The best tradeoff is the solution closest to a theoretical
“ideal tradeoff” in this subspace.

4.3 Weighting Schemes

The choice of the relative importance of each of the decision metrics is of paramount impor-
tance to virtually every MCDM technique. As mentioned above, the relative importance of
each metric should be dynamic to mimic the decision maker’s preference for constraints and
threshold values. Therefore, a two-part model for relative importance weights is suggested.
This two-part model in its basic form is

w; = w + wi(Z) (21)

where w; is the relative importance (“weight”) of the 4t metric, wj is the static importance

of the metric, and w?(f) is the dynamic importance. The static importance is a reference
value given by the decision maker while the dynamic importance modifies the static value
to reflect the distance of the metric from the constraint and threshold values. Note that the
dynamic value is a function of the design variables as it requires information on the current
value of the constraint. Uncertainty in the requirements can be captured with probability
distributions about the static weight.

Some requirements may be closely related to others. If requirements are “grouped” in
any way, this would modify the overall relative importance given by equation (21). Require-
ments grouping will be covered in a later section.

4.3.1 Entropy-Based Weights

The choice of static weights for individual metrics can follow from basic systems engineering
concepts. These values are usually chosen by a qualified individual or panel of experts that
debate the importance of one particular metric to another. However, it becomes increasingly
difficult to assign importance to individual requirements as their number and diversity
increases. Therefore, a decision maker needs some sort of aid when choosing static weights.

One promising concept is the idea of entropy-based weights. This formulation measures a
quantity analogous to the “entropy” of the alternatives with respect to the decision metrics.
If all of the alternatives have the same value in one of the decision metrics, its “entropy”
is maximized (much like the thermodynamic concept of entropy, where equilibrium is the
state of maximum entropy). If a metric is at maximum “entropy” it is of no importance
to the decision maker since each of the alternatives are indifferent. Alternatively, a metric
well below its maximum entropy implies that the alternatives are highly differentiated and
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therefore have a higher relative importance weight. It follows that the relative importance
weight of a given metric is inversely proportional to its entropy.

Zeleny [Zeleny, 1982] gives a formulation for entropy-based weighting for a discrete pool
of alternatives. The procedure is as follows, using the notation introduced in Chapter III.
Recall that a vector y; = (ylj,yzj, .+, Y;;) characterizes the set Y in terms of the j*
normalized attribute for ¢ alternatives. Then define

m
Y;=>7; J=12..n (22)

recalling that there are m total alternatives and n total metrics. The entropy (or its inverse,
contrast intensity) of the 7™ metric is measured as

m  — —
Yij . Yij
)=-KY g (23)
where K > 0, In denotes the natural logarithm, and 0 < 7,; < 1 and e(y;) > 0. If all
Y;; become identical for a given j, then % = %, and e(y;) assumes its maximum value,

1

€maz = Inm. Thus, setting K’ = —— will ensure that all of the e(y,;) values will fall between
zero and one. This normalization helps for comparative purposes.
The total entropy of Y is defined as

E=Y ) (24)
j=1

The relative importance weight of a metric is inversely proportional to its entropy. The
entropy-based weights are then defined as

1

A = (L~ e() (25)

where )\; is the entropy-based weight of the j* metric. Equation (25) is normalized
such that each individual entropy-based weight is between zero and one and the sum of all
of the weights equals one.

If necessary, the decision maker may still modify the entropy-based weight with a pref-
erence. This makes the final static weight value defined as

pTef )\.
s _
Wy = Z;@ . pref)\ (26)
where w?™/ is the value of the relative importance weight chosen by the decision maker.

Note that in the absence of other strong preference information, this value is usually one.
The beam design problem introduced in this chapter has a continuous decision space
that is not initially well-suited to the development of entropy-based weights. However, a
sufficiently large random population may be able to produce entropy-based weights for each
of the metrics. Table 4 lists the weights generated for the six- and eight-requirement beam
design problem. These numbers vary slightly for each trial as they rely on an initial random
population. In this case, the population contained 2,000 uniformly random alternatives.
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Table 4: Entropy-Based Weights Generated for Beam Design Problem

Value | 6 Requirements| 8 Requirements
Wy 0.3403 0.2538
Wy 0.2334 0.1741
W3 0.3079 0.2297
Wy 0.0418 0.0311
Wi 0.0328 0.0245
Wg 0.0438 0.0327
Wy N/A 0.2297
Wg N/A 0.0245

The results here are curious. The most important requirements, in descending order,
appear to be Ry, Rs, R7, and Rs for the eight-requirement case, with R3 and R7 each
with identical values. This is because these are the completely redundant bending stress
requirements for loading conditions two and three. Note that Rg, the requirement for
minimum weight, has a very low value of relative weight, an order of magnitude less than
Ry, the Euler buckling requirement. Though well-intentioned, this may not reflect the
decision maker’s true preference.

Once again, the issue of monotonically increasing utility plays somewhat in the creation
of the entropy-based weights. Functions like Euler buckling factor of safety given in equation
(13) have the most curvature in the decision space, and therefore will have the lowest entropy
simply due to the large differentiation. In a sense, the entropy of each attribute is related
to the difference between the mean and extreme values of each function. Table 5 lists the
ranges of each requirement to illustrate the origins of the entropy-based weights.

Table 5: Ranges of Requirements for Beam Design Problem

Value Best Worst Units
R, 50.102 0.391 -
R, 156.330 19.542 -
R, 15.633 0.977 -
R, 4.10E-05 [0.00032832 m
Ry 0.00274 0.08755 m
Rg 3.4875 27.9 kg
R~ 15.633 0.977 -
Ry 0.00171 0.05472 m

This problem can be partially alleviated again with the introduction of threshold values.
If the decision maker has already accepted the concept of a threshold value (discussed in
greater detail in the next section), it too would have an effect on the entropy-based weight.
In effect, the threshold value indicates indifference amongst concepts beyond the threshold.
All values beyond the threshold should be treated as values in equilibrium as far as the
decision maker is concerned. Hence, all alternatives above the threshold can be replaced
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in the entropy calculations as having the same value, hence raising the entropy of that
particular metric. This would serve to reduce the contrast intensity and therefore relative
importance of the affected metric.

Consider again the beam problem with the addition of threshold values. Here, the
decision maker may decide that factors of safety beyond 3.0 and deflections smaller than
0.05 meters are thresholds for this particular problem, with no threshold on weight. In
essence, this states that if all the threshold values for an alternative are exceeded this
becomes a single-objective optimization problem for weight only. Table 6 lists the entropy-
based weights that account for threshold values. Note that these are still the static weights,
and that thresholds also play an important part in the dynamic weights of the environment.

Table 6: Modified Entropy-Based Weights for Beam Design Problem Considering Thresh-
old Values

Value | 6 Requirements| 8 Requirements
w1 0.1020 0.0699
Wy 3.12E-12 2.14E-12
Wy 0.4507 0.3088
Wy 3.12E-12 2.14E-12
Wi 0.0839 0.0575
W 0.3634 0.2490
W N/A 0.3088
wg N/A 0.0060

The modified entropy-based weights seem to make much more sense to the decision
maker. The importance weights for Ry and R4 are essentially zero, reflecting the fact
that both of these metrics are always greater than their threshold values. This resonates
with the original engineering intuition that the compressive failure and deflection cases will
not be design drivers, and indeed in this design space are inconsequential. Further, the
importance of Ry is greatly reduced because much of this space is beyond the threshold
value for buckling factor of safety. The two most important requirements become bending
failure (R3 and R7) and beam weight (Rg). However, double-weighting is still quite possible
for bending in the eight-requirement case. Further, this does not handle the portions of the
space that are actually below the constraints. This could potentially result in a solution
that does not meet constraints, or is capable of “over-optimizing” beyond threshold values,
though the latter case can happen only if the threshold is within the decision space. These
effects need to be captured with the dynamic weights.

4.3.2 Constraint and Threshold Modeling

The lack of internal constraints and threshold values in the generalized MCDM formulation
allows the engineer direct control over these values. Furthermore, it embodies the basic
approach in probabilistic MCDM: elimination of as many constraints as possible to enable
tradeoffs. Many requirements that are considered “constraints” are actually arbitrary per-
formance levels set forth by a committee well before system definition and synthesis are
performed. These performance levels may be set to dominate performance of an exist-
ing concept, as a minimum goal for performance, or sometimes simply to help define the
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problem better for typical single-objective optimization or fuel-balance sizing. Elimination
of these constraints is crucial to MCDM as it allows for implicit tradeoffs to be made on
high-payoff objectives at the expense of less important objectives. However, some actual
constraints do exist, usually for safety, certification, or resource reasons. Several examples
of true constraints can be seen in meeting the Code of Federal Regulations for civil transport
design [Federal Aviation Administration, 2005]. As such, the decision maker does need to
be able to input constraints into the MCDM environment.

The concept of threshold values was first introduced in the static weighting scheme.
These are even more important for the dynamic portion of the weights if the threshold lies
somewhere within the decision space. Beyond the threshold, improvement in the metric
becomes inconsequential. Modeling this behavior is crucial if the decision maker has a
threshold in mind.

In a basic sense, the ideal dynamic weight will rise sharply if its associated constraint
is violated. This makes it the most important objective in the space until the constraint is
satisfied. At this point, the dynamic weight quickly drops to zero and the MCDM algorithm
proceeds using only the static weight. If the metric improves much beyond its constraint
and has a threshold value the dynamic weight will become slightly negative, becoming more
negative until it reaches the threshold value, upon which it is equal to exactly the opposite
of the static weight value. Therefore, the sum of the static and dynamic weights equals
exactly zero at or beyond the threshold, effectively negating any influence of that metric on
the MCDM algorithm.

Specifically, this dynamic weight cannot have too sharp of a change in value. If it
were too sharp it could increase the difficulty associated with gradient-based optimizers.
Therefore, continuous, smooth functions should be used whenever possible. Further, these
dynamically modified weights should not be re-normalized to sum to one, else any change in
one weight would change all others. This could also have an adverse effect on gradient-based
optimizers.

The constraint portion of the dynamic weight model should approximate a step function.
One attractive option is to find a smooth approximation of the Heaviside Step Function,
also known as the Unit Step Function [Weisstein, 2005]. An approximation to this is defined
as

wle(@) = -1 [ 5 - tan s(g;(®) - C)H (27)

where w;»lc refers to the constraint contribution to the j** dynamic weight, yj(:f) refers to
the current value of the j** metric, ¢ refers to the normalized constraint value, and s is a
scale factor for controlling smoothness of the step function. Larger values of s will make the
step function more abrupt. If s is too abrupt there may be problems with gradient-based
optimizers, whereas if it is too small it will not jump fast enough near the constraint. A
good value of s is approximately 200, though this is best tailored to the individual problems
and optimization algorithms used.

The threshold value needs to have a more gradual decay, such as that seen in an inverse
power relationship. It should be zero at the constraint value (or the edge of the design
space, if no constraint is present) and should be opposite of the static weighting value at
the threshold value. A good model for this is

wi(#) = —w (1 - H”) (28)

41



where w?t is the threshold contribution to the j** dynamic weight and 7 is the normalized

threshold value. Note that both ¢ and ¢ should be normalized by the same procedure as
response surface equations; that is, by the mean and variance of their respective responses.
If € is less than -1.0 then the entire decision space is beyond the constraint; likewise for ¢. If
either value is greater than 1.0 it implies that the entire space is smaller than the constraint
or threshold value.

Equations (27) and (28) can be combined into a single dynamic weight that is valid
across the entire space no matter what its nature. This is represented by

8
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)
)

with the notation as noted before. A plot of an example dynamic weight function for all
y;(Z) is given in Figure 22.
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Figure 22: Example Dynamic Weight Variation with y;(Z)

4.3.3 Beam Design Problem with Dynamic Importance Weighting

The example beam design problem was reformulated with all of the concepts discussed
in this section: entropy-based static weights with thresholds, augmented with dynamic
weights with appropriate constraints and thresholds. The threshold values were as discussed
earlier; all factors of safety were considered indifferent above 3.0 and all deflections below
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0.05 meters. The constraints chosen reflected those common in aerospace design, with
constraints for factors of safety set at 1.5 and constraints for deflections set to greater than
0.1 meters. The response for beam mass was not constrained, nor did it contain a threshold
value. The overall weights for all of the requirements were found from the sums of the
entropy-based weights given in Table 6 and the appropriate dynamic weights. These are
shown as a function of y;(Z) in Figure 23. The weights are shown on a logarithmic scale for
greater contrast.
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Figure 23: Variation of Weights for Beam Design Problem with y; ()

Note that some of the responses are well beyond their threshold values (as before) so they
exhibit no dynamic behavior and are stuck around zero. Other values, such as beam mass,
have no dynamic behavior because of lack of thresholds. Still others have regions of influence
and show spikes near their respective constraints and decay towards their threshold values.
Also interesting is the plots of the modified CP objective functions of the six- and eight-
requirement problem with these dynamic weights. Both of the objective functions are still
physically different but now give virtually the same answer due to the threshold dropoffs.
These objective functions are illustrated in Figures 24 and 25 and the CP answers for both
cases are presented in Table 7. These results are promising for large-scale MCDM, but still
do not fully address the issues associated with double-weighting. The idea of requirements
decomposition addresses this next.
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Minimum:
AR = 1.000
W = 0.0584 m

0.5 |
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Figure 24: Objective Function for Six-Requirement Beam Design Problem with Dynamic

Weights

Minimum:
AR = 1.000
W = 0.0618 m

w (m)

Figure 25: Objective Function for Eight-Requirement Beam Design Problem with Dy-
namic Weights
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Table 7: Compromise Programming Results for Beam Design Problem with Dynamic

Weights
Value | 6 Requirements| 8 Requirements| Units
AR 1.000 1.000 -
w 0.0584 0.0618 m
F* 0.0169 0.0139 -
Ry 5.945 7.557 -
R, 53.56 59.90 -
R3 3.125 3.703 -
R, 0.000119 0.000106 m
Rj 0.02331 0.01790 m
Rg 9.56 10.69 kg
R N/A 3.703 -
Rg N/A 0.01119 m

4.4 Requirements Decomposition

The idea of requirements decomposition (or compression) is not new. The principles of
Axiomatic Design [Suh, 1990], detailed in Chapter III, discuss the need for a minimal set
of independent functional requirements. The relation between functional requirements and
design parameters can be represented by

ORy ORy .. ORy

Rl o1 0x2 qu T

R ORy ORy .. 0R» -

B O (30)
OR, OR OR

Ry dz1  Ozs  Ozg Tq

R B z

where R refers to a column vector of n requirements (metrics), B refers to a ¢ x n matrix
of partials, and ¥ is a column vector of g design variables. In perfect Axiomatic Design,
the B matrix is square and all of the off-diagonal terms are zero; that is, the functional
requirements are independent and are controlled by only one design parameter.

Unfortunately, independence of the functional requirements is very hard to enforce and
becomes all but impossible for large-scale systems. Zeleny [Zeleny, 1982] gives an exam-
ple with dependent requirements and notes some of the issues associated with creation of
composite attributes:

The problem is that [as] the number of attributes increases ...such composite
attributes are often difficult to quantify and even to conceptualize.

Furthermore, the off-diagonal terms in B can be thought of as interactions between the
requirements. These interactions, carefully presented, are often the crux of design, decision
making, and compromise. All but the simplest systems will be compromised; else, the ideal
solution would always be possible. However, this is not to say that a linearly independent set
of requirements is not desirable for MCDM. If one believes the set of existing requirements
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helps to “paint a picture” of the decision space, then these requirements should be able to
be decomposed into their cardinal directions for a linearly independent, though interacting,
set of characteristic requirements.

One unrealized advantage for the use of polynomial surrogate models is that the approx-
imate functional form of the requirements to the design parameters is known. That is, a
polynomial response surface equation is an approximation for the terms in B. Therefore, if
the partials in B are linearly dependent row-wise, there exists a linearly independent subset
of partials that can be combined to form R.

4.4.1 Decomposition Techniques for Linear Systems

One of the most fundamental decomposition techniques for matrices is diagonalization uti-
lizing eigenvalues and eigenvectors [Strang, 1988; Nakos and Joyner, 1998]. A square matrix
can be represented as the product of three orthogonal matrices via

A =SAS™! (31)

where A is a diagonalizable square matrix, S is a matrix of eigenvectors of A, and A is a
diagonal matrix of the associated eigenvalues. The rows of S~! form an orthogonal basis for
the row space of A; that is, these rows represent a linearly independent set of vectors. If A is
singular, some of the eigenvalues in A will be zero and therefore the associated eigenvectors
will be unimportant to the recomposition of A. Similarly, if A is nearly singular, there will
be some eigenvalues that will be nearly zero. The associated eigenvectors will be of little
importance to the recomposition and may be neglected with little error. This procedure is
used in vibrational analysis to determine the important natural modes of a structure [James
et al., 1994].

Unfortunately, it is very rare that the number of requirements equals the number of
design variables, so a square matrix is quite rare. One technique that is comparable to
eigenanalysis is Singular Value Decomposition (SVD). This is a factorization method that
retains some of the qualities of eigenanalysis except is applicable to non-square matrices.
In its basic form, SVD is written as

A =U x VI (32)
axb axa axb bxb

where A is now a rectangular a x b matrix of rank ¢, U and V7T are orthonormal matrices
and ¥ is a diagonal matrix of singular values. SVD orders the columns of U and V' such
that each column of the former and row of the latter correspond to the singular values on
the diagonal of 3 in descending order. Thus, the most important columns and rows of
U and V7 appear first. Further, the first ¢ columns of U form an orthonormal basis for
the column space of A. Likewise, the first ¢ rows of VT for an orthonormal basis for the
row space of A. SVD is very stable and, as its name implies, works well with singular or
near-singular matrices. In the case of near-singular matrices, the singular values along the
diagonal of 3 will have some near-zero or zero values. The corresponding columns of U
or rows of VI are therefore unimportant to the recomposition of A and can be neglected
with little loss in accuracy. For more information on SVD, the reader is referred to [Strang,
1988].
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4.4.2 Singular Value Decomposition for Response Surface Equations

Response surface equations are already of great use to the systems engineer because of their
speed, versatility, and high-fidelity capability. The general form of a quadratic RSE is

q q =1 q
R =1by+ Z bix; + Z bm.%‘? + Z Z bijriT; (33)
=1 =1

i=1 j=i+1

where by is an intercept, b; are the coefficients for main (linear) effects, b;; are coefficients
for the quadratic effects, b;; are coefficients for interaction terms, and x; or x; refers to one
of g design variables. One can assemble all of the coefficients via

b= (bo, b1,ba, . .., by, b11,b12, .., big, baa, bas, - . -, byq) T (34)

such that all coefficients can be represented by a single vector. Likewise, Z, the vector of
design variables, can be rearranged via

T
z=(1,z1,22,...,Tq, 121, L1%2, . . . , L1Lq, T2X2, T2T3, . . ., TqTq) (35)

such that R = bz. T hen, for multiple response surface equations, the responses can be
arranged such that

R =Bz (36)

where R = (R1,Ra,...,R,)" is a vector of n responses and B = (b_i,b_é,...,b;)T is a
matrix of RSE coefficients for the n responses. Note the similarity of equation (36) to the
basic design formulation given in equation (30). The chief differences are the allowance of
quadratic terms in the model to capture additional nonlinear effects.

Now, each row of B represents the coeflicients for a separate response surface equation.
If B is singular or is close to being singular, then some of the response surface equations,
and hence the responses themselves, are linearly dependent. This can be seen from singular
value decomposition of the B matrix:

B=UxV7’ (37)

In this case, B is an n X v rectangular matrix, where v is the length of 7 (from equation
(35) and represents the number of terms in the response surface. The rank of B depends
on its shape; usually, n < v so the matrix will be at most of rank n. Note that if n > v
then there will always be linear dependence amongst the responses, and the matrix will be
at most of rank v. For now, the reader can assume that the rank of the matrix will be n,
in cases where it is not a simple substitution will be required in subsequent equations.

Assuming n < v, B is at most of rank n. Therefore, U is an n x n orthonormal matrix,
3 is an n x v diagonal matrix, and V7 is a v x v orthonormal matrix. Furthermore, the first
n rows of VT, denoted Vr{, form an orthonormal basis for the row space of B. Therefore, a
linearly independent set of RSEs that can be used to describe the same decision space given
by the original RSEs is found from

R=vTz (38)
where R/ represents the equations for the characteristic requirements of the system. These

requirements have no associated direction of improvement on their own but form a series
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of independent equations used to model the decision space. The n singular values give
the importance of each of the associated characteristic requirements. Thus, a near-zero
singular value indicates that the particular characteristic requirement associated to that
singular value does not describe much of the variation seen in the decision space (made up
of all of the original requirements) and therefore can be removed from consideration without
impacting the decision making process. This is key in determining both the important
characteristic requirements and reducing the size of the decision space.

This procedure can be illustrated on the beam design problem. The normalized RSE
coefficients for n = 8 requirements are given in Table 8. Note that in this case the RSE is
a third-order model; therefore, there are v = 10 terms in each model, making B an 8 x 10
matrix.

Table 8: Third-Order Normalized Response Surface Equation Coeflicients for Beam Design
Problem

Term
Response |intercept| AR w AR? |ARxw w? AR? |AR?x wAR x w] w°
R; -0.8109 | -0.1572 | 0.2350 | 0.2359 | -0.3896 | 0.1855 [ -0.1287 | 0.2571 | -0.1816 | 0.0404
R, -0.4264 | -0.2831 | 0.5707 | 0.1145 | -0.2107 | 0.1011 [ -0.0388 | 0.0723 | -0.0351 [ 0.0000
R; -0.5295 | -0.1959 | 0.5983 | 0.0887 | -0.2283 | 0.2125 [ -0.0300 | 0.0784 | -0.0738 [ 0.0236
R4 0.5232 | -0.2516 | 0.5024 | 0.0000 [ 0.2073 | -0.3158 | 0.0000 [ 0.0000 | -0.1053 | 0.1407
Rs 0.7628 | -0.0940 | 0.3841 | 0.0000 | 0.2251 | -0.5377 | 0.0000 | 0.0000 | -0.1792 | 0.3427
R¢ 0.4264 0.2831 | -0.5707 | -0.1145 | 0.2107 | -0.1011 | 0.0388 [ -0.0723 | 0.0351 | 0.0000
R, -0.5295 | -0.1959 | 0.5983 | 0.0887 | -0.2283 | 0.2125 [ -0.0300 | 0.0784 | -0.0738 [ 0.0236
Rg 0.7628 | -0.0940 | 0.3841 | 0.0000 [ 0.2251 | -0.5377 | 0.0000 [ 0.0000 | -0.1792 | 0.3427

From here, SVD is applied to the B matrix. The values found from this analysis for
3 and V7 are shown in Figure 26. This figure depicts the entire n x v matrix of singular
values as well as the whole v X v matrix of coefficients for the characteristic requirements.

The singular values in Figure 26 indicate that only five characteristic requirements are
of any importance to the decision space, whereas the three others have singular values
of effectively zero. This perfectly coincides with the reality of the functional form of the
problem: of the eight original requirements, only five are linearly independent. It further
shows that only three of the characteristic requirements are very important; the other two
are of marginal importance and could probably be neglected with little impact on the
decision space.

Singular value decomposition of the original requirements provides exceptionally pow-
erful results for reducing the number of descriptors of the decision space. However, some
caveats are important to understand before moving on. First, normalization of the responses
when building the RSEs is extremely important. Otherwise, responses in the natural form
may be of vastly different magnitudes that will directly effect the magnitude of the singular
values. Normalization by first subtracting the mean of the response followed by dividing by
its variance provides a normalization between -1.0 and 1.0 which appears to be sufficient.
Similarly, the RSEs must be built with normalized design variables, or the individual terms
within the model may again have magnitude errors. It is also helpful to normalize to a
single direction of improvement. The numbers presented in Table 8 were normalized in this
fashion for a “larger is better” case. Thus, the “smaller is better” terms need simply to be
multiplied by -1.0.
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Singular values on diagonal

6 0
0 0
0 0
S — 0 0
0 0
0 0
0 0
Q 0
Reduced set of basis vectors for Near-zero singular values: Not part of
original RSEs (V+7) not important to row space row space
-0.8109 -0.1136 0.2060 0.1116 -0.3247 0.3746 -0.0483 0.1012 0.0058 -0.1277 B
0.1350 -(.3261 .8365 0.0988 -0.0191 -0.2530 -0.0372 0.0792 -0.1863 0.2435
-0.1543 0.1314 -0.3433 0.2967 -0.2460 -0.3884 -0.1970 0.3823 -0.4316 0.4129
-0.0138 0.7239 0.2543 -0.2516 -0.0613 0.2371 0.1552 -0.1914 -0.1229 0.1569
T 0.0906 -0.0152 0.0190 -0.0639% 0.5056 0.4789 -0.1151 0.3806 -0.5675 -0.1483
V = -0.0636 0.3282 0.1368 0.0967 -0.1004 -0.3689 l 0.3702 -0.0931 -0.3958 -0.6416
0.0715 -(.1913 -0.1011 0.2431 -0.0194 0.1851 0.8585 0.2432 0.0532 0.2324
-0.4706 -0.0917 -0.0393 -0.5330 0.4760 -0.4258 0.1895 0.1408 0.0743 0.1244
[ -0.0361 01275 0.2011 0.1288 0.3215 -0.0848 -0.1012 0.1169 0.5073 -0.1081 J
0.2416 0.0512 0.0633 -0.5333 -0.4816 0.0200 0.0014 0.6071 0.1394 -0.1740 ) |

Not part of row space

Figure 26: Singular Values and Coefficients of Characteristic Requirements for Beam
Design Problem

Recomposition of the original requirements follows from the basics of SVD outlined in
equation (37). A matrix of constants can be defined such that the characteristic require-
ments can be quickly converted to the originals. First, one must define the cutoff point of
“important” requirements via the singular values. This cutoff point is denoted with r, such
that 7 < n. This carries over to the coefficient matrix for the characteristic requirements,
with the “important” characteristics denoted by VTT, or simply V*7 for brevity. It follows
that

Rt =vtT % (39)
rx1 rXv wvxl1l

where the ‘+’ superscript denotes the first r values. The matrix of constants is defined as

ct = U xt (40)
nxr nxXn nxr

with CT as the matrix of constants to recompose the requirements using
R=CTR* (41)

where R are the recomposed n original requirements. The accuracy of these values will
depend on how many marginally important characteristic requirements are neglected in

R T, but the differences between R and R are usually quite small.
As seen from Figure 26, only three singular values are relatively large for the beam design
problem, indicating that only three characteristic requirements are necessary to describe
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the decision space. The CT matrix can thus be built for this problem from the first three
singular values of the ¥ matrix. The C* matrix for this problem is given in Table 9. Here,
the columns represent the relative contributions of a particular characteristic requirement
to the original requirements.

Table 9: Recomposition Coeflicient Matrix for Beam Design Problem
c' R, R’y R’3

R, 0.9722 | 0.1910 | 0.3363
R, 0.6235 | 0.5156 | -0.0703
R; 0.7445 | 0.4791 | -0.0720
Ry -0.4964 | 0.7027 | -0.1111
Rs -0.8481 | 0.7034 | 0.1104
Rg -0.6235 | -0.5156 | 0.0703
R, 0.7445 | 0.4791 | -0.0720
Ry -0.8481 | 0.7034 | 0.1104

The C* matrix can help the user determine what the characteristic requirements rep-
resent. Obviously, if a characteristic is important in the recomposition of the original
requirements, the corresponding value in the CT matrix will have a large magnitude. If it
is not important, the magnitude will be low. Furthermore, the sign of the components of
the CT matrix tells a decision maker if one of the original requirements increases or de-
creases along a particular characteristic. If one column of C™T is all one sign, this indicates
that all the original requirements increase or decrease with a particular characteristic, so
this characteristic can be maximized on minimized appropriately. However, this will likely
not be the case. More often, the signs differ significantly, requiring more advanced decision
making techniques.

4.4.3 Decision Making with Characteristic Requirements

The decomposition of requirements into a subset of linearly independent characteristic re-
quirements represents a radical departure from traditional design and decision making tech-
niques. It is possible to combine these characteristic requirements into the originals with
little to no loss in fidelity. However, decision making with the characteristic requirements is
no longer a simple compromise programming maximization problem (as it is with the nor-
malized original requirements). The characteristic requirements have no explicit direction
of improvement. As an analogy, image two perfectly correlated, yet opposite, requirements.
Decomposition of these two requirements will yield one characteristic requirement. One of
the original requirements will become better as the value of the characteristic increases,
whereas the other will become worse. What is the best compromise? The answer is a
“nominal the best” optimization problem, with some sort of target value. To continue this
analogy, if both requirements were equally important, and the characteristic requirement
made equal contributions to both original requirements, then the target value for the “ideal
tradeoff” will be a value located at exactly the middle of the characteristic.

If all of the requirements were equally important, the ideal tradeoff could be character-
ized from the C* matrix. As mentioned before, each column vector of this matrix gives
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the relative contribution of the corresponding characteristic requirement to the original re-
quirements. If the original requirements are normalized from -1.0 to 1.0 and such that all
are “larger is better,” this directional information can be used to find a target value such
that

_ (c1k + cok + -+ - + cuk)
|(c1r] + |ear| + -+ |enr])

(42)

where c¢;;, refers to the constant in the CT matrix that relates the contribution of the k"
characteristic requirement to the j*" original requirement. Unfortunately, it is not very often
that the requirements are evenly weighted. Equation (42) can be modified for arbitrarily
weighted requirements. For brevity, this can be represented in vector form as

chw

where ¢, is a column vector of constants relating the k" characteristic requirement to all of
the original requirements and @ is a column vector of arbitrary weights (wq,ws, ..., wy)T.
These weights can be static or a combination of static and dynamic weights as in equation
(21). The target values for all of the characteristic requirements in matrix form is then
simply

t:

(43)

SN
g

CtTy

= & @
G+

(44)
where © is a column vector of target values for the r characteristic requirements.

This target value formulation brings about a new meaning to the characteristic require-
ments. These “characteristics” represent the critical tradeoffs amongst the original require-
ments, with the singular values used to rank the importance of each of these tradeoffs. In
all but cases of linear, non-interacting response surfaces and other trivial formulations, it
will be impossible to meet all of the target values of the characteristics. Therefore, these
target values help create a well-defined compromise programming problem. This is given as

NELE

k=1

min F =

where oy, is an arbitrary scaling factor for the k** characteristic requirement, R}, and tj, are
the k" characteristic and target value, respectively, and all other notation is as in equation
(8). Note that this equation is scaled by -2, this is to reflect the difference of the maximum
(1.0) from the minimum (-1.0) values of each of the normalized response surface equations.

4.4.4 Requirements Grouping

Unfortunately, the current target value formulation still allows redundant requirements to
affect the location of the target value. This is seen in equation (44), where the target
values are dependent upon the matrix used to recompose the original requirements. Every
redundant requirement amongst the originals will skew the target slightly. However, some
method used to group the requirements together could keep this in check. This grouping
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procedure would modify the weights of the individual requirements to reflect redundancy
via an additional term. This term would be based on

w! = wj— (46)

g

where wjg is the modified grouped weight of the j* requirement and ng is the number of
requirements in the same group as w;. This ensures that any requirement that is redundant
or close to redundant with another does not unnecessarily skew the target values. If any
requirement is not in a particular group then w? will be identical to w;.

The method of grouping requirements is still a subject of research as of this writing.
Some techniques are currently being investigated. One promising idea uses vector angles.
This technique calculates the vector angle between the rows of the CT matrix. Each row
represents the mapping of the original requirements to the characteristic requirements space;
therefore, those that are in the same group will have very small vector angles. The vector
angle [Strang, 1988] is found from

0;; = cos ™! <|CZCJ> (47)

illle;ll

where 0;; is the vector angle between two requirements and ¢; refers to the ith row vector
of C*. Note that the operator in the numerator is a dot product. The vector angles for the
C™ matrix of the beam problem are presented in Table 10.

Table 10: Vector Angles of Requirements for Beam Design Problem

6 (deg) Ry Ry Rg Ry Rs Rg Ry Rg
R4 0.00 36.73 31.65 115.15 | 124.30 | 143.27 | 31.65 124.30
R, 36.73 0.00 6.81 85.07 101.15 | 180.00 6.81 101.15
R; 31.65 6.81 0.00 91.85 107.90 | 173.19 0.00 107.90
Ry 115.15 85.07 91.85 0.00 19.94 94.93 91.85 19.94
Rs 124.30 | 101.15 | 107.90 19.94 0.00 78.85 107.90 0.00
Rg 143.27 | 180.00 | 173.19 94.93 78.85 0.00 173.19 78.85
R, 31.65 6.81 0.00 91.85 107.90 | 173.19 0.00 107.90
Rg 124.30 | 101.15 | 107.90 19.94 0.00 78.85 107.90 0.00

If the angle is zero or relatively small then the requirements are likely in the same
group. These small angles are highlighted in Table 10 and indicate possible requirements
groups for this problem. Guidelines for how small angles must be for the requirements
to be grouped are the subject of further research. Note that this formulation should not
allow a requirement to be part of more than one group, though one can easily imagine a
situation where one requirement falls in the middle of two, ungrouped requirements. The
final grouping algorithm should have logic to deal with this phenomenon.

Automation of the grouping process, while still under development, seems to be in the
realm of pattern recognition. The author has little experience with this field, but “learning”
techniques such as Support Vector Machines [Cristianini and Shawe-Taylor, 2000] appear
promising. This subject of research is covered in greater detail in the research plan, outlined
in the next chapter.
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4.5 Decomposition-Based Decision Making

The tools given up to this point form the building blocks of a new process dubbed Decomposition-
Based Decision Making (DBDM). This process takes the elements of entropy-based static
weighting, dynamic weighting with constraint and threshold values, singular value decom-
position, and requirements grouping and adds them to the existing generalized MCDM
approach given in section 4.1. The entire process then becomes a compromise programming
problem of the form of equation (45). For clarity, this is formally written as

min  F(Z) = i i <R;€(f) _ tk(f)> p (48)

-2
k=1

subject to
T < T < Ty

where Ty, and & refer to the lower and upper bounds of the design variables, respectively.
Equation (48) shows the appropriate quantities that are a function of Z. There are no
explicit constraints listed in the optimization problem (other than the bounds on the design
variables) because these constraints are handled implicitly through the dynamic weights,
which in turn effect the target values (). The thresholds also make their mark on the
target values through the dynamic weights.

Of pertinent interest in equation (48) is the selection of values for oy, the scale factors for
the characteristic requirements. These factors represent the importance of one characteristic
over another. The choice of these values is still being investigated, though one theory is that
the singular values of the characteristics should be used as a scale factor. However, these
singular values may be biased by redundant requirements in the original decomposition, so
perhaps the best solution is to only use the singular values to choose r (the effective rank of
the characteristics) and then weight each of these “important” characteristics evenly. This
is discussed more below in the DBDM results for the beam design problem.

The compromise programming problem given by equation (48) yields a deterministic
solution. Probabilistic DBDM incorporates probability distributions about the entropy-
based static weight values for each of the requirements. This in turn effects the total weight
value, ultimately manifesting itself in uncertainty in the target values.

The entire DBDM process is outlined in Figure 27 for greater clarity. It begins as
the generalized MCDM problem, utilizing normalized surrogate models, and follows with
generation of static weights, enumeration of constraints and thresholds, and singular value
decomposition, culminating with compromise programming.

4.5.1 Results for Beam Design Problem

There are several features of DBDM that are illustrated on the beam problem. Furthermore,
there are still some pertinent areas of research for the overall process that can be aided
with small perturbations to the technique. Namely, these are the choice of number of
characteristics to use, the scaling of the characteristics (either equal or by the singular
values), and the importance of requirements grouping.

One of the stated benefits of DBDM is the ability to identify and negate the effect
of redundant requirements. To illustrate this, eight cases were executed for the beam
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Figure 27: Flowchart for Decomposition-Based Decision Making

design problem. Four cases involved the six-requirement problem, and four with the eight-
requirement problem. If DBDM is effective, the differences between the six- and eight-
requirement cases should be small, or at least smaller than the differences between the six-
and eight-requirement CP problem seen before in Table 3. All eight cases were executed
with 7 = 3 indicating that three characteristic requirements were adequate to describe the
design space. Four were run with the corresponding singular values as the scale factors
for the characteristics (o} in equation (48)) and an additional four cases with no scale
factors. Table 11 gives the results for the four cases scaled by the singular values and Table
12 gives the unscaled results, each for various numbers of requirements, with and without
requirements grouping (as given by equation (46)).

The most striking differences within both tables are the changes between the six- and
eight-requirement answers for the ungrouped DBDM problem. This illustrates that some
type of requirements grouping is necessary so redundant requirements do not bias the target
values given by equation 44. However, little more can be said about the choice of scale
factors. The cases scaled with the singular values certainly have different answers than
the unscaled results, but which are “better?” The results in Tables 11 and 12 are all
expressed with three critical characteristics and provide little guidance. Additional cases
were run for the eight-requirement problem with grouping for different numbers of critical
characteristics, from two to six. Note that the reality of the problem shows that only five
critical characteristics are needed to completely describe the problem, so the addition of a
sixth characteristic should have no effect on the answer if the DBDM algorithm should have
any merit. The results for the scaled and unscaled DBDM problems for various numbers of
critical characteristics are shown in Tables 13 and 14.

These tables show that the problem as scaled by the singular values produces more
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Table 11: DBDM Results for Beam Problem Scaled by Singular Values

6 requirements,

8 requirements,

6 requirements,

8 requirements,

Case ) .

no grouping no grouping grouped grouped
AR 1.000 1.000 1.000 1.000
w (m) 0.0576 0.0626 0.0569 0.0580
F* 0.5846 0.6705 0.5519 0.5585
R, 5.570 7.967 5.305 5.767
R, 51.98 61.41 50.83 52.82
Rs 2.985 3.846 2.886 3.059
R4 (m 1.23E-04 1.03E-04 1.26E-04 1.21E-04
Ry (m 0.02496 0.01686 0.02624 0.02407
Rg (kg) 9.276 10.960 9.071 9.426
R, N/A 3.846 N/A 3.059
Rg (m) N/A 0.01054 N/A 0.01504

Table 12: Unscaled DBDM Results for Beam Problem

Case 6 requirements, | 8 requirements, | 6 requirements, | 8 requirements,

no grouping no grouping grouped grouped
AR 1.000 1.000 1.000 1.000
w (m) 0.0566 0.0614 0.0552 0.0567
F* 0.5251 0.4851 0.4886 0.4793
R4 5.175 7.337 4.625 5.229
Rs 50.25 59.08 47.73 50.49
Ry 2.836 3.626 2.624 2.857
Ry (m 1.28E-04 1.08E-04 1.35E-04 1.27E-04
Ry (m 0.02691 0.01851 0.03007 0.02663
Rg (kg) 8.967 10.543 8.519 9.011
R, N/A 3.626 N/A 2.857
Rg (m) N/A 0.01157 N/A 0.01664
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Table 13: DBDM Results for Beam Problem with Varying Critical Characteristics Scaled

by Singular Values

Table 14: Unscaled DBDM Results with Varying Critical Characteristics for Beam Prob-

lem

Characteristics 2 3 4 5 6
AR 1.000 1.000 1.000 1.000 1.000
w (m) 0.0579 0.0580 0.0580 0.0580 0.0580
F* 0.5317 0.5585 0.5840 0.5840 0.5840
R, 5.725 5.767 5.767 5.766 5.766
Ry 52.64 52.82 52.82 52.81 52.81
R4 3.043 3.059 3.059 3.058 3.058
R4 (m) 1.22E-04 | 1.21E-04 | 1.21E-04 | 1.21E-04 | 1.21E-04
Ry (m) 0.02426 | 0.02407 | 0.02407 | 0.02408 | 0.02408
R (kg) 9.394 9.426 9.426 9.425 9.425
R, 3.043 3.059 3.059 3.058 3.058
Rg (m) 0.01516 | 0.01504 | 0.01504 | 0.01505 | 0.01505

Characteristics 2 3 4 5 6
AR 1.000 1.000 1.955 2.000 2.000
w (m) 0.0577 0.0567 0.0781 0.0814 0.0824
F* 0.2744 0.4793 0.6159 0.7591 0.8849
R4 5.608 5.229 3.000 3.243 3.355
R, 52.14 50.49 49.01 52.01 53.29
Rs 2.999 2.857 3.843 4.249 4.404
R4 (m 1.23E-04 | 1.27E-04 | 1.30E-04 | 1.22E-04 | 1.19E-04
Rg (m 0.02479 | 0.02663 | 0.01289 | 0.01106 | 0.01057
Rg (kg) 9.305 9.011 8.746 9.282 9.510
Ry, 2.999 2.857 3.843 4.249 4.404
Rg (m) 0.01549 | 0.01664 | 0.00805 | 0.00691 | 0.00660
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consistent answers, whereas the unscaled problem changes dramatically as the number of
critical characteristics increases. Furthermore, the unscaled problem shows changes at r =
6 critical characteristics, which is not physical since the problem only has five linearly
independent requirements. Thus, it appears that the scaled problem should be the most
accurate formulation.

4.6 Dairections for Large-Scale Decision Making

The formulation for Decomposition-Based Decision Making is still evolving as this research
progresses, but the results seem to resolve or circumvent the issues associated with gen-
eralized MCDM applied to large systems. Preliminary studies using the example beam
design problem indicate that the formulation given in equation (48) seems to work best
when scaled by the singular values and combined with a requirements grouping technique.
Of these, the algorithm used for requirements grouping and the tolerance regarding how
“close” requirements must be in order to belong to the same group are a matter of much
debate. Still, the initial results are promising for DBDM. The pertinent features include:

e Polynomial surrogate models of the responses normalized by their mean and variance;

e Static weighting values determined by the threshold-modified “entropy” of the decision
space;

e Dynamic weighting with the allowance for constraint and threshold values (implicit
utility);

e Singular value decomposition of the decision space to identify the characteristic re-
quirements which form the key tradeoffs of the system;

e Ideal tradeoff targets based on the relative contribution of the original requirements
to the characteristics;

e Grouping of the original requirements to eliminate double-weighting;

e Compromise programming to find the solution closest to the ideal tradeoff in the
characteristic decision space scaled by the singular values of these characteristics.

These features should enable a decision maker to determine the best tradeoff solution
for a large-scale multicriteria problem. Ultimately, this method can be made probabilistic
to handle uncertainty in the requirements. This uncertainty can be manifested with prob-
ability distributions about the static weight values, which in turn cascade into compromise
programming problem via the target values. The solution that is most robust with respect
to changes in the importance of the metrics will in turn be the solution best suited to
uncertain requirements.
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