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Actuator saturation is one of the major issues of flight control in the high angle-
of-attack region. This paper presents a saturation control scheme for linear parameter-
varying (LPV) systems from an antiwindup control perspective. The proposed control
approach is advantageous from the implementation standpoint because it can be thought
of as an augmented control algorithm to the existing control system. Moreover, the syn-
thesis condition for an antiwindup compensator is formulated as a linear matrix inequality
(LMI) optimization problem and can be solved efficiently. We have applied the LPV anti-
windup controller to an F-16 longitudinal autopilot control system design and compared
it with the thrust vectoring control scheme. The nonlinear simulations show that an LPV
antiwindup controller improves flight quality and offers advantages over thrust vectoring

in a high angle-of-attack region.

I. Introduction

HE flight control system of a tactical aircraft

has different performance goals for low angle-of-
attack and high angle-of-attack regions. For example,
pilots desire fast and accurate responses for maneuver
and attitude tracking in a low angle-of-attack scenario.
While in a high angle-of-attack region, the flight con-
trol focuses on the maintainability of aircraft stability
with acceptable flying qualities. The potential of high
angle-of-attack flight presents many challenges to the
control designers. Because of aerodynamic surface sat-
uration and control surface limitation, unconventional
actuators such as thrust vectoring are suggested for
aircraft maneuvering at and beyond the stall angle-of-
attack. However, incorporation of additional thrust
vectoring hardware could complicate the design of
flight control laws in the poststall regime.! Robust
multivariable control methods have been recently ap-
plied to a variety of aircraft models? to demonstrate
their abilities to fly at high angles-of-attack with the
help of thrust vectoring control (see Ref. 3 and refer-
ences therein). Besides control law design, another
major issue of high angle-of-attack flight is control
saturation. It is well recognized that actuator satu-
ration degrades the performance of the flight control
system and can even lead to instability. The destabi-
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lizing effects of actuator saturation have been cited
as contributing factors in several mishaps involving
high-performance aircraft.* For this reason, various
methods of preventing instability because of saturation
have been examined, which include allocating control
effectors and command scaling and prioritization.

Antiwindup control method is a popular approach
to control saturation that employs a two-step design
procedure. The main idea of antiwindup control is to
design the linear controller by ignoring the saturation
nonlinearities first and then add antiwindup compen-
sation to minimize adverse effects of the saturation
on closed-loop performance. Desirable design require-
ments for antiwindup compensation subject to actua-
tor saturation are the closed-loop system stability, re-
covery of the linear design specifications in the absence
of saturation (linear performance recovery), and the
smooth degradation of the linear performance in the
presence of saturation (graceful performance degrada-
tion). Like other saturation control techniques, the
antiwindup compensator design often assumes a linear
time-invariant (LTI) plant and models the saturation
block as a sector-bounded nonlinearity. Then absolute
stability conditions (such as Popov, circle theorems)
are applied for the stability and performance analy-
sis.® Their extension to nonlinear systems has already
been developed.

A general framework that unifies a large class of
existing antiwindup control schemes in terms of two
matrix parameters was proposed in Ref. 6. This
framework is useful for understanding different an-
tiwindup control schemes and motivates the devel-
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opment of systematic procedures for designing anti-
windup controllers that provide guaranteed stability
and performance. Early results in antiwindup control
often have the drawback of lacking rigorous stability
analysis and clear exposition of performance objec-
tives. Using an extended circle criterion, the synthesis
condition of static antiwindup controllers is formu-
lated as a linear matrix inequality (LMI) problem.”
A recent study in Ref. 8 has further revealed that an-
tiwindup control for stable open-loop LTI systems can
be solved globally as an LMI problem with the order
of antiwindup compensator no more than the plant’s
order. Alternatively, the Popov stability condition has
also been applied to the antiwindup compensator de-
sign problem.® However, the synthesis condition of
the saturation controller is given in coupled Riccati
equations, which are difficult to solve for the opti-
mal solution. Most previous antiwindup compensator
designs are only applicable to open-loop stable LTI
systems, limiting their usefulness for practical prob-
lems. When the system is nonlinear and open-loop
unstable, the control synthesis problem becomes very
difficult to solve; therefore, global stabilization cannot
be achieved.!®!! However, in many control systems
including flight control systems, the system dynam-
ics are inherently nonlinear and their linearizations at
some operation points are strictly unstable.

The motivation for this research is twofold. First,
the antiwindup control scheme for LTI plants in Ref.
12 is generalized to linear parameter-varying (LPV)
systems. This generalization is very important be-
cause of the relevance of LPV systems to nonlinear
systems. In fact, the LPV model can be thought of as a
group of local descriptions of nonlinear dynamics. The
antiwindup compensation augments existing control
systems by maintaining stability and recovering con-
trol performance when actuators become saturated.
Second, saturation control for aircraft under large ma-
neuver operations is critical because of safety concerns.
The proposed antiwindup compensation can augment
existing flight control algorithms, yielding enhanced
reliability and an expanded flight envelope. In partic-
ular, using an F-16 longitudinal dynamic model, we
demonstrate good flight control performance of LPV
antiwindup control in a high angle-of-attack scenario.
Note that the study in this paper is focused on ac-
tuator magnitude saturations, and it is the first, but
an important step towards the actual application of
antiwindup to high-performance flight control. The
results can be easily generalized to actuator rate sat-
urations,'® which are more realistic for an advanced
tactical aircraft.

The notation in this paper is standard. R stands for
the set of real numbers and Ry for the non-negative
real numbers. R™*™ is the set of real m x n ma-
trices. The transpose of a real matrix M is denoted
by MT. Ker(M) is used to denote the orthogonal

complement of M. A block diagonal matrix with
submatrices X, Xo,..., X, in its diagonal is denoted
by diag{Xi,Xs2,...,Xp}. We use S"*™ to denote
the real symmetric n x n matrices and S7™" to de-
note positive definite matrices. If M € S™*" then
M >0 (M > 0) indicates that M is positive definite
(positive semidefinite) and M < 0 (M < 0) denotes
a negative definite (negative semidefinite) matrix. If
a,b € R, then sect[a,b] denotes the conic sector de-
fined by {(¢,p) : (p —aq)(p —bg) < 0}. For z € R",
its norm is defined as ||z|| := (z”x)>. The space of
square integrable functions is denoted by Ls, that is,
for any u € Lo,

fulli= | [ Outoar :

1
2

is finite.

This paper is organized as follows: Section II is de-
voted to providing an LPV antiwindup compensator
synthesis condition, which is a generalization of pre-
vious results in Ref. 12. In section III, the LPV
antiwindup compensator is applied to an F-16 longi-
tudinal flight control system design and is compared
with the thrust vectoring control scheme. Finally, we
conclude the paper in section IV.

IT. LPV Antiwindup Control Synthesis

The goal of antiwindup compensation is to modify
nominal controllers so that if the signal from the con-
troller is different than that which enters the plant,
corrective feedback action is employed to reduce the
discrepancy. Because it is impossible to provide a
global stabilizing solution to the antiwindup control
problem when the open-loop plant is unstable, one
often needs to determine regional stability for satu-
ration control and to design the controller gains in the
guaranteed stability region.'®!! In Ref. 8, a sector-
bounded input nonlinearity, sect]0, 1], was considered
for the open-loop stable plant and is not applicable to
exponentially unstable systems. However, the derived
performance and stability properties can be improved
when the input nonlinearity is restricted to a smaller
sector region. As a result, this modification leads to
regional stability of the antiwindup compensated sys-
tem and extends the antiwindup control technique to
exponentially unstable open-loop systems.

Consider an LPV plant P, described by

Tp Ap (p) By (p) Byo (p) Lp
el =|cnle) Duile) Duaw)| | d | ©
y Cp2(p)  Dp21(p) Dpaz(p)| [o(u)

where the plant state z, € R". y € R" is the
measurement for control, and o(u) € R™ is the satu-
rated control input. e € R is the controlled output
and d € R™ is the disturbance input. It is assumed
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that the vector-valued parameter p evolves continu-
ously over time and its range is limited to a compact
subset P C R®. In addition, its time derivative is
assumed to be bounded and satisfy the constraint
v, < pi < 7,1 = 1,2,...,s. For notational pur-
poses, denote V = {v: v; <v; <;, i=1,2,...,s},
where V is a given convex polytope in R? that contains
the origin. Given the sets P and V, the parameter v-
variation set is defined as

Fh={peC(Ry,R*): p(t) € P, p(t) €V, ¥t >0}

So F7% specifies the set of all allowable parameter tra-
jectories.

All matrix valued state-space data are continuous
and have appropriate dimensions. For simplicity, we
assume that

(A1) (A,(p), Bp2(p),Cpa(p)) triple is parameter-
dependent stabilizable and detectable for all p.

(A2) The matrix functions [BJ(p) Dl,(p)] and
[Cp2(p)  Dpo1(p)] have full row rank for all p.

(A3) Dp2(p) = 0.

The actuator nonlinearity under consideration is a
piecewise-linear saturation

o) = u; |u;| < uiex
L sen(ua)u® Jug] > ue
fori =1,2,...,ny. The antiwindup control structure

is shown in Fig. 1(a).

Following the standard antiwindup procedure, a
nominal LPV controller K, is designed first by ignor-
ing the input nonlinearity. Different control design
techniques can be employed to achieve this goal. A
systematic way to do this is through LPV control the-
ory.'416  Because of assumption (A1), the nominal
controller K, exists and is capable of stabilizing the
open-loop system when no input saturation exists, and
its design will determine the nominal performance of
the closed-loop LPV system. We assume that such a

controller is given by
i) ]+ )
2
i) [y T ] @

{i“k} _ [Ak(P, p)

u| | Crlp)

where x;, € R™. The variables vy, v are the auxiliary
inputs provided by an antiwindup compensator. They
are used to condition the nominal controller when the
control input is saturated.

Our objective is to design an LPV antiwindup com-
pensator AW, such that the adverse effect of input sat-
urations are minimized in terms of induced L5 norm.
The antiwindup compensator is in the form of

Taw
(%1 =

feted P[] o

U2

d
L€ 5

> P
R K, > _/]l/_ > p 5
nominal u

controller —
v q
AW, j

anti-windup compensator

o(u)

(a) LPV antiwindup control structure

u q
€ «— Gp l—d
q v
AW,

(b) Equivalent transformation

Fig. 1 Nonlinear saturation control diagram.
where the state x4, € R™¥; the size of the compen-
sator state will be determined in the sequel. Such
antiwindup compensation schemes provide a compu-
tationally efficient technique for “retro-fitting” exist-
ing unconstrained controller K, to account for input
nonlinearities, thereby eliminating controller windup
problems for input saturated nonlinear systems.

The LPV antiwindup control diagram in Fig.
1(a) can be transformed to its equivalent form by
substituting each actuator saturation with a dead-
band nonlinearity A; = 1 — o(u;)/u; and A =
diag{A1,As,..., Ay, } as shown in Fig. 1(b). This
allows recasting of the compensator design problem
into a robust LPV control paradigm.

qA

slope 0 < k<1

 /

Fig. 2 Restricted range input saturation.

It can be seen that the deadband uncertainty A; re-
sides in the conic sector [0, 1]. If the maximal value
of the control input signal u; is restricted to be less
than (1/(1— k;))u™® with 0 < k; < 1, then the
nonlinearity A; is reduced to sect[0, k;] as shown in
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Fig. 2. Consequently, we have A € sect[0, K] with
K = diag{ki, ks, ..., kn, }. The resulting stability no-
tion then becomes regional stability, which is more
conservative than the actual stability limit. However,
this restriction of uncertainty A is capable of extend-
ing the antiwindup scheme to open-loop exponentially
unstable systems.

Let the system G, be the interconnection of the
open-loop system P, and the nominal controller K,

but exclude the antiwindup compensator. Then its
dynamic equation is
. x
i A(p,p)  Bolp) Bilp) Ba(p) .
ul _ | Colp)  Doo(p) Doi(p) Doz(p)| | 4
€ Ci(p) Dio(p) Dii(p) Dia(p) »
q 0 I 0 0 !
V2
(4)
q=Au (5)
where 27 = [z} z{] € R" with n = n, + n; and
A € sect[0, K.
. A + B,y D, Cpo By Ch,
A P iz j2
(p,p) = BiCo Ay
[—B,» By + Bpa Dy Dpay
B, — p B — p p p
N I R N
0 B
B =y Bl aw=nc,
Ci(p) = [ 1 + Dp12DiCpo Dplzck]
Dyo(p) =0, Do (p) = Dy Dpay
Do2(p) = [0 I], Dio(p) = —=Dp12
D11(p) = Dp11 + Dp12DiDya1,  Diz(p) = [0 Dpyo]

Note that the state-space data have linear dependency
of parameter rate p under the LPV control design
framework.

Denote z; = [z 2l,]. Then the final closed-loop
system T, = F¢(G,, AW,) is described by

el Aclp,p)  Boelp)  Bralp) | [za

u | = CO,cl(pa p) DOO,cl(p) DOl,cl(p) q

e Cre(p,p) Droalp) Diva(p)] | d
(6)
q=Au (7)
where F(+, ) stands for a lower linear fractional trans-

formation.!” The state-space data of the closed-loop
system T, are related to the interconnected system
G, and the antiwindup compensator AW,. Specifi-
cally, the closed-loop state-space data depend on the
antiwindup compensator gain in affine form. The fol-
lowing theorem provides a synthesis condition for the
antiwindup compensator.

Theorem 1 (synthesis condition for LPV antiwindup
compensator)

Given scalars 0 < k; < 1,1 =1,2,...,n,, the LPV
open-loop system P, with a parameter-dependent sta-
bilizing nominal controller K,, if there exists a pair
of positive definite matriz functions Ri1(p) € Si”xn”,
S(p) € 8" and a diagonal matriz function V(p) =
diag {v1(p), -+ ,vn, (p)} > 0 satisfying eqns. (8)-(10)
for all (p,v) € P xV, then there exists an nyth or-
der LPV antiwindup compensator AW, to stabilize
the closed-loop system exponentially and have the per-
formance |lello < 7||d||2 for all p(-) € Fp when the
condition |u;| < (1/(1—k;))u, i = 1,2,...,n,
holds.

The proof can be found in the Appendix. Because
only the (1,1) element of the R matrix function is con-
strained in the LMIs (8)—(10), it is always possible to
augment matrix R;; to R in satisfying the preceding
coupling condition. For example, one can choose

) [}

0 115 () V)J ‘ 0 115 (p) BJ

The resulting R is positive definite because of condi-
tion (10). Also, R(p) — S~ 1(p) > 0 is satisfied for
the selected R matrix function. The rank condition is
trivially satisfied if one chooses 14, = nyp.

Recall that the LPV antiwindup compensator syn-
thesis problem is originally formulated as a robust
control problem. This usually leads to a nonconvex
solvability condition as bilinear matrix inequalities.
However, because of the special structure of the an-
tiwindup controller, the resulting synthesis condition
is convex in terms of matrix variables Rii(p), S(p),
and V(p). In fact, the solvability condition for the
LPV antiwindup compensator is given as an infinite-
dimensional LMI optimization problem, for which an
efficient numerical algorithm exists to solve it approx-
imately.'® This can be done by parameterizing the
matrix variables using a finite set of scalar basis func-
tions as

Ri1(p) I 0]S

R =

Ny Ny
Rii(p) = Zfi(P)Rn,z, S(p) = Z%’(P)S]
" "
V(p) =Y hi(p)Vi
k=1

where {fi(p)}iy, {g;(p)}},, and {hi(p)};2, are
user-specified scalar basis functions. Ri1;,S;, and Vj,

are new optimization variables to be determined. After
such a parameterization, the LPV synthesis conditions
can be solved using a gridding method over the param-
eter space.
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[ °. R 1
Rai(p) A7 (p) + Ap(p) Rur(p) = D _vi—g R11(p)Ci (p)
= 9P 2B, (p) K~V (p)(I — K~1)DT, By (p)
+2B,5(p) KV (p)(I — K1) B (p) {+ RV JDral )} -0
{ CPI (p)Rll (p) } { I, } D (p)
+2D15(p) K~V (p)(I — K=1) B (p) +2Dy15()) K=V (p)(I = K~)DTy(p) f P11
L Bgi(/)) DZH(P) _'YInd |
(8)
S(p>A<p,u>+AT(p,u>S(p>+Zw§—§ S()Bi(p) CT(p)
i=1 ¢ 0 9
BT (0)S(p) L, DLp)| "~ )
Ci(p) Du(p) =7,
lel() o 0] >0 10
s |2 1

After solving Ri1(p),S(p), and V(p) matrix func-
tions, the LPV antiwindup compensator gain can be
determined by either solving an LMI feasibility prob-
lem or the antiwindup compensator can be constructed
explicitly as shown in the following theorem. The ex-
plicit construction approach is advantageous because
it avoids possible numerical ill-conditioning when solv-
ing the preceding feasibility LMI problem. Moreover,
it connects the antiwindup controller directly to the
plant and nominal controller gains.

Theorem 2 (LPV antiwindup compensator construc-
tion)

Given the solutions Ri1(p),S(p),vy, and V(p) =
W=Y(p) of the LMIs (8)-(10), let M(p)NT (p) = I,, —
R(p)S(p) with M,N € S™*" and H' = [I,, 0],
then one ny-th order LPV antzwmdup compensator
AW, can be constructed through the following scheme:

1. Compute a feasible Dqy(p) € R™*™ such that
eqn. (11) holds for all p € P,

2. Compute the least square solutions of the
linear equations (12)-(13) for Baw(p) €
R™"™ Cuw(p) € R™*"  and the matriz

Aaw(p, p) € R™™ g e:vpressed as in eqn. (14),

3. Convert the transformed antiwindup compensator
gain to its original state-space data by eqn. (15).

This proof can be found in the Appendix. The
explicit antiwindup construction scheme can also be
applied to open-loop stable systems. However, because
the synthesis condition for an open-loop stable plant
does not involve W (Ref. 8), we need to solve both the
feasible ﬁaw and W matrix functions at the first step.
The remaining steps are the same by setting K = I.

III. Saturation Control for Flight
Dynamics

In this section, the proposed LPV antiwindup con-
trol synthesis technique is applied to flight dynamics.

The system to be controlled is the longitudinal F-16
aircraft model based on NASA Langley Research Cen-
ter (LaRC) wind tunnel tests,'® which is described by

Stevens and Lewis in great detail.2°

A. Aircraft Model

The full nonlinear longitudinal model of an F-16 air-
craft is given as follows:

, _ gSc .
V= oy~ [Cagla)cosa+ C.4(a) sinal g
+ ﬁ [Cz(a,dc) cosa + C. (e, ) sin
cosa
- gs1n(9 —a)+T — (16)
q5¢c .
= {1 + ImVE [Cry(@) cosa — Cpy(a) sma]} q
+ q_f/ [C.(a, de) cosa — Cp (e, b ) sin
g sin «
+ v cos(f —a)—T oo (17)
o ch
q= 21,V [€Cmq(a) + Al ()] ¢
+ g5e Ch(a, 6e) + éCZ(a,ée) (18)
I, c
f=q (19)

The aerodynamic coefficients are provided as look-up
tables from LaRC wind tunnel tests on a scale model
of F-16 aircraft. The data apply to the speed range
up to about Mach 0.6, and cover a very wide range
of angle-of-attack (—20deg < a < 90deg). However,
conventional aerodynamic math models for use in air-
craft simulation or flight control design have become
increasingly deficient in the poststall region.2’ So,
the investigation on the robust control of aircraft in
the high angle-of-attack region with uncertain aero-
dynamic coefficients is one of the challenging research
topics.
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—W(p)KDaw(p)—wa(p)KW(p)} ~W(p)KDoi(p) —(Dio(p) + Dp12(p)Daw(p))”

_ +2W (p)
He) = DL () KW (p) VI, D7 (p) >0
—(D10o(p) + Dp12(p) Daw(p)) —D11(p) Yn,
(11)
0 |In, 007 [ Ony xn
Inu |: Bz{w(p) :| — _ Bg(p)s(p) + W(p)KCU(p) (12)
0 —1I(p) ? B (p)S(p)
0 ] i Ci(p)
- [ Bh(p)
0 [KW(p) 0 Dji»(p) T 2
L A (By (p) + W(p)KCo(p)R(p)H
Wik ) Lol SRR A il B
’ ) | BT (o)
Dpna(e) - _ CL(pR(p)H
Auslp,) = =0 RH = 0 M () H = A (p, p)H
— [S(p)Bo(p) + Baw(p) + CF () KW (p)  S(p)Bi(p) CT(p)] " (p)
{(BOT(/)) +W(p)KCo(p)R(p))H + DL, (p)BL (p) + W(p)KC’aw(p)-l
x Bf (p)H (14)
[ Ci(p)R(p)H + Dp12(p)Caw(p) J
[Aaw(p,f)) Baw(p):| _ {N (p) S(P)B2(P)] o ([figw(p,p) lf?aw(p)] {S(p)A(p,p)R(p)H 0 ])
Caw(p,p) Daw(p) 0 [0 Inu] Cow(p) D.w(p) 0 Oy, x 1y,
x [MT(()p)H Iﬂ (15)

The F-16 is powered by an afterburning turbofan
jet engine, which produces a thrust force in the z axis.
The LaRC data include a model of the engine in which
the thrust response is modeled with a first-order lag;
the lag time constant is a function of the actual engine
power level and the commanded power. The throttle
position is related to the commanded power level. For
convenience, the actual power level is also considered
as a state variable in longitudinal dynamics.

The state and input variables of the F-16 model are
as follows:

also represent perturbations from their equilibrium
states when linearization is considered. In addition, V,
q, and flight-path angle + are selected as outputs. To
describe the nonlinear F-16 model by an LPV system,
we first need to find the wings-level equilibrium solu-
tions at several flight conditions in the design envelope.
The local linear models are then obtained by lineariz-
ing the nonlinear equations of motion at those equi-
librium points. The flight envelope of interest covers
aircraft speeds between 160 and 200 ft/s and angles-of-
attack between 20 and 45deg. These two variables are
used as scheduling parameters in the LPV modeling of

4 true airspeed (ft/s) F-16 longitudinal dynamics. The points at which the
¢4 angle-of-attack (rad) nonlinear model is linearized are marked by a x sym-
rT=14q pitch rate (rad/s) bol in Fig. 3. This group of linearized models consist
i pitch angle (rad) of the LPV representation of the nonlinear F-16 lon-
pow  actual power level (0-100) gitudinal dynamics within the chosen flight envelope.

throttle position (0-1)
elevator angle (deg) (—25deg—25deg)

B {5th
u =
de

By slight abuse of notations, the variables just listed

The corresponding dynamic pressure range is between
20 and 501b/ ft>. This portion of flight envelope is cho-
sen because the moderately high angle-of-attack and
the low dynamic pressure cause aerodynamic control
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surface saturation, which is a major concern in this re-
search. The actuators are explicitly constrained. Most
of the time, we found that the elevator angle saturation
becomes a limiting factor for flight control effective-
ness.

2

2001 X X X X
1901
£
>
2 180 X X X
g
8
2
170
160 X X X

L L L L L
20 25 30 35 40 45 50

angle of attack o (deg)

Fig. 3 Flight trim points.

B. Problem Setup

The design objective of the nominal LPV controller
in this research is to track the flight-path angle com-
mand with the tracking error about 1.25% of the com-
mand in the steady-state motion. This kind of problem
is conveniently formulated as a model-following prob-
lem,?" 22 where the ideal model to be followed is chosen
to be a second-order filter based on desired flying qual-
ities

Dideal _ Wileal (20)
Yemd 52 4+ 2(ideal * Wideal * § + wi2dea1

The implicit model-following framework allows for di-
rect incorporation of flying quality specifications into
the control design. A block diagram of the system in-
terconnection for synthesizing the nominal controller
is shown in Fig. 4, where P, is the model set of lin-
earized aircraft dynamics at different operating points
p and n is 3-dimensional sensor noise.
The weighting functions are chosen as

80(s/5 + 1) .
— ST ) . = diag {0.8,0.6,0.1
Wy 5700511 W, iag {0.8,0.6,0.1}
. 1 1
Wu—dlag{l,lo,%,l—%}
2.25
Wideal =

s2 +2.4s+2.25
The throttle and elevator actuator dynamics are mod-
eled as first-order lag filters.

5 20
s+5 s+20°
Both the positions and the rates of control inputs are
fed into W, to penalize the control effort. Therefore,
the system matrix of W is derived as follows.

bin /G532 = b /0 =

5|5 —20 | 20
Waet = diag 10|, 1 0
-5 |5 —20 | 20

C. Design Results

The nominal controller is designed by formulating
an LPV synthesis problem, which can be solved us-
ing either a single or parameter-dependent quadratic
Lyapunov function over all gridding points in the two
dimensional parameter space.!*'® In this work, the
single quadratic Lyapunov function (SQLF) approach
is chosen to reduce the computation time in the nom-
inal LPV control synthesis phase. The performance
obtained through the SQLF approach is Ynom = 8.0.

The proposed LPV antiwindup scheme is then ap-
plied to the control of an F-16 aircraft, and we also
choose the SQLF approach to perform the LPV anti-
windup synthesis. A series of LPV antiwindup com-
pensators AW, are designed by gradually decreasing
the k;(i = 1,2) value from 1 to 0.99. Table 1 shows the
corresponding performance level v and the trade-off
between the sector-bound constraint and the achieved
performance. Because the linearized model at one of
the gridding points is unstable, the synthesis condition
for LPV antiwindup control is infeasible for k; = 1.
Compared with the nominal performance, the worst
performance level when k; = 1 — 107° indicates the
strong adverse effect of saturation nonlinearity. On
the other hand, the antiwindup compensator almost
recovers the nominal closed-loop performance ~ynom
when k; = 0.99. The antiwindup compensator cor-
responding to k; = 0.999 will be used in the following
nonlinear simulations. The achieved performance by
this LPV antiwindup compensator is 25.5 compared
to the nominal performance of 8.0. Therefore the
controlled performance will be sacrificed in order to
achieve a guaranteed stability result.

Table 1 7Ho performance level vs. sector range
[0, k).
Sector range [0, k;] Moo performance
1-10"° 1251.92
1-10¢ 196.55
0.999 25.50
0.99 8.00

D. Nonlinear Simulations

The LPV nominal controller K, and antiwindup
compensator AW, are tested first at one designed
flight condition, which is a trimmed flight at V =
160ft/s and o = 35deg. The magnitude limits of ac-
tuators are enforced during the nonlinear simulation.
A Aflight-path doublet input with magnitude +2deg
is used to demonstrate the performance of the anti-
windup compensator. Both the nominal controller and
antiwindup compensator are fixed LTI controllers for
the given flight condition derived from the LPV con-
trollers K, and AW,. The responses of the nonlinear
system are shown in Fig. 5, where the solid line is the
trajectory with the antiwindup compensator, and the
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Fig. 4 Open-loop interconnection for LPV control design.

dashed line is the trajectory without the antiwindup
compensator and controlled only by the nominal con-
troller. The dotted line in Fig. 5 (a) represents the
flight-path angle response of the ideal model. It is ob-
served that the performance without the antiwindup
compensator becomes worse around ¢ = 15s because of
elevator saturation. However, the insertion of the anti-
windup compensator quickly overcomes the saturation
and greatly improves the tracking performance.

Another test condition is selected at V' = 200ft/s
and a = 22deg, which is not a designed flight condi-
tion, so both the nominal controller and antiwindup
compensator are not fixed LTI controllers but varying
in time. However, the computation time will be in-
creased greatly if the controllers are constructed online
according to the current parameter value. To reduce
computational cost, a relatively coarse gridding pa-
rameter space P is used for synthesis, and then K, and
AW, are constructed off-line at finer gridding points
and saved as look-up tables. In our study, 10 points
are used for synthesis as shown in Fig. 3, and 45 points
for constructing look-up tables of K, and AW,. When
doing simulations, the nominal controller and anti-
windup compensator gains are calculated using linear
interpolation at the current values of the scheduling
parameters between the grid point solutions.

Note that the nominal controller K, is designed for
a set of linearized plant models at the gridding points,
so that the output of K, is the control deviation from
the nominal control maintaining trim condition, and
the actual control input to the nonlinear plant should
be the summation of both terms. When K, is parame-
ter varying in simulations, the instant nominal control
inputs should be determined at each time. This can
be done by building up another look-up table of nom-
inal control inputs at finer gridding points beforehand
and interpolating in real time according to the current
parameter values.

For the flight condition just listed, a flight-path
doublet input with magnitude +4deg is used. The
simulation results has confirmed that the trajectory of
parameters evolves about half of the parameter space.
In this case, the system might not achieve the desired
performance, even maintain stability by using a single

LTI antiwindup compensator. Instead, it is crucial to
use LPV nominal control and LPV antiwindup com-
pensation to achieve good controlled performance. It is
also shown that the variations of the scheduling param-
eters do not exceed the assumed limits: |V| < 20t/ s
and |&| < 10deg/s, which are used in the LPV control
synthesis stage. Moreover, the sector bound constraint
on control input u; < 1000u{"** is satisfied over the en-
tire simulation time. Fig. 6 shows the aircraft response
with an LPV antiwindup compensator, and the dotted
line in Fig. 6(a) is the ideal flight-path angle response.
It is observed that the LPV antiwindup compensator
achieves the desired performance objective. However,
when the antiwindup compensator is unused, both the
elevator and the throttle are saturated severely and
the system goes unstable. For clarity purpose, the re-
sponse without LPV antiwindup compensator will not
be shown in Fig. 6. Note that the variations of eleva-
tor angle and throttle position in this case study might
go beyond the typical rate saturation limits, and thus
are not realistic for implementation.

E. Comparison with Thrust Vectoring Control

Unconventional control effectors like thrust vector-
ing are another way to enhance maneuverability of
the modern aircraft at and beyond the stall angle-of-
attack. To compare with the saturation control scheme
using an antiwindup compensator, a simple thrust vec-
toring model is added to the previous nonlinear F-16
model to provide additional longitudinal axis control
power. For simplicity, there are only thrust compo-
nents along z and z body axes. A detailed description
of the thrust vectoring model can be found in Ref. 23.

Now the input variables are elevator deflection d,
and pitch thrust vectoring nozzle deflection d,¢,, whose
position limit is —17deg < 6ty < 17deg. Because
the state variable pow is not related to either input in
the linearized model, it is neglected and the number
of states is reduced to four. The longitudinal linear
model of the F-16 aircraft at a given trim point with
throttle and elevator as controls and that with elevator
and thrust vectoring as controls are

. J
Iy = All’l + B1U1 = All’l + B1 |: th:|

v (21)
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Fig. 5 Saturation control of F-16 dynamics with and without LTI antiwindup compensator.

Ty = Aswa + Bous = Aswo + Bo ﬁ‘;w] (22)

where the states z» include velocity V', angle-of-attack
«a, pitch rate g, and pitch angle 6.

There are usually two methods to generate thrust
vector commands, daisy-chain?!2?3 and ganged control
methods.n?425 For both methods, a controller is de-
signed first based on the generalized control, and the
real control inputs are then generated using a control
selector. The former approach commands thrust vec-
toring only when the conventional aerodynamic con-
trol surfaces are ineffective, i.e. they are unable to
generate the necessary forces and moments required
for commanded maneuvers. However, it is difficult to
define the generalized control for high-order systems.
The basic idea of the latter approach is to redefine
the control contribution to the state dynamics equa-
tion with different weights, and the thrust vectoring
always works in flight control. The disadvantage of
the ganged control scheme is that it cannot precisely
determine the weights of different controls.

The control allocation method used in this research
is different from those two approaches because the gen-
eralized control to design the controller is not used.
The aircraft model with conventional control effec-
tors is used in the stage of controller design and
the designed controller is considered as the nominal
controller K,. A control allocation function is then
implemented in the nonlinear simulation and thrust
vectoring is commanded only when the elevator un-

dergoes saturation. So, the thrust vectoring control
is not used for control design and only used for con-
trol implementation. This control allocation method
avoids defining the generalized control and setting the
weights for different control effectors.

In the linearized model with conventional control ef-
fectors (21), the state variable pow is only related to
the throttle, which has no relation with the four other
states. For simplicity in describing the control allo-
cation scheme, the first four states with only elevator
deflection are considered in (21). So the states and A
matrix of the two linearized models are the same.

& = Ax + Bfu] = Az + Bj0}

T = Az + B2U2 = Ax + B2 |:6§tvj|

where B} represents the simplified input matrix, and
0} is the elevator deflection. Ideally, we would like the

actual control
o[
de

to provide control effect equivalent to that of the artifi-
cial control Bfé%. Then the practical thrust vectoring
and elevator angle can be obtained by solving the
following optimization problem when the elevator is
saturated.

min ||Baus — Biuj||2

17480, [Se] _ [17 400,
subj. to [—25+62 S16, | S 25+ 00
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Fig. 6 Nonlinear doublet response with LPV antiwindup compensator.

where 00, and 67 are equilibrium inputs at trim con-
dition.

To compare the control effect of the antiwindup
compensator and thrust vectoring, a +2deg flight path
doublet is commanded at the flight condition V =
160ft/s and a = 35deg, same as in Fig. 5. The solid
line in Fig. 7 represents the response of the closed-loop
system with thrust vectoring. Similarly, the dotted
line in Fig. 7 is the ideal trajectory of the flight-path
angle. A comparison between the solid responses in
Figs. 5 and 7 illustrates that the antiwindup control
achieves better tracking performance than thrust vec-
toring control scheme.

IV. Conclusion

The goal of flight control in the high angle-of-attack
region is to maintain aircraft stability with acceptable
flight qualities. However, the saturation of the con-
ventional aerodynamic control surfaces presents many
challenges to the control designers, for example, actu-
ator saturation is an important issue to near-stall and
poststall flight conditions. Without cost/hardware
concerns, unconventional actuators such as thrust vec-
toring are usually suggested to compensate the conven-
tional aerodynamic control surfaces. However, the in-
corporation of additional thrust vectoring nozzle could
complicate the design of flight control laws in the post-
stall regime. The antiwindup method provides an
alternative approach to handle control saturation. Ap-
plying antiwindup control scheme to flight control is
promising because no additional actuator is needed to

compensate control authority. The implementation of
antiwindup controllers could be done by simply mod-
ifying flight control software.

An antiwindup control scheme for LPV systems has
been developed in this research. The extension of the
antiwindup control idea to LPV systems provides a
practical approach for nonlinear flight dynamics in the
presence of actuator saturation. Because of the special
structure of the antiwindup control scheme, the LPV
antiwindup control synthesis condition is solvable by
LMI optimizations. The LPV antiwindup compensa-
tion has been applied to an F-16 aircraft and compared
with the thrust vectoring control scheme. By aug-
menting the nominal longitudinal autopilot with an
antiwindup compensator, it has been shown through
nonlinear simulation that the F-16 aircraft maintains
stability and adequate control performance in case of
actuator saturation, while the performance achieved
by the thrust vectoring control scheme is undesirable
when a large maneuvering operation is commanded.

Appendix: Proof of Main Results
Theorem 1
Proof: Consider a Lyapunov function V(z) =
2T X (p)x for the closed-loop system T, then a suf-
ficient condition for the exponential stability and per-
formance can be established from the inequality

|
vV + ;eTe —vd¥d +2¢" W (Ku—q) <0

10 oF 14



flight path angle y (deg)

time ()

(a) Flight-path angle

Il

elevator angle (deg)

o 5 10 15 20 25 30 35 40 5 50
time (s)

(c) Elevator angle

angle of attack  (deg)

(b) Angle-of-attack

thrust vectoring (deg)

(d) Thrust vectoring nozzle deflection

Fig. 7 Nonlinear doublet response with thrust vectoring.

using S-procedure. Note that it is equivalent to where
Al X o + XA
8Xc XaBo,a +CL KW . [A(p,p) 0
+Z l B0t + Co Alp,p) = (g 2 0]
WK Dgo, .1 + DLy ;KW B B
BT X+ WEKCo { Oo’iQW 00,cl } Bo(p) = Oo(p)} . Bi(p) = 10(,))
BlC 1 Xel ‘}5 oKW Co(p) = [Colp) 0],  Cilp) = [Ci(p) 0]
1,cl 10,cl r
- ’ ’ 0 Bsp
XaBra CE, zggpg ; 20( )
WKDora Dy 2P T |0 Daalp)
_7[ D{l,cl <0 (Al) Pg(p) 0 Dlg(p)
D1y g -1 3
, 0 I|10]0
@ o al=|g 5|7]0]
where the closed-loop state-space data are as follows:
Acl(pa P) BO,cl(p) Bl,cl(p) A .
[go,clgp,/?g goo,czgpg 3017ClEp§J Denote O(p, p) = {Cawg’ //3 g“wgzg} and V(p) =
1,el\pP> P 10,cl\P 11,cl\P aw\ P aw
—1 . . .
{A(p, 5 Bolp) Bilp) -| [Pli(p)-l W~1(p). Inequality (A1) can be rewritten as follows:
=1 Co(p)  Doo(p) Doi(p) P, (p)
| cilo) Doty Dn(/)J 7L o)
Aaw(p, p }
X { ’ 1 Q2 Q3] (A2)
Couw (p, p W (p, p)+PT(p)O(p, p)2+QTOT (p, p)P(p) <0
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for all (p,p) € P x V with

aAchl

AT X+ X A+ sz

Y(p,p) = BYX. + WKCO
B X

C1
XaBo + CgKW XaB, ClT
T
{WKDOO + DOOKW} WKDy DT,

—2W

D%}KW —~I DlT1
Do Dy —71

Plp) = [P1Xa P2EKW 0 7Ps]

Q=[91 2 Qs (]

Partition the matrix function X compatibly to the
states of an interconnected system G, and antiwindup
compensator AW, as n = ny, + ny and ng.w, and let

where M (p)NT(p) = I—R(p)S(p). According to elim-
ination lemma,?® inequality (A3) is equivalent to

NE(p)¥(p, p)Np(p) <O and NF¥(p,p)No <0
(A4)
for all (p,p) € P x V. Np and Ng expand the null

spaces of matrix functions P and Q, which are

Np(p) = diag { X, (p), W (p), I, T}

I 0 0

0 0 0

y 0 0 0

—K 'Bjh(p) —K 'Dj,(p) O

0 0 T

0 T 0
I 00 0
071 00
0000
Ne= |00 0
0 0 I 0
00 0 I

Through lengthy algebraic manipulations, it can be

shown that

NE (p)E(p,

PINP(p)

OR
R11A +A Rll sz =

_ +2B, KV (I - K )B},;
Cpi R
+2Dp1 K~V (I — K~1) B,
i By
Rllcz—i B
+2B,, K~'V(I - K~')DT,, pl
—~I D <0
+2Dp1, K~'V(I — K=1)DI, pl1
Dgn =1
NET(p, p)No

SA+ ATS + sza_g sB, ¢t

= pi <0
BTS —~I DT,
Cl D11 —’)/I

which are the same as conditions (8) and (9), respec-
tively.

leen the definition of matrix functions X, and

X Cl , the coupling condition between R and S would
be
R(p) I ] —1
>0 and rank[R(p)—S < Naw
St R(p) =5 ()

for all p € P. This is equivalent to the third LMI
because only R;; is constrained. Q.E.D.

Theorem 2

Proof: The derivation of the antiwindup controller
formula basically follows the procedure outlined in Ref.
12. Define

-l

S H
0 MTH|’

%= {NT 0
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Then it can be shown that X Z; = Z5. Also we have
the following congruent transformation:

S H
Z1TXch1 - |:HT HTRH:|
chl
zi Z
Lar 7
ds ds dNT
“\gr dSE dNT Fa jyde—t)TH
H (RE —l—MT) —-H ‘7 H
ZlTXclAclzl ZlTXclBO,cl ZlTXclBl,cl
CO,clzl DOO,cl DOl,cl
Cl,clzl Dl[),cl Dll,cl
SA 0 SBy SB;
HTA HTARH |HTB, | H'B,

Co CoRH Dy Do,
C CiRH Do Dy,

1, 0 . .
+ 0 Bp2 Aaw Baw 0 Inp 010
0 1 C’aw f)aw 0 0 |10
0 Dy |
where
Agw Baw]  [SARH 0
CAfa,w -Daw B L 0 0
N SB, Agw Baw| [MTH 0
0 [0 I]] [Cow Daw 0 I

Multiply diag{Z{,I,I,I} from the left side and its
conjugate transpose from the right side of eq. (A3)
and we get

Ju JE| LT
J21 J22 Lg <0 (A5)
L, L, | —1II
with the shorthand notation
*.. 98
Ji1=SA+ATS + Zpia
i

i=1
N NT
Joy =HTA+ AT+ HT(R§ + M%)

Jos = HT(AR + RAT — Zp’ig—f)H
i=1 ¢

+ Bpgéaw + éngZQ

[BYS + BT, + WKOO]
L, = BLs

L Gy J

(BT + WKCoR)E + DI, B, + WK Cyyp
Lo = BTH

i CiRH + Dy15C0

By Schur complement, it is equivalent to

Ju+LTn-L, Jh+LIm—'L,

Jot + LITI' Ly s + L{H—ILJ <0 (a6)

Clearly, the lower (3 x 3) matrix of inequality (A5)
must be negative definite; this determines the feasible
Daw. Let the (2,1) element be equal to zeros and
one can solve for Aaw. This also leads to decoupled
LMIs from the inequality (A6). Then B’aw, C.w terms
can be solved from the (1,1) and (2, 2) elements of the
decoupled inequality (A6). Note that both inequalities
have regular solutions.?”

The (1,1) element of the above matrix inequality
corresponds to LMI (9) after elimination of the
variables Baw and ﬁaw. It can also be shown that the
(2,2) element is equivalent to LMI (8) by eliminating
Cow, Daw. Q.E.D.

Acknowledgment

The first two authors would like to acknowledge the
financial support for this research by NASA Langley
Research Center under grant NAG-1-01119.

References

IReigelsperger, W.C., and Banda, S.S., “Nonlinear Simu-
lation for A Modified F-16 with Full-Envelope Control Laws,”
Control Engineering Practice, Vol. 6, No. 3, 1998, pp. 309-320.

2Balas, G.J., Doyle, J.C., Glover, K., Packard, A.K., and
Smith, R., u-Analysis and Synthesis Toolbox, Mathworks Inc.,
Natick, MA, 1991.

3Adams, R.J., Buffington, J.M., Sparks, A.G., and Banda,
S.S., Robust Multivariable Flight Control, Springer-Verlag, Lon-
don, UK, 1994.

4Dornheim, M.A., “Report Pinpoints Factors Leading to
YF-22 Crash,” Awviation Week Space Technol., Nov. 9, 1992,
pp. 53-54.

5Khalil, H.K., Nonlinear Systems, 2nd ed., Prentice-Hall,
Englewood Cliffs, NJ, 1996.

6Kothare, M.V., Campo, P.J., Morari, M., and Nett, C.N.,
“A Unified Framework for The Anti-Windup Designs,” Auto-
matica, Vol. 30, No. 12, 1994, pp. 1869-1883.

"Mulder, E.F., Kothare, M.V., and Morari, M., “Multi-
variable Anti-Windup Controller Synthesis Using Linear Matrix
Inequalities,” Awutomatica, Vol. 37, No. 9, 2001, pp. 1407-1416.

8Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A.R.,
Turner, M.C., and Zaccarian, L., “Antiwindup for Stable Lin-
ear Systems with Input Saturation: An LMI-Based Synthesis,”
IEEE Transactions on Automatic Control, Vol. 48, No. 9, 2003,
pp. 1509-1525.

9Tyan, F., and Bernstein, D.S., “Anti-Windup Compen-
sator Synthesis for Systems with Saturation Actuators,” Inter-
national Journal of Robust and Nonlinear Control, Vol. 5, 1995,
pp. 521-537.

10Teel, A.R., “Anti-Windup for Exponentially Unstable Lin-
ear Systems,” International Journal of Robust and Nonlinear
Control, Vol. 9, No. 10, 1999, pp. 701-716.

Hu, T., and Lin, Z., Control Systems with Actuator Satu-
ration: Analysis and Design, Birkhduser, Boston, 2001.

12Wu, F., and Lu, B., “Anti-Windup Control Design for Ex-
ponentially Unstable LTT Systems with Actuator Saturation,”
Proceedings of 2003 American Control Conference, Denver, Col-
orado, June 2003, pp. 343-347.

BWu, F., and Soto, M., “Extended Anti-Windup Control of
LTI Systems with Actuator Magnitude and Rate Saturations,”
Proceedings of 42nd IEEFE Conference on Decision and Control,
Maui, Hawaii, Dec. 2003, pp. 2786-2791.

13 oF 14



Becker, G., and Packard, A., “Robust Performance of
Linear Parametrically Varying Systems Using Parametrically-
Dependent Linear Feedback,” Systems & Control Letters, Vol.
23, No. 3, 1994, pp. 205-215.

5Wu, F., Yang, X.H., Packard, A., and Becker, G., “Induced
L2 Norm Control for LPV Systems with Bounded Parameter
Variation Rates,” International Journal of Robust and Nonlin-
ear Control, Vol. 6, No. 9-10, 1996, pp. 983-998.

16 Apkarian, P., and Adams, R.J., “Advanced Gain-
Scheduling Techniques for Uncertain System,” IEEE Transac-
tions on Control Systems Technology, Vol. 6, No. 1, 1998, pp.
21-32.

17Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal
Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.

18 Gahinet, P., Nemirovskii, A., Laub, A.J., and Chilali, M.,
LMTI Control Toolbox Mathworks, Natick, MA, 1995.

9Nguyen, L.T., Ogburn, M.E., Gillert, W.P., Kibler, K.S.,
Brown, P.W., and Deal, P.L., “Simulator Study of Stall/Post-
Stall Characteristics of A Fighter Airplane with Relaxed Longi-
tudinal Static Stability,” NASA Technical Paper 1538, 1979.

20Stevens, B.L., and Lewis, F.L., Aircraft Control and Sim-
ulation, John Wiley & Sons, Inc., 1992.

21Buffington, J.M., Sparks, A.G., and Banda, S.S., “Robust
Longitudinal Axis Flight Control for An Aircraft with Thrust
Vectoring,” Automatica, Vol. 30, No. 10, 1994, pp. 1527-1540.

228hin, J.-Y., Balas, G.J., and Kaya, A.M., “Blending Ap-
proach of Linear Parameter Varying Control Synthesis for F-16
Aircraft,” ATAA Paper 01-4040, Aug. 2001.

23Buffington, J.M., and Enns, D.F., “Flight Control for
Mixed-Amplitude Commands,” International Journal of Con-
trol, Vol. 68, No. 6, 1997, pp. 1209-1229.

24Hammett K.D., Reigelsperger W.C., and Banda S.S.,
“High Angle of Attack Short Period Flight Control Design with
Thrust Vectoring,” Proceedings of 1995 American Control Con-
ference, Seattle, Washington, June 1995, pp. 170-174.

25Reigelsperger, W.C., Hammett K.D., and Banda S.S., “Ro-
bust Control Law Design for Lateral-Directional Modes of An
F-16/MATYV Using u-Synthesis and Dynamic Inversion,” Inter-
national Journal of Robust and Nonlinear Control, Vol. 7, No.
8, 1997, pp. 777-795.

26Boyd, S.P., El Ghaoui, L., Feron, E., and Balakrishnan,
V., Linear Matriz Inequalities in Systems and Control Theory,
SIAM, Philadelphia, PA, 1994.

27Gahinet, P., “Explicit Controller Formulas for LMI-Based
Hoo Synthesis,” Automatica, Vol. 32, No. 7, 1996, pp. 1007—
1014.

14 oF 14



