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ABSTRACT 

A mathematical theory and an accompanying numerical scheme have been 

developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) 

composite structures. The theory is derived from the mechanics of the flow of ideal gases 

through a porous solid. The result of the theoretical formulation is a set of two coupled 

nonlinear differential equations written in terms of the oxidant and oxide partial 

pressures. The differential equations are solved simultaneously to obtain the partial vapor 

pressures of the oxidant and oxides as a function of the spatial location and time. The 

local rate of carbon oxidation is determined using the map of the local oxidant partial 
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vapor pressure along with the Arrhenius rate equation. The nonlinear differential 

equations are cast into matrix equations by applying the Bubnov-Galerkin weighted 

residual method, allowing for the solution of the differential equations numerically. The 

numerical method is demonstrated by utilizing the method to model the carbon oxidation 

and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The 

numerical method is used to study the physics of carbon oxidation in carbon silicon 

carbide composites. 

Keywords: A. Carbon fibers; B. Oxidation; C. Modeling; D. Diffusion, Porosity; 

1. INTRODUCTION 

The ability of carbon fiber-reinforced silicon carbide composites (C/SiC) to 

maintain its strength and stiffhess at high temperatures as well as its low density make it 

an attractive candidate for many applications in future spacecraft. These applications 

include turbomachinery components and thrust chambers in future propulsion systems as 

well as control surfaces, leading edges and thermal protection systems for vehicle 

airframes. One of the more formidable obstacles to the widespread use of C/SiC 

structures in future launch vehicles is that the carbon fibers oxidize at medium to high 

temperatures in an environment in which oxygen is present. This does not forbid the use 

of C/SiC in future launch vehicle applications, as long as it can be verified through 

testing and analysis that the component will maintain its strength and stiffness throughout 

its service life, with the demonstration of sufficient safety factors. As such, an assessment 
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of the oxidation behavior of C/SiC composite structures must be included along with the 

usual design analysis activities such as the thermal, dynamic and thermostructural 

analysis of the component. It is therefore necessary to develop a tool that is capable of 

determining the spatial distribution of the extent of oxidation and the residual strength 

and stiffness in the C/SiC component as a function of the time, temperature and 

environmental oxygen concentrations to which the C/SiC structure is exposed. Currently, 

no such oxidation analysis tool is available to designers, who wish to utilize C/SiC 

composites. 

Oxygen attacks the carbon in C/SiC composites both on the surface and in the 

interior of the composite. The oxygen achieves access to the interior of the composite via 

an interconnected network of passageways, which are formed by the combination of 

matrix cracks and void spaces, which exist both within the fiber bundles as well as 

between adjacent plies. Oxygen may also flow through separations of the fibedcoating 

and coating/matrix interfaces. The matrix cracks and interfacial separations are due to 

tensile stresses, which are a result of the thermal expansion mismatch between the carbon 

fibers and the silicon carbide matrix in concert with the temperature excursions during 

processing and cool down [l]. The large free spaces between plies and the void spaces 

within the fiber bundles are both due to insufficient void filling during matrix infiltration. 

The void spaces and matrix cracks are illustrated in Fig. 1 where the microstructure of a 

2-D C/SiC composite is shown. The oxidation of carbon in the interior of C/SiC 

composites is strictly tied to the transport of oxygen into and the transport of oxides out 

of the material. Any viable oxidation model for C/SiC composites must include the 

3 



solution of species transport equations as the transport has a direct impact on the rate of 

carbon oxidation. 

Oxidation models have been developed in the past in order to study the physics of 

the oxidation process in carbon fiber-reinforced composites. Medford [2] proposed a 

model to predict the oxidation of the Space Shuttle’s carbon-carbon wing leading edge, 

by simulating the diffusion of oxygen to the carbon-carbon substrate down a fissure in the 

Sic coating. Eckel, et al. [3] proposed a similar model to determine the oxidation 

recession rate of a single carbon fiber embedded in a non-reactive matrix. Halbig [4] 

adapted Eckel, et al.’s model to simulate the fiber surface recession in C/SiC specimens. 

His approach presupposes a crack extending through the specimen gage section, bridged 

by an array of continuous carbon fibers. All three models assume steady state diffusion of 

the oxidant to the site of oxidation. 

Although these previous studies have provided insight into the physics of carbon 

oxidation in ceramic composites, these approaches are not readily applicable to support 

the design analysis of C/SiC structures as they are impractical for predicting the residual 

strength and stiffness as a function of space and time for any arbitrarily-shaped C/SiC 

structure. Indeed, these previous methods study the problem of carbon oxidation on a 

very fine scale, retaining the heterogeneous nature of the composite. As a result, these 

methods would be too cumbersome if they were applied to analyze C/SiC structures on a 

global level. For this purpose, a numerical model that treats the C/SiC composite as a 

continuum is needed. 
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The purpose of this paper is to describe the development of an accurate analysis 

method that simulates the oxidation behavior of C/SiC composite structures in high 

temperature applications. In this paper, the mathematical foundation of the method is 

presented. The theory is derived by assuming that the C/SiC material is a homogeneous, 

orthotropic porous body with a solid skeleton that is a mixture of multiple solid 

constituents where some of the constituents are reactive. The oxygen (oxidant) and the 

oxides (product) flow through the pore network and the partial pressures of the gases vary 

with space and time. The pore volume of this porous body represents the collective 

volumes of the matrix cracks, the fibedcoating and coating/matrix interfacial separations, 

and both types of void volumes (inter-ply and intra-bundle). Applying the fundamentals 

of porous media to this problem, namely the mass conservation equation for each gas 

specie as well as the transport mechanisms, a set of coupled, nonlinear differential 

equations is obtained. The solution of these differential equations yields the partial vapor 

pressures of the oxidant and oxides as a function of space and time. The local rate of 

carbon oxidation is determined as a function of space and time using the map of the local 

oxidant partial vapor pressure along with the Arrhenius rate equation. The Bubnov- 

Galerkin weighted residual method is used to cast the governing differential equations 

into matrix equations in order to perform the solution of the differential equations 

numerically. 

In the application section of this paper, we demonstrate the use of the numerical 

method by applying it to simulate the carbon oxidation and weight loss behavior of C/SiC 
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specimens during thermogravimetric analysis (TGA) experiments. Using the numerical 

method, we deduce the value of two key material parameters as well as the variation of 

these parameters with temperature and we demonstrate the profound influence of 

temperature on the oxidation behavior. 

2. THEORETICAL FORMULATION 

2.1 Mass Continuity for Flow Through Porous Media 

In order to develop the theory to model the oxidation process, we make use of the 

basic principals of porous media theory, namely the equation for the continuity of mass 

of gaseous species flowing through a porous solid as well as mechanisms for transport in 

the porous solid. It is assumed that the oxygen and the products of the oxidation reaction 

(oxides) exist only in the pores of the material in a gas form and that these gases behave 

ideally, that the solid skeleton consists of a mixture of both silicon carbide and carbon in 

the solid form and that the carbon is oxidized at the interface between the solid skeleton 

and the pore, in other words, at the wall of the pore space. 

The local form of the mass continuity equations for oxygen and the oxide species, 

flowing through a porous solid body, may be written as 
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and 

respectively, where @ is the volumetric porosity and V is the gradient operator and 

where pip is the local partial density in the pore volume, Mi is the molecular weight and 

Ji is the local mass flux vector for specie i. The subscripts ox, co and c refer to the 

oxygen, the oxide (either carbon monoxide or carbon dioxide) and the carbon (solid 

form) species, respectively. 

In equations (la) and (lb), the symbols C32,f and %,, denote the local time rate 

of carbon fiber mass and pyrocarbon coating mass consumption due to the oxidation 

reaction per unit bulk volume, respectively. Further, AI and A2 are the stoichiometric 

constants for the oxidation reactions. That is, AI is the ratio of the number of moles of 

oxygen consumed in the oxidation reaction to the number of moles of carbon consumed 

in the reaction and 4 is the ratio of the number of moles of oxide produced in the 

oxidation reaction to the number of moles of carbon consumed. As such, the right hand 

side (RHS) of (la) is the local rate of oxygen mass consumed in the oxidation reaction 

per unit bulk volume and the RHS of (1 b) is the local rate of oxide mass produced by the 

oxidation reaction per unit bulk volume. 
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Upon substituting the ideal gas law for each specie i ( pp = piMi / RT ) into the 

first term in equations (la) and (lb) and upon performing the differentiation, we obtain, 

after rearranging, 

and 

2.2 Mass Flux Constitutive Relations 

We will allow for the diffusion of oxygen and the oxides through the pore 

network via two mechanisms: gas pressure gradient-driven flow and concentration 

gradient-driven flow. Thus, we may write the mass flux vector of specie i as the sum of 

two mass flux vectors as 

J i  = J y + J i  P (3) 
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where JY is the mass flux associated with the average velocity of the gas mixture and is 

gas pressure gradient-driven and where JP is the flux of specie i relative to the mixture 

average velocity and is concentration gradient-driven. 

The expression for the gas pressure gradient-driven flow is attributed to Darcy [5] 

and is written as 

where k is the second-order materialpermeability tensor, pg is the viscosity of the gas 

mixture and p is the total gas pressure. 

The concentration gradient-driven flow is given by modifying Fick’s law [6] as 

where ppis  the local gas mixture density in the pore and DAB is the diffusivity of gas 

specie A with respect to gas specie B, and q A is the second-order areal porosity tensor. 

The diffusivity DAB is given by the Chapman-Enskog equation which is derived from 

the kinetic theory of gases [6]. 
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The ureal porosity tensor is a measure of the resistance to concentration gradient- 

driven flow through the pore network. We note that Bacos, et al. [7] use the ratio E / Z  to 

represent this resistance, where the quantity€ denotes the porosity and z is defined as a 

tortuosity factor. In the present study, we will use the areal porosity tensor to represent 

the ratio E /  z . As such, cp A represents the combined resistance to concentration 

gradient-driven diffusion due to both the tortuosity and the fraction of the cross-sectional 

area which is occupied by pore volume. The value of the areal porosity will, of course, 

depend on the pore morphology. 

Making use of the ideal gas law for each specie i ( pp = piMi / RT ) as well as the 

ideal gas law for the mixture ( pp = p M ,  / RT ), we can rewrite equation (5) in terms of 

the partial pressures pi : 

where M ,  is the molecular weight of the gas mixture. 

Substituting equations (4) and (6) into (3) leads to 
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In the derivation of equations (7a) and (7b), it was necessary to employ Dalton’s law for 

the gas mixture ( p  = pox + pco),  the distributive property of the gradient operator 

( V p  = V p ,  + Vpco ) and the ideal gas law for the gas mixture. 

It is apparent that, upon substituting equations (7a) and (7b) into (2a) and (2b), we 

will arrive at two coupled nonlinear differential equations written in terms of the partial 

pressures. These equations will be coupled, since terms involving the gradients Vpox and 

Vpco will appear in both equations. These equations will be nonlinear, since (7a) and 

(7b) contain terms that involve the product of the partial densities and the gradients of the 

partial pressures as well as terms that involve the product of the partial pressures and the 

gradients of the partial pressures. The two nonlinear differential equations must be solved 

simultaneously at each time step to obtain the partial pressures at each spatial location. In 

11 



the following sections, a numerical approach is presented to perform the simultaneous 

solution of these equations. 

2.3 Determination of Oxidation Reaction Rates 

The time rate of the carbon oxidation reaction is a function of the absolute 

temperature and the vapor pressure of the oxidant [8]. The dependence of the reaction 

rate on temperature and pressure is given by the Arrhenius rate equation. As we are 

concerned with a solid mixture containing carbon, then for any unit volume of material, 

we can write the Arrhenius equation in terms of a density ratio as 

where pc and p," are the instantaneous mass density and initial mass density of carbon 

in the solid mixture, respectively, and where k, is the pre-exponential coefficient, E,  is 

the activation energy of the oxidation reaction and n is the order of the reaction. The 

Arrhenius constants k,, E,  and n are obtained by curve fitting thermogravimetric 

analysis (TGA) measurements to the Arrhenius equation. 

In applying equation (8), it is necessary to recognize a few key differences 

between the oxidation of carbon fibers or pyrocarbon coating in TGA tests and the 

oxidation of these constituents in C/SiC composites. First, the ambient partial pressure of 
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oxygen in the TGA experiments is constant and specified as a test condition, whereas the 

oxygen partial pressure in the C/SiC composite varies with time and spatial position. 

Second, the carbon surface area that is exposed to oxygen vapor may be approximated as 

close to 100% in the TGA experiments, whereas this surface area fraction in the C/SiC 

composite is considerably less than this estimate. It is therefore necessary to modify 

equation (8) in order to use the Arrhenius rate equation to determine the local rate of 

oxidation in C/SiC composites. 

We note that by definition, 34 = (dpcf /dt)oxidatjon and 

’ P C  E (dppc dt ’ where p 4  and ppc are the local mass density of carbon 

fiber and local mass density of pyrocarbon coating, respectively. The local mass densities 

and the local volume fractions are related by pcf = pcv@ and ppc = pcvpc ,  where v ~ f  

and vpc are the volume fraction of carbon fiber and pyrocarbon coating, respectively and 

where p”, is the intrinsic density of carbon. 

Given these considerations, equation (8) may be rewritten separately for both the 

carbon fibers and pyrocarbon coating, as, 

and 
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v p c  k,p" exp( s) , 

where vo and v& are the initial values of the volume fractions and where k z f ,  E:f 

and n d  are the Arrhenius constants associated with the carbon fiber oxidation and kop" , 

cf 

E,p" and npc are the Arrhenius constants associated with the pyrocarbon coating 

* 
oxidation. The quantity pox is the ambient oxygen vapor pressure in the TGA 

experiments in which the values of the Arrhenius constants were determined. 

Furthermore, the quantities vcf and vPChave been introduced as the fraction of the 

fiber surface area and fraction of pyrocarbon coating surface area that is exposed to 

oxygen in the pore volume. We refer to these quantities as the exposed surface area 

J'ractions. The value of these parameters will also depend upon the pore morphology. 

3. FINITE ELEMENT FORMULATION 

Applying the Bubnov-Galerkin method [9], the finite element form of (2a) and 

(2b) become 

'POX j j N,)+Nj t d D e  + j NiV JoxdDe 

De De 
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'xcfj + 'xpcj )dDe - I N i q & 4 D e  dT = 0 
T dt 

De 

and 

+ I N & - N j P c f j  M C O  +'xpcj)dDe - 5 N i @ - 4 D e  Pcpo dT = 0 
T dt 

De 
MC 

De 

where Ni are the element shape functions and De is the domain of each element and 

where Poxi7 Pcoiy ' C f i  and 'x,, are the element nodal values of pox,  pco ( H C -  and 

'xpc respectively. 

Using the Product Rule of differentiation along with Gauss' Theorem [lo] and 

upon substituting equations (7a) and (7b), the second term in equations (loa) and (lob) 

can be expanded as 

1 I NiV JoxdDe = f NiJox n S e  +- I V N i  pix -k.  VpoxdDe 
4 7  

D e  re De  
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and 

j N i V .  JcodDe = fNiJco.ndl 'e  + j V N i * p ~ - k . V p c o d D e  1 

De re De 

where re is the boundary of the element and n is the outward unit vector normal to the 

boundary. The boundary integral terms in equations (1 la) and (1 lb) allow for the 

application of unconstrained boundary conditions. As indicated, the integration is 

performed in a closed path around the element boundary. The integral terms are only 

nonzero for elements where mass flux boundary conditions are imposed. 
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In order to linearize equations (1 la) and (1 lb), the partial pressures which are 

operated on by the gradient operator are treated as the solution variables and it is assumed 

that the partial densities and the partial pressures in brackets in (1 la) and (1 lb) are 

constant within the element over the duration of any arbitrary time step. Therefore, the 

partial pressures in brackets and the partial densities may be taken outside the volume 

integral and the gradient terms Vpox and Vpco are replaced with the approximations 

VNipoxi and VNipco i .  Furthermore, it is assumed that the temperature, the gas 

viscosity, the diffusivity and the volumetric porosity are all constant within the element 

(although these quantities may vary from element to element) and therefore these 

quantities may also be taken outside the volume integrals in equations (1 1 a) and (1 1 b). 

After substituting equations (1 1 a) and (1 1 b) into (1 Oa) and (1 Ob), and recognizing 

that the element nodal values of the partial pressures, poxi and pcoi , as well as the 

temporal derivatives, apoxi /at  and apcoi / at, are not functions of the spatial variables, 

equations (1 4a) and (1 4b) may be written in the matrix form 

Expressions for the elements of the capacitance and stiffness matrices and the force 

vector in equation (12) are listed in the Appendix. In the expressions in the Appendix, the 

symbol (") above the quantity denotes the element average value of that quantity. 
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Equation (1 2) can be represented more concisely as 

where {P} represents the solution vector {pox, ,pco, and where the subscript n 

indicates the matrices and vectors at time t, . Using the Backwards Difference Method 

[lo], the time rate of change of the partial pressure vector is 

where At,, = t ,  - t,-l. Substituting (14), equation (13) may be rewritten in the simple 

matrix form 

where 

and 
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Thus, the partial pressures pox and pco at each node are determined by  the 

and solution of equation (15) at each time step. The effective stiffness matrix 

effective force vector @ e , } n  for time t ,  are calculated using the expressions in the 

Appendix, equations (16a) and (16b) and the partial pressure values determined at the 

previous time step, t , - l .  A flow chart illustrating the steps involved in the numerical 

solution routine is shown in Fig. 2. 

4. APPLICATION OF THE NUMERICAL APPROACH: TGA SIMULATION 

4.1 Experiment Description 

Halbig [4] measured the weight loss behavior of 2-D plain weave C/SiC 

laminated composites. The material was fabricated by GE Power System Composites of 

Newark, DE. The material was fabricated with T300 carbon fibers and infiltrated with a 

Sic matrix through a chemical vapor infiltration (CVI) process. Specimens were 

machined into 2.54 cm-long prismatic bars with a rectangular cross-section of 0.3 175 cm 

x 1.27 cm. The specimens were machined such that the through-thickness specimen 

direction (0.3175 cm) was normal to the fabric plane. The weight loss was measured in 

an environment of pure oxygen at 1 atm pressure. The residual weight was measured and 
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recorded continuously with time. A schematic of the TGA experiment and a description 

of the experimental procedure are given in Opila [ l l ] .  TGA measurements were 

performed at a number of temperatures. The results of these measurements are shown in 

Fig. 3 where the residual weight fraction (ratio of instantaneous weight to initial weight) 

is plotted versus time for each temperature. 

Fig. 3 illustrates the significant influence of temperature on the oxidation and 

weight loss behavior. Below 700 "C, the rate of oxidation and weight loss increases with 

increasing temperature. Above 700 "C, the rate of weight loss decreases with increasing 

temperature. In addition, at temperatures below 700 "C, the weight loss profile has a 

sigmoidal shape. That is, initially, the oxidation and weight loss rates are low. The rate of 

oxidation increases with time and eventually reaches a constant rate at a percent weight 

loss of approximately 15%. 

It should be noted that the sigmoidal shape of the weight loss curves at the lower 

temperatures was also observed by Lamouroux, et al. [ l ]  while performing TGA 

experiments on T300 carbon fibers coated with a pyrocarbon coating as well as by Halbig 

[12] while measuring the weight loss behavior of T300 fibers. As Ismail [13] suggests, 

the rise in oxidation rate within the initial portion of the weight loss curve is most likely 

associated with the development of porosity in the outer surface of the carbon fibers. As 

porosity increases, more active sites become available for oxygen, thereby increasing the 

rate of carbon oxidation. The influence of porosity development on the rate of oxidation 
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is only observed in the initial portion of the weight loss curve, presumably when the outer 

portion of the fiber is being oxidized. 

At temperatures of 700 OC and above, the weight loss curves no longer exhibit the 

sigmoidal shape. The weight loss profiles maintain a constant sign of curvature (concave 

up and right). This is the case in both the C/SiC composite weight loss behavior shown in 

Fig. 3 and in the T300 weight loss behavior report by Halbig [12] and by Lamouroux, et 

al. [l]. Perhaps at the higher temperatures, the rate is no longer dependent upon the fiber 

porosity or perhaps, at the higher temperatures, the thermal expansion of the fibers results 

in sufficient porosity. 

4.2 Numerical Simulation Approach 

Two-dimensional, three-node triangular elements were chosen to implement the 

finite element method. The mesh used for the simulation of the TGA experiment, shown 

in Fig. 4, represents a cross-sectional slice of the TGA specimen. The boundary and 

initial conditions which were applied to the finite element mesh are also shown in Fig. 4. 

The material constants used for the numerical simulation are listed in Table 1. In 

this numerical simulation, we will treat the carbon fibers and pyrocarbon coating as one 

constituent. We therefore make the substitution lycf = l ypc  = ly . Furthermore, we 

assume that the Arrhenius constants are the same for both constituents. The volumetric 
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porosity was assumed to be on the order of 10% and an initial combined carbon volume 

fraction was assumed to be 50%. 

In the oxidation of carbon fibers and pyrocarbon coating in C/SiC composites, 

multiple reaction mechanisms are possible (Refs. [3], [8], [14]). For the purpose of 

demonstrating the numerical method, we will concentrate our attention on the reaction 

C+O2 +CO2. Thus, Ai =& = 1 .  

The values of k, and E, in Table 1 were obtained by Halbig [12] by conducting 

weight loss measurements on T300 carbon fibers. The activation energy was calculated in 

the usual manner, by plotting the natural log of the rate of weight loss versus the inverse 

of the absolute temperature. The slope of this plot yields the value of the activation 

energy. The rate of weight loss was obtained from the slope of the weight loss curves at 

the midpoint of the curves. In this manner, the variation of the rate of carbon fiber weight 

loss with temperature is input into the numerical method. 

As a result of this approach, however, the sigmoidal signature of the weight loss 

curves at the lower temperatures, that is evident in Fig. 3, will not be passed into the 

numerical solution method. Recall that the sigmoidal shape is caused by the time- 

dependent formation of porosity in the carbon fibers in the initial portion of the weight 

loss curves. Since a model which accounts for fiber porosity development and the 

associated rise in carbon oxidation rate is not part of the present numerical approach, we 
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can not expect the numerical solution to reproduce the sigmoidal shape of the weight loss 

curves at the lower temperature regime. 

Although 2-D plain weave C/SiC composites are orthotropic with regard to many 

material response properties, including the gas transport parameters of material 

permeability and areal porosity, we will assume, for the sake of simplicity, that the 

material is isotropic in regards to these transport parameters. Therefore, the permeability 

and areal porosity tensors take the form 

and c p A =  1'1 0 (b (!4 

A where k and (b 

porosity, respectively. 

are scalar quantities representing the material permeability and areal 

Recognizing that the weight fraction is equivalent to the composite density 

fraction, the weight fraction remaining at each time step may be calculated with the 

numerical solution by: 1) calculating the volume average carbon volume fraction within 

the finite element mesh V, and 2) employing the rule of mixture expression to calculate 

the instantaneous composite density, p = pcGc + psjcvSic, where psjc is the density of 

silicon carbide and vsjc is the volume fraction of the matrix. We will use this approach 
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to calculate the weight fraction remaining at each time step, in order to compare the 

numerical results with the measured TGA response. 

5. NUMERICAL RESULTS 

In order to investigate the effect of material permeability on the oxidation 

behavior in the TGA experiment, a series of numerical simulations were performed using 

a wide range of permeability values. The results of these simulations revealed that the 

value of the material permeability had little or no effect on the oxidation behavior in the 

TGA experiment. The fact that material permeability has no influence on the oxidation 

behavior in the TGA experiment simulation indicates that the primary mode of oxygen 

diffusion in the TGA specimen is not Darcy flow (total gas pressure gradient-driven 

flow). This, of course, is somewhat expected, since under the conditions that have been 

imposed, the presence of significant total gas pressure gradients would not be expected. 

For all remaining numerical simulations, we will assume a value of lo4 m2/MPa-sec for 

the permeability-to-gas viscosity ratio. 

As previously discussed, the pore structure of C/SiC composites is largely 

attributed to the residual stresses in the Sic  matrix that result from processing and these 

residual stresses result in matrix cracks and debonds between the carbon fibers, the 

pyrocarbon coating and the Sic  matrix. This crack network in combination with the void 

volume constitutes the pore volume of the porous material. Since the magnitude of the 
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residual stresses is a function of the temperature, namely the amount of departure from 

the processing temperature, the amount of cracking and crack opening will also depend 

upon the temperature. Likewise, one would expect that the crack openings and interfacial 

debond separations will close upon reheating, and that the amount of closure is a function 

of the temperature. We also recognize that as the areal porosity and the surface area 

fractions are dependent upon the pore morphology, the value of these two material 

parameters must be affected by crack opening and closing. Specifically, larger crack 

openings and interface separations would result in a larger value for the areal porosity 

due to a smaller value for the tortuosity and, to a lesser extent, a larger value for the 

volumetric porosity. Larger crack openings and interface separations would also result in 

a larger value for the surface area fraction, since more of the carbon surfaces would be 

accessible to oxygen. Given these considerations, it is logical to assume that the areal 

porosity and the surface area fraction will be a minimum at the processing temperature 

and that the value of these parameters will increase as the temperature decreases from the 

processing temperature. 

Unfortunately, the values of these two parameters are not available for the C/SiC 

material that is the subject of this study and, in fact, it may be impossible to measure the 

in-situ value of these parameters at elevated temperatures. For this reason, a series of 

numerical experiments were performed using the numerical method and, through trial and 

error, the variation of the areal porosity and the surface area fraction with temperature 

that yielded the best match with the measured oxidation behavior was determined. This 

was based on a comparison between the rates of oxidation predicted with the numerical 
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method and the measured rates of oxidation at all TGA test temperatures. The variation 

of the areal porosity and surface area fraction with temperature that produced the best 

correlation between the measured and predicted rates of oxidation is shown in Fig. 5. We 

note that the variation of these two parameters with temperature shown in Fig. 5 is 

completely consistent with our intuition, given their dependence on the pore morphology 

and the dependence of the morphology on temperature. 

The comparison between the weight fraction remaining versus time profiles that 

were obtained with the numerical solution and the measured response is shown in Fig. 6. 

The numerical results are shown with solid lines and hollow data points and the measured 

results are shown with dashed lines and filled data points. In Fig. 6a, the results at 700 "C, 

800 "C, 900 "C and 950 "C are shown using squares, circles, triangles and diamonds, 

respectively. In Fig. 6b, the results at 600 "C and 700 "C are shown using circles and 

squares, respectively. 

Note the close agreement between the measured and predicted profiles at 800 O C ,  

900 "C and 950 O C ,  whereas the agreement at 600 "C and 700 "C is not as close. The 

discrepancy lies in the fact that the measured weight loss curves are sigmoidal and, as 

discussed previously, the numerical method neglects to account for the initial low rate of 

carbon oxidation. We note, however, that there is close agreement between the slopes of 

the measured and predicted weight fraction curves at 600 "C and 700 O C  for all points 

below a weight fraction remaining of 0.9. 
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In Fig. 7, the spatial distribution of the carbon volume fraction is plotted at 1,  2 

and 3 hrs for the numerical simulation at 700 "C and, in Fig. 8, the spatial distribution of 

the carbon volume fraction is plotted for 10,20 and 30 hrs for the numerical simulation at 

950 "C. In addition to the fact that the rate of oxidation is much slower at 950 'C, we note 

the distinct difference between the carbon volume fraction distribution shown in Fig. 8, 

and that which is shown in Fig. 7. At 700 "C, the carbon volume fraction distribution is 

much more uniform. The carbon volume fraction profile at 950 'C, however, becomes 

more and more slender with time. Carbon oxidation occurs at the outer edge of the 

specimen with little or no oxidation in the interior. As time progresses, the delineation 

between the oxidized and non-oxidized zones marches inward from the outer surface, the 

so-called shrinking core oxidation behavior [4]. It is the variation of the areal porosity 

with temperature that is responsible for the distinct difference in the oxidation patterns 

shown in Figs. 7 and 8, since areal porosity regulates the availability of oxidant in the 

interior of the specimen. 

The difference between the oxidation behavior in the two temperature regimes, 

which is illustrated in Figs. 7 and 8 has been observed by Verrilli and Calomino [ 151 in 

constant-load rupture test specimens tested in a partial-oxygen environment at 800 "C and 

1200 "C as well as by Halbig [16]. They observed a shrinking core oxidation pattern at 

the higher temperature and a more uniform oxidation pattern in the specimens tested at 

the lower temperature. The temperature at which the oxidation behavior transitions from 

a somewhat uniform pattern to a shrinking core pattern is somewhere between 700 "C and 

950 'C in the TGA experiment, whereas this transition temperature is between 800 "C 
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and 1200 OC in the rupture tests. The fact that the transition temperature is higher in 

rupture test specimens than in TGA test specimens makes physical sense when we 

consider that the rupture test specimens are loaded in tension and since a tension stress 

will tend to increase the areal porosity by increasing the volumetric porosity and by 

lessening the tortuosity. 

6. CONCLUDING REMARKS 

A mathematical theory and an accompanying numerical scheme have been 

developed for predicting the oxidation behavior of C/SiC composite structures. The 

theory is derived fiom the mechanics of the flow of ideal gases through a porous solid. 

The result of the theoretical formulation is a set of two coupled nonlinear differential 

equations written in terms of the oxidant and oxide partial pressures. The numerical 

method is based upon the solution of the two nonlinear differential equations using the 

Bubnov-Galerkin finite element method. The nonlinear differential equations are 

linearized within each time step and solved over the time domain in a piecewise linear 

manner. This is achieved by continuously updating the system stiffness matrix and 

system force vector based on the values of the solution variables determined in the 

previous time step. The end result is a numerical scheme capable of determining the 

variation of the local carbon oxidation rates as a function of space and time for any 

arbitrary C/SiC composite structure. 
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I ,  e 

In the application section, the numerical method was applied to simulate the 

oxidation and weight loss behavior of C/SiC composite specimens in the 

thermogravimetric experiments performed by Halbig [4]. To this end, it was necessary to 

determine the variation of the areal porosity and the surface area fraction with 

temperature. The numerical method was used to deduce the variation of these two 

material parameters with temperature. 

The numerical simulation method was successful in reproducing the carbon 

volume fraction spatial distribution patterns which have been observed in C/SiC stress 

rupture specimens, distribution patterns which are characteristic of the test temperature. 

Temperature was shown to have a profound influence on the oxidation behavior, both by 

its direct influence on the chemical kinetics and by its effect on the areal porosity and 

surface area fractions. 
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Appendix: Expressions for the Elements of the Capacitance and Stiffness Matrices 
and Force Vector in Equation (12) 

(COX)g = 4- Mox jNiNjdDe 
RT 

D e  

(CCO)g = 4 7  K O  jNiNjdDe 
RT 

De 

- f ~ ~ ~ , . n d ~ - ~  

re 

- f N~J,, . n a e  
re 

30 



References 

[ 11 Lamouroux F, Bourrat X, Nasalain R, Sevely J. Structure/oxidation behavior 
relationship in the carbonaceous constituents of 2D C/PyC/SiC composites. Carbon 1993; 

[2] Medford JE. Prediction of oxidation performance of reinforced carbon-carbon 
material for space shuttle leading edges. 1 Oth AIAA Thermophysics Conference Denver 
(Colorado, USA): AIAA Paper No. 75-730,1975. 
[3] Eckel AJ, Cawley JD, Parthasarathy TA. Oxidation kinetics of a continuous carbon 
phase in a nonreactive matrix. Journal of the American Ceramics Society 1995; 78 (4): 

[4] Halbig MC. The Oxidation kinetics of continuous carbon fibers in a cracked ceramic 
matrix composite. NASA/TM-2001-210520.2001. 
[5] Darcy H. Les Fontaines Publiques de la ville de Dijon. Dalmont, Paris: 1856. 
[6] Bird, Stewart, Lightfoot. Transport Phenomena. New York, NY: Wiley. 1960. 
[7] Bacos MP, Dorvaux JM, Lavigne 0, Talandier J. C/C Composite oxidation model - 
111. Physical basis, limitations and applications. Carbon 2000; 38 (1): 105-1 17. 
[8] Gulbransen EA, Andrew KF, Brassart FA. The Oxidation of graphite at temperatures 
of 600 OC to 1500 OC and at pressures of 2 to 76 torr of oxygen. Journal of the 
Electrochemical Society 1963; 110 (6): 476-483. 
[9] Bathe KJ. Finite Element Procedures in Engineering Analysis. Englewood Cliffs, NJ: 
Prentice-Hall Inc. 1982. 
[ 101 Burnett DS. Finite Element Analysis: From Concepts to Applications. Reading, MA: 
Addison-Wesley Publishing Company. 1987. 
[l 11 Opila E. Oxidation kinetics of chemically vapor-deposited silicon carbide in wet 
oxygen. Journal of the American Ceramics Society 1994; 77 (3): 730-736. 
[ 121 Halbig MC. Carbon oxidation studies and the evaluation of oxidation inhibited 
C/SiC composites. 28& annual conference on composites, materials and structures Cocoa 
Beach (Florida, USA): United States Advanced Ceramics Association, 2004. 
[ 131 Ismail IMK. On the reactivity, structure and porosity of carbon fibers and fabrics. 
Carbon 1991; 29: 777-792. 
[14] Walker PL Jr., Rusinko F Jr., Austin LG. Gas reactions of carbon. In Eley, DD, 
Selwood PW, Weisz PB editors, Advances in Catalysis and Related Subjects, Vol. 1 1, 
Academic Press, Inc., New York and London: 1959: 133-221. 
[15] Verrilli M, Calomino A. Temperature dependence on the strength and stress rupture 
behavior of a carbon fiber-reinforced silicon carbide matrix (C/SiC) composite. Ceramic 
Engineering and Science Proceedings 2003; 24 (4): 443-449. 
[ 161 Halbig MC. The influence of temperature, stress and environment on  the oxidation 
and life of C/SiC composites. Ceramic Engineering and Science Proceedings 2002; 23 

31 (8): 1273-1288. 

972-980. 

(3): 419-426. 

31 



Figure Captions 

Fig. 1. Optical Microscopy of 2-D C/SiC Composite (Courtesy of Southern Research 
Institute, Birmingham, AL). 

Fig. 2. Flow Chart Showing the Steps Involved in the Numerical Solution Routine. 

Fig. 3. Weight Loss Versus Time Profiles for Various Temperatures Measured in the 
TGA Experiment (Halbig [4]). 

Fig. 4. Finite Element Mesh and Boundary and Initial Conditions Used for the Numerical 
Simulation of the TGA Experiment. 

Fig. 5. Plot of the Proposed Dependence of Areal Porosity and Exposed Surface 
Area Fraction with Temperature. 

Fig. 6. Comparsion of Measured and Predicted Weight Fraction Remaining Versus Time 
Profiles for 600,700,900 and 950 "C. 

Fig. 7. Predicted Spatial Distribution of Carbon Volume Fraction at 1 ,2  and 3 hours at 
700 'C. 

Fig. 8. Predicted Spatial Distribution of Carbon Volume Fraction at 10, 20 and 30 hours 
at 950 "C. 
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Table 1. List of Material Constant Values Used 
for TGA Oxidation Simulation 

Material Constant 

Pc (&c) 

k" 0 = k,p" (sec-') 

ncf  - "pc 

a = a (H/mole) 

4 

- 

v; + v ; c  

Value 

1.74 

6452.35 

1 

11 8.3 

0.5 

0.1 
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Initialize the partial pressures and partial densities for oxygen 
and oxides and initialize the material parameters. 

F o n  the element capacitance matrix [Cl for each fhite 
element using equation (12) and the equations in the Appendix. 

Form the element stirmss matrix [K] for each f i nk  element based 

average total and partlal pressures, the permeability, the diffusiviy 
and gas viscosity using equation (12) and the equallons in the Appendk. 

9 on the current valuBs ofthe element average densities, the element 

1- 

Calculate the local rate of carbon m=s consumed at each node 
using equations (Sa) and (9b) and the curr8nt values for the local 

I * 
Form the dement force vector (F) for each finite element using 
equation (12) and the equations in the Appendix 
I 
I I I 

Assemble the global capacifance matrix[Cj, the global stiffness 
matrix [K] and global force vector (F). 

Calculate element average values of the 
partial pressures and partial denstlies 
using element ~ d a l  values. Calculate the 
diffusivityin each element using the 

Update values for partial denslies using 
ideal gas law based on nsw partial 

Form the effective stiffness matrix [ Keffl and effective force vector { F d  
using equation (16a) and (16b). 

Fig. 2. Flow Chart Showing the Steps Involved in the Numerical Solution Routine. 
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Fig. 3. Weight Loss Versus Time Profiles for Various Temperatures Measured in the 
TGA Experiment (Halbig [4]). 
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Fig. 4. Finite Element Mesh and Boundary and Initial Conditions Used for the Numerical 
Simulation of the TGA Experiment. 
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Fig. 6. Comparsion of Measured and Predicted Weight Fraction Remaining Versus Time 
Profiles for 600,700,800,900 and 950 "C. 
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Fig. 7. Predicted Spatial Distribution of Carbon Volume Fraction at 1,2 and 3 hours at 
700 "C. 

Fig. 8. Predicted Spatial Distribution of Carbon Volume Fraction at 10, 20 and 30 hours 
at 950 "C. 
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