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As part of the transfer of catalyst manufacturing technology from Shell Chemical
Company (Shell 405 catalyst manufactured in Houston, Texas) to Aerojet (S-405
manufactured i n R edmond, W ashington), A erojet d emonstrated t he e quivalence o f S -405
and Shell 405 at beginning of life. Some US aerospace users expressed a desire to conduct a
preliminary confidence test to assess end-of-life characteristics for S-405. NASA Marshall
Space Flight Center (MSFC) and Aerojet entered a contractual agreement in 2004 to
conduct a confidence test using a pair of 0.2-lbf MR-103G monopropellant hydrazine
thrusters, comparing S-405 and Shell 405 side by side. This paper summarizes the
formulation of this test program, explains the test matrix, describes the progress of the test,
and analyzes the test results. This paper also includes a discussion of the limitations of this
test and the ramifications of the test results for assessing the need for future qualification
testing in particular hydrazine thruster applications.

I. Introduction

Following the Shell Corporation’s decision to discontinue production of Shell 405 catalyst in 2002, aerospace
users faced uncertainty regarding the continued availability of this alumina-based iridium catalyst which has for
decades been used to decompose hydrazine in thrusters and auxiliary power units (APUs). With the ramifications of
Shell’s decision becoming clear, NASA’s Marshall Space Flight Center (MSFC) and Kennedy Space Center (KSC)
began work with Aerojet under contract number NAS8-02041 to assure timely and successful transfer of the catalyst
manufacturing technology from Shell to Aerojet’s Redmond, W ashington facility under the new name, “S-405.”
Throughout this technology transfer effort, a group of NASA users convened regularly to monitor progress, discuss
concerns, and evaluate potential issues in the technology transfer. On March 13, 2003, this group held an on-site

meeting at Aerojet Redmond to revicw the outcome of the technology transfer and to close out the NASA contract
that enabled it. At the conclusion of the meeting, representatives concurred that the manufacturing technology had
been successfully transferred and that test results proved that 14-18 mesh S-405 and Shell 405 had equivalent
beginning-of-life (BOL) characteristics.' ‘

Some users, among them NASA MSFC propulsion engineering, began to express a desire for data demonstrating i
the equivalence of Shell 405 and S-405 near the end-of-life (EOL). At a July 24, 2003 meeting of the United States
S-405 user community, MSFC set forth a preliminary concept for a confidence test to provide insight into EOL |
characteristics. The purpose of this test would be to identify a well-characterized thruster with a low thrust level (to
minimize propellant costs) that had been previously qualified using Shell 405. Testing with S-405 would then
provide a basis for comparison that could serve as an early exploratory test to uncover differences, if any, between

the catalysts. \
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Iterative discussions over the next several months refined the initial test approach, leading to user group
consensus and a decision to proceed in January, 2004. This paper highlights the selected test approach and presents
the results and conclusions of the test, which, due to various funding difficulties and schedule delays, began in
January, 2005 and concluded two months later.

II.  Test Approach

The test approach continued to evolve for some time following the July, 2003 users meeting until Lockheed-
Martin and RNR Engineering identified a pair of Aerojet MR-103G thrusters (see Figure 1) that would be available
for continued testing after the conclusion of a Lockheed-Martin test in the same vacuum test position at Aerojet
Redmond. Since the thrust level was low (0.2 Ib) and since several thousand lbesec of impulse would be
accumulated before the confidence test would begin, the total propellant cost and total test cost was compatible with
NASA’s limited funding. Further, since the MR-103G had proven treacherous for Shell 405 in previous years, the
group agreed that the test would be likely to uncover differences, if any, between Shell 405 and S-405 at EQL.
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Figure 1. Depiction of MR-103G Thruster.

For clarity, the initial Lockheed-Martin test program will be referred to here as the “previous test program,”
whereas the subsequent testing will be called the “confidence test.” ‘ o

Figure 2 and Figure 3 illustrate the test conditions imposed in the previous test. As can be observed, the thruster
burns were primarily long-duration (8-hour) continuous burns punctuated by periodic health checks.

Figures 4, 5, and 6 summarize the test conditions and flow for the confidence test. Pre-test evaluations included
computer tomography (CT) scanning and functional checks (both electrical and mechanical). Unlike the previous
test, the confidence test included a mixture of pulse mode operation (0.02 to 10 seconds “on”) and periodic health
checks. Following the side-by-side hot fire testing under vacuum conditions, post-test evaluations included the
following: functional checks; CT scanning; disassembly and inspection; weighing and sieving the catalysts;
Braunauer, Emmett, and Teller (BET) analysis; and hydrogen chemisorption testing.
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Figure 2. Previous Test Program Conditions and Flow (Part 1)
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Figure 3. Previous Test Program Conditions and Flow (Part 2)
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Figure 4. Test Conditions and Flow for the Confidence Test (Part 1)
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Figure 5. Test Conditions and Flow for the Confidence Test (Part 2)
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Figure 6. Test Conditions and Flow for the Confidence Test (Part 3)

III. Test Results

The previous testing and confidence testing demonstrated the capabilities of the two MR-103G thrusters
shown in

Tabie 1. Both thrusters successfuily compieted the hot fire test program, and all data was judged to be within
historical parameters. Both thrusters intermittently experienced sining roughness, which is normal for the MR-103G
thruster. In general, the S-405 thruster (S/N 030) appeared to sine more frequently. The health checks uncovered no
unusual thermal operating conditions.

Evaluation of thrust vs. feed pressure and steady state specific impulse (Isp) vs. feed pressure indicated that both
engines met BOL tolerances at both the beginning and end of the test. Steady state Isp was observed to dip below
the minimum tolerance during the previous program’s health checks. This behavior was attributed to the softness of
the fuel system; the dissolved gas in the fuel affected both thrust and flow rate measurement.

Evaluation of thrust and Isp performance over the life of the thrusters indicated that performance differences
were within typical engine-to-engine variation. At times, S-405 chamber pressure spiking was observed to a greater
extent in the S-405 thruster (S/N 030).

In general there was no definitive pattern or trend observed apart from typical degradation associated with the
accrual of life on the thrusters. Both thrusters experienced degradation in tail-off, due to formation of voids in the
catalyst bed as life accrues. Data indicated no distinct trend in critical velocity (C-star). Also chamber pressure
roughness had no pattern or trend observed apart from typical life degradation. Both steady state thrust levels and
performance (Isp) levels were within BOL tolerances at the end of the test.

Pre-test CT scans of the Shell 405 thruster (S/N 6133) indicated a catalyst void of 0.4% of the total bed volume
near the injector, while the post-test CT scan indicated voids totaling to 1.1% of the bed volume. On the other hand,
the S-405 thruster (S/N 030) had no noticeable void in the pre-test CT scan, but had voids totaling 0.9% of the bed
volume in the post-test scan. In general, the majority of post-test voids in both thrusters were near the injector. The
scans were similar between the two thrusters, and the voids in both thrusters were judged to be in line with historical
precedents.

The post-test disassembly and inspection revealed subtle differences in the condition of the two catalyst beds.
The Shell 405 (S/N 6133) bed had a visibly observable void near the top of the catalyst bed, whereas the S-405 bed
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had no observable void. When catalyst granules were poured out, the Shell 405 granules stuck together, indicating
that sintering had occurred in the bed. S-405, however, poured freely (no sintering observed). Both thrusters
exhibited typical chamber and bedplate discoloration and catalyst markings in the chamber.

BET testing indicated a higher BET value for S-405 than Shell 405 in the upstream portion of the beds. In the
downstream portion of the beds, the opposite trend was observed. Post-test chemisorption analysis of both catalysts
exceeded the typical value of 90 pmole H,/g.

Table 1. Demonstrated Capabilities

Shell 405 Thruster (S/N 6133) S-405 Thruster (S/N 030)

Total pulse count

Previous Test 9,641 10,044

Confidence Test 124,010 124,010

Total 133,651 134,054
Number Of Ambient Starts 12 12
Cumulative Total Impulse (1bssec)

Previous Test 19,336 18,370

Confidence Test 3,841 3,812

Total 23,177 22,182

Longest Continuous Burn

8 hours 10 minutes®

8 hours 10 minutes®

Lowest Rate Duty Cycle Tested

0.16% (0.016 sec on,

0.16% (0.016 sec on,

9.984 sec off) 9.984 sec off)
Minimum Pulse Width (sec) 0.016° 0.016°
Inlet Pressure Range (psia) 100-350 100-350
Fuel Temperature 12-60°C* 12-60°C*
(54°F-140°F) (54°F-140°F)
Valve Voltage Range (Vdc) 70-71 70-71
Seats wired in series Seats wired in series
Valve Suppression Voltage (Vdc) 8.2 8.2
Change in Thrust @ 257 psia”* -3.6% -4.3%
Change in I, @ 257 psia” -0.2% -0.3%
Change in Roughness @ 257 psia’ +1.5% +3.8%
%Catalyst Void (CT scan after all testing) 1.1% 0.9%
% Catalyst Void (By weight after all 2.5% 0.6%
testing)
ABET, Upstream Bed (m*/g) -7 -8
ABET, Downstream (m¥/g) -4 -8
AChemisorption, Upstream Bed -27 -26
(pmoles Hy/g)
AChemisorption, Downstream Bed -18 -17

(pmoles Hy/g)

Indicates this was during the previous test program.

b

c

The different changes in performance for the two engines are typical of engine-to-engine variation.
2-sigma roughness represents the range where 95% of the chamber pressure roughness is occurring (2 x
standard deviation of Pc / Average Pc). This better represents the average random roughness of the

engines, whereas occasional spiking would bias peak-to-peak roughness and increase scatter.

Based on these test results, the investigators have concluded that Shell 405 and S-405 catalysts provide
equivalent performance near the end of life in an MR-103G 0.2-Ibs thruster. Differences observed between these

IV. Conclusions

two thrusters are consisted with thruster-to-thruster variations.
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It is appropriate to mention the limitations of this test program. While the user community generally concurred
with the test approach reported here would be a useful exploratory test, there was also general consensus that no
single test could assure S-405 equivalence for all thruster and APU applications. Hence, it must be emphasized that
the intent of this test was to provide data that could be used as a basis for assessing confidence in S-405’s EOL
properties. While the positive test results may enhance confidence in the quality of S-405, MSFC does not intend
for the test results to be used to certify S-405 as a “drop-in replacement” for Shell 405 for all applications and usage
scenarios.
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