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Abstract 

In this work, a previously developed mean flow boundary condition will be validated for 
unsteady flows. The test cases will be several reference benchmark flows consisting of 
vortical gusts convecting in a uniform mean flow, as well as the more realistic case of a 
vortical gust impinging on a loaded 2D cascade. The results will verify that the mean 
flow boundary condition both imposes the desired mean flow as well as having little or 
no effect on the instantaneous unsteady solution. 

Introduction 

The field of Computational Aeroacoustics (CAA) is concerned with the time-accurate 
calculation of unsteady flow fields. The flow problems of interest can be divided into 
two types: initial-value, and long-time unsteady problems. In an initial-value problem, 
the initial flow solution is known exactly, and the computation is focused on obtaining a 
time-accurate unsteady solution throughout the calculation. In a long-time unsteady 
problem, the initial flow field is not correctly specified, and the solution must evolve over 
time until it converges to the long-time unsteady flow. 

It is relatively rare to solve an initial-value flow problem, mainly because the initial 
solution must be exactly specified. On the other hand, many realistic flow problems can 
be classified as long-time unsteady. Unlike an initial-value problem, where the entire 
calculation must be highly accurate, the long-time unsteady flow calculation can be 
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divided into two distinct phases. 

In the first phase, an initial flow solution is specified; since this is generally not the 
correct long-time solution, the flow evolves through a transient phase before converging 
to a long-time unsteady solution. During the transient phase, the goal is to converge the 
flow to the long-time unsteady solution rapidly; thus the transient computation need not 
be highly accurate in time. 

Once the flow has converged to the long-time unsteady solution, the second phase of the 
computation begins. Here, the desired unsteady flow data is gathered; thus, a highly 
time-accurate calculation is desired. The data gathered in this phase is the desired output 
for the flow simulation. 

The boundary conditions used for each phase of the calculation should be chosen to 
achieve the goals of each phase. Currently, nonreflective or damping boundary 
conditions are used for most CAA calculations.' These conditions are designed to allow 
outgoing disturbances to exit the computational domain without generating either real or 
spurious incoming disturbances. These conditions are ideal for either an initial-value 
computation or the data-gathering phase of a long-time unsteady computation, when the 
flow solution correctly represents the desired mean flow. 

However, these nonreflective boundary conditions have no mechanism for maintaining a 
desired mean flow when implemented in a nonlinear flow solver. In the initial transient 
phase, large disturbances may propagate through the boundary and exit the domain. 
These disturbances affect the flow solution at the boundary, and the correct method to 
'reset' the flow at the boundary is to impose an incoming disturbance originating outside 
of the computational domain. In previous work, such a 'mean flow boundary condition', 
or MFBC, has been demonstrated on steady flows, showing the ability to obtain a desired 
mean flow regardless of the initial flow conditions.' 

Notice that in this work, the mean flow boundary condition does not act on the 
instantaneous flow solution at the boundary; instead, it acts on the time-averaged mean 
flow at the boundary. In this way, the instantaneous outgoing waves that do not affect the 
mean flow will not be reflected. The proposed work will investigate the validity of the 
MFBC approach for unsteady flows. 

Governing Equations and Numerical Method 

In this work, the Euler equations are solved. The 2D nonlinear Euler equations may be 
written in Cartesian form as: 

Q + E  + F  = O  
I X Y  

The NASA Glenn Research Center BASS code was used to solve this eq~a t ion .~ -~  The 
BASS code uses optimized explicit time marching combined with high-accuracy finite- 
differences to accurately compute the unsteady flow. The code is parallel, and uses a 
block-structured curvilinear grid to represent the physical flow domain. A constant- 



coefficient 10" order artificial dissipation model' is used to remove unresolved high- 
frequency modes from the computed solution. 

The BASS code solves the Euler equations using the nonconservative chain-rule 
formulation; previous experience has indicated that the formal lack of conservation is 
offset by the increased accuracy of the transformed  equation^.^.^ The chain-rule form of 
the Euler equations are: 

Ql + E l  Q E  + q1  Q, 

+ 5 E ,  + r7 x E ,  

+ E  F , t q  F , = O  
Y Y 

For this work, the optimized low-storage RK56 scheme of Stanescu and Habashi" was 
combined with the prefactored sixth-order compact differencing scheme of Hixon". 

Previous Work 

In previous work, the MFBC has been tested for convergence to a desired steady mean 
flow, though the solution procedure was a fully unsteady nonlinear time-marching 
method. The previous test case was a 2D loaded cascade, with a flow turning angle of 36 
degrees. The desired mean flow conditions were: 

Figure 1 shows the ability of the MFBC to obtain the desired mean flow, while the result 
without the MFBC obtains an incorrect mean flow. Reference 2 gave a wide variety of 
initial conditions and showed the ability of the MFBC to converge to the desired mean 
flow regardless of the initial flow conditions. 

Proposed Work 

For this validation effort, two types of test problems will be chosen. The first problems 
have low-amplitude vortical gusts convecting in a uniform mean flow. The second 
problem will be the CAA benchmark problem of a vortical gust impinging on a loaded 
2D cascade.I2 The first problems have an analytic solution, allowing very precise 
validation. The second problem will have a benchmark solution to compare with. As an 
extension of the previous work, the instantaneous nonreflecting boundary condition of 
Giles13 will be combined with the characteristi~-based~~*'~ mean flow boundary condition. 
The results will show the utility of the new mean flow boundary condition. 
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Figure 1: Effect of Mean Flow Boundary Condition on the Flow Obtained by BASS 
Code on 2D Loaded Cascade Test Case 


