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Abstract 

In this work, a nonlinear structured-multiblock CAA solver, the NASA GRC BASS code, 
will be tested on a realistic CAA benchmark problem. The purpose of this test is to 
ascertain what effect the high-accuracy solution methods used in CAA have on a realistic 
test problem, where both the mean flow and the unsteady waves are simultaneously 
computed on a fully curvilinear grid from a commercial grid generator. The proposed 
test will compare the solutions obtained using several finite-difference methods on 
identical grids to determine whether high-accuracy schemes have advantages for this 
benchmark problem. 

Introduction 

The field of Computational Aeroacoustics (CAA) is concerned with the time-accurate 
calculation of unsteady flow fields. In order to accurately propagate the unsteady 
acoustic, vortical, and entropy waves, high-accuracy numerical differencing schemes 
have been developed which require very few grid points per disturbance wavelength to 
calculate an accurate value of the spatial derivative (see Refs. 1 and 2 for an overview of 
CAA developments). These schemes have been extended for use in nonlinear flow 
calculations, and have produced very good results (e.g., Refs. 3-5). 

However, for realistic flow calculations using curvilinear grids, it is not clear if these 
high-accuracy schemes retain the advantages that they show for model problems. 
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Previous work has indicated that the grid generator has an effect on the attainable 
accuracy of a numerical scheme6, even with a very smooth grid from a commercial grid 
generator.' 

In the proposed work, the NASA BASS code will be applied to the CAA Benchmark 
problem of a vortical gust impinging on a loaded 2D cascade.8 The BASS code has four 
spatial differencing options: explicit 2"d order, explicit 61h order, optimized DRP', and 
prefactored compact 6" order." While it is expected that the three high-accuracy 
schemes will perform adequately, the question is whether they will perform better than 
the low-order scheme on a realistic problem. 

It must be noted at this point that this test problem may well be weighted in favor of the 
2nd order explicit scheme because the wavelength of the vortical gust is very long and the 
computational boundaries are very close. Thus, if the high-accuracy schemes provide a 
measurably better answer, this will be a strong indication that high-accuracy schemes are 
useful for traditional CFD problems as well as CAA. 

G~eri i i i ig  Eyiiaiiuiis a d  Nurriericai ivieihud 

In this work, the Euler equations are solved. The 2D nonlinear Euler equations may be 
written in Cartesian form as: 

Q + E  + F  = O  
' X Y  

The NASA Glenn Research Center BASS code was used to solve this equation."-6."-12 
The BASS code uses optimized explicit time marching combined with high-accuracy 
finite-differences to accurately compute the unsteady flow. The code is parallel, and uses 
a block-structured curvilinear grid to represent the physical flow domain. A constant- 
coefficient 10" order artificial dissipation modelI3 is used to remove unresolved high- 
frequency modes from the computed solution. 

The BASS code solves the Euler equations using the nonconservative chain-rule 
formulation; previous experience has indicated that the formal lack of conservation is 
offset by the increased accuracy of the transformed  equation^.^-^ The chain-rule form of 
the Euler equations are: 

For this work, the optimized low-storage RK56 scheme of Stanescu and HabashiI4 was 
combined with the prefactored sixth-order compact differencing scheme of Hixon". 



Proposed Work 

In this work, the CAA benchmark cascade problem given in Ref. 8 will be computed 
using the NASA GRC BASS code. The BASS code will be run using various spatial 
differencing schemes of different accuracies, and the results will be compared to 
determine the effectiveness of the high-accuracy finite-difference schemes currently used 
in CAA codes on a realistic test problem. The grid density and stretching will also be 
varied to investigate the grid density required for an accurate solution. 
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