Robust UHTC for Passive Sharp Leading Edge Applications

Stanley R. Levine, Mrityunjay (Jay) Singh^a, and Elizabeth J. Opila^b

NASA Glenn Research Center Cleveland, Ohio 44135

Prepared for the 27th Annual Conference on Composites, Materials and Structures January 27-31, 2003, Cape Canaveral, FL

Ultrahigh temperature ceramics have performed unreliably due to material flaws and attachment design. These deficiencies are brought to the fore by the low fracture toughness and thermal shock resistance of UHTCs. If these deficiencies are overcome, we are still faced with poor oxidation resistance as a limitation on UHTC applicability to reusable launch vehicles. We have been addressing the deficiencies of UHTCs for the past year via a small task at GRC that is part of the 3rd Gen TPS effort. Our focus is on composite constructions and functional grading to address the mechanical issues and on composition modification to address the oxidation issue. The approaches and progress will be reported.

a: QSS, Inc.b: Cleveland State University

Outline

- Introduction
 - UHTC Background
 - Performance Issues for Leading Edges
- Robust UHTC: Objective and Approaches
- Oxidation Resistance Improvement
- Functional Gradient and Composite Materials
- Summary and Conclusions

Ultra High Temperature Ceramics

 Materials consisting of refractory metal borides, refractory metal carbides, silicon carbide, and carbon which have potential use temperatures limited by the melting point of the oxide scale.

– HfO ₂		5073ºF(2801ºC)
– ZrO ₂	Melting points	4904°F(2707°C)
– SiO ₂		3142°F(1728°C), cristobalite

ZrO₂ is not a highly protective oxide. Lifetimes based on ZrB₂ recession will be relatively short. 20 volume % SiC additions have been found to give lowest oxidation rates.

Clougherty, Pober, Kaufman, Trans Met Soc AIME 242, 1077 (1968). Tripp, Davis, Graham, Cer Bull 52 [8] 612 (1973).

Current Fabrication Approaches: hot pressing or chemical vapor infiltration

	Compound	Density	CTE, 10E6*cm/cmC	MP, C
	B4C	2.5	6	2350
	BN	2.25	3.8	3000(s)
	HfB2	11.2	6.3	3250
	HfO2	9.7	6.5	2810
	Nb2O5	4.6	1	1460
	NbB2	7.2	8 >	2900(d)
	NbC	7.8	7.2	3500
	SiC	3.2	5.1	2500(d)
	SiO2	2.7	3	1710
	Ta2O5	8.7	2.4	1880
Additives	Ta5Si3	13.1	6.7	2460
selected to	TaB	14.3		3090
	TaB2	12.6	8.2	3000(d)
liboride	TaC	14.5	7.1	3880
	TaSi2	8.8	8.9	2200
	TiB2	4.5	5.2	2980
	TiC	4.9	8	3250
	TiO2	4.3	9.5	1920_
	ZrB2	6.1	5.9	3040
	7.02	59	01	2600

	101		unhoau	.10113		
Run	Composition	Powder Process	Processing	UTS, Mpa	% strain	E, G
877-1	ZrB2-20v/oSiC	batch 1, mix milled	2000C, 10ksi, 1h, vac	377.4	0.131	289
877-2				722.6	0.171	401
877-3				749.9	0.181	394
877-avg				616.6	0.161	361
882-1	ZrB2-20v/oSiC	batch 1, mix milled	2000C, 10ksi, 2h, vac	381.4	0.086	416
882-2				588.8	0.106	531
882-3				486.9	0.098	472
882-avg			1	485.7	0.097	473
897-1	ZrB2-20v/oSiC	batch 2, milled mix	2000C, 10ksi, 2h, vac	576.3	0.129	434
897-2				560.2	0.133	378
897-3				505.2	0.120	395.
897-avg				547.2	0.127	402
878-1	ZrB2-20v/oSiC-20v/o mixed additives	milled mix	1900C, 10ksi, 2h, vac	838.7	0.178	448
878-2				834.3	0.173	475
878-3				729.3	0.144	471
878-avg			2 - 2	800.8	0.165	464
889-1	ZrB2-20v/oSiC-20v/oTaSi2	remill mix milled	1600C, 10ksi, 2h, vac	549.6	0.133	399
889-2				786.2	0.185	414
889-3				827.0	0.192	424
889-avg				720.9	0.170	412
908-1	HfB2-20v/oSiC	milled mix	2000C, 10ksi, 2h, vac	563.8	0.116	473
908-2				375.4	0.080	459
908-3				518.5	0.110	465
908-avg				485.9	0.102	466
911-1	HfB2-20v/oSiC	milled mix	2000C, 10ksi, 2h, vac	549.5	0.118	447
911-2				556.0	0.117	453.
911-3		plan is reaching and		534.6	0.117	423.
911-avg				546 7	0 117	441

Summary

- Current UHTCs lack robustness (low fracture toughness, reliability and oxidation resistance)
- Alloy and functionally graded materials approaches
 have been identified to improve oxidation resistance
 - Ta addition appears to be promising with oxidation rate reduced by > 10X @ 1627°C
 - FGM approaches in processing
- Several composites approaches have been identified to increase mechanical robustness
 - Infiltration processing and prepregging have produced materials with interesting microstructures
 - Further characterization of microstructures, and mechanical property and environmental durability is needed to guide the next processing cycle

Prop	erties of	Rele	vant Com	Glenn Researc
	Compound	Density	CTE, 10E6*cm/cm(MP, C
	B4C	2.5	6	2350
	BN	2.25	3.8	3000(s)
	HfB2	11.2	6.3	3250
	HfO2	9.7	6.5	2810
	Nb2O5	4.6	1	1460
	NbB2	7.2	8	>2900(d)
	NbC	7.8	7.2	3500
	SiC	3.2	5.1	2500(d)
	SiO2	2.7	3	1710
	Ta2O5	8.7	2.4	1880
Additives	Ta5Si3	13.1	6.7	2460
selected to	TaB	14.3		3090
	TaB2	12.6	8.2	3000(d)
diboride	TaC	14.5	7.1	3880
albertab	TaSi2	8.8	8.9	2200
	TiB2	4.5	5.2	2980
	TiC	4.9	8	3250
	TiO2	4.3	9.5	1920_
	ZrB2	6.1	5.9	3040
	ZrO2	5.8	8.1	2690

	Flexural	Streng	th Resu	lts			
for ZrB ₂ -based Compositions							
Run	Composition	Powder Process	Processing	UTS, Mpa	% strain	E, GPA	
877-1	ZrB2-20v/oSiC	batch 1, mix milled	2000C, 10ksi, 1h, vac	377.4	0.131	289.5	
877-2				722.6	0.171	401.5	
877-3				749.9	0.181	394.5	
877-avg				616.6	0.161	361.8	
882-1	ZrB2-20v/oSiC	batch 1, mix milled	2000C, 10ksi, 2h, vac	381.4	0.086	416.8	
882-2				588.8	0.106	531.2	
882-3				486.9	0.098	472.3	
882-avg				485.7	0.097	473.4	
897-1	ZrB2-20v/oSiC	batch 2, milled mix	2000C, 10ksi, 2h, vac	576.3	0.129	434.3	
897-2				560.2	0.133	378.9	
897-3				505.2	0.120	395.6	
897-avg				547.2	0.127	402.9	
878-1	ZrB2-20v/oSiC-20v/o mixed additives	milled mix	1900C, 10ksi, 2h, vac	838.7	0.178	448.0	
878-2				834.3	0.173	475.7	
878-3				729.3	0.144	471.1	
878-avg				800.8	0.165	464.9	
889-1	ZrB2-20v/oSiC-20v/oTaSi2	remill mix milled	1600C, 10ksi, 2h, vac	549.6	0.133	399.0	
889-2				786.2	0.185	414.7	
889-3				827.0	0.192	424.0	
889-avg				720.9	0.170	412.6	
908-1	HfB2-20v/oSiC	milled mix	2000C, 10ksi, 2h, vac	563.8	0.116	473.0	
908-2				375.4	0.080	459.6	
908-3			5	518.5	0.110	465.4	
908-avg				485.9	0.102	466.0	
911-1	HfB2-20v/oSiC	milled mix	2000C, 10ksi, 2h, vac	549.5	0.118	447.9	
911-2				556.0	0.117	453.4	
911-3				534.6	0.117	423.4	
911-avg				546.7	0.117	441.6	

