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Abstract 

Tam and Auriault5 successfully predicted the acoustic spectrum at 90° to the axis of a 

high speed air jet by using an acoustic equation derived  from ad hoc kinetic theory-type 

arguments. The present paper shows that similar predictions can be obtained by using a rigorous  

acoustic analogy approach together with actual measurements of the relevant acoustic source 

correlations. This puts the result on a firmer basis and enables its extension to new situations and 

to the prediction of sound at other observation angles. 

 

Introduction 

The prediction of aircraft exhaust noise continues to be a fruitful area of research. 

Computational demands still preclude the use of full scale DNS (or even LES9) at the high 

Reynolds numbers and complex geometries of practical interest and the current emphasis 

remains focused on developing acoustic-analogy type approaches in which the Navier-Stokes 

equations are rearranged into a form that separates out the linear terms and associates them with 

propagation effects that can then be determined as part of the calculation. The non-linear terms 

are treated as “known” source functions to be determined by modeling and, in more recent 
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approaches, parameterized with the parameters being determined from a steady RANS 

calculation. The “base” flow (about which the linearization is carried out) is usually assumed to 

be parallel and the resulting equation is usually referred to as a Lilley’s1 equation. 

Most of the early approaches, including the original MGB2 approach, which neglect 

variations in retarded time in an appropriate moving frame coordinate system and assume the 

resulting moving frame correlation tensor to be separable into the product of (usually Gaussian) 

temporal and spatial components, significantly over-predict both the high and low frequency 

roll-off of the 90° acoustic spectrum.4 Tam and Auriault5 achieved much greater success in this 

endeavor by using ad hoc kinetic theory type arguments to derive their acoustic equation. 

However, Morris and Farassat4 later showed that their result is equivalent to the usual acoustic 

analogy approach (at least in so far as its predictions of the 90° spectrum are concerned) with the 

primary difference being in the modeling of the source term, which amounts to assuming a (non-

separable) functional form for the second convective derivative of the turbulence correlation that 

is similar to the functional form used for the turbulence correlation itself in the usual acoustic 

analogy approaches (but see refs. 30 and 31). Unfortunately, this forces the resulting turbulence 

spectrum to be singular and therefore incompatible with experimental observations, which would 

certainly be undesirable in any physics-based theory. 

The main purpose of this paper is to show that the Tam and Auriault5 spectrum can be 

recovered from an acoustic analogy approach that uses experimentally based (i.e., physically 

realizable) source modeling together with an appropriate acoustic analogy equation. Reference 6 

shows that the Navier-Stokes equations can always be rearranged into the form of the linearized 

Navier-Stokes equations about a very general “base” flow, but with non-linear dependent 

variables, with the viscous stresses replaced by a generalized Reynolds stress and with the heat 
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flux vector replaced by a generalized stagnation enthalpy flux (which would be treated as 

“known” source strengths when the generalized equations are used as the basis for an acoustic 

analogy approach). This result leads to a form of Lilley’s equation with a modified source term 

when the “base” flow is taken to be a unidirectional transversely sheared mean flow, i.e., a 

parallel flow.  

It is generally agreed that the enthalpy fluxes, which correspond to the isentropic part of 

the pressure-density source in the Lighthill approach,1 are only important for hot jets1,7,8,28 

except, perhaps, at small angles to the downstream jet axis.10 They are therefore neglected in the 

present analysis. The resulting equation is solved using a more or less conventional Greens’ 

function approach and the solution is then used to calculate the far field acoustic spectrum. 

Neglect of the enthalpy and viscous sources are the only approximations introduced at this stage 

of the analysis, but the results are then simplified by first neglecting variations in retarded time 

(in an appropriate moving coordinate system11) and then introducing an axisymmetric turbulence 

model.12–15,3,16 Finally, an empirical turbulent source spectrum, based on recent measurements of 

Harper-Bourne17 (in a low Mach number jet) is incorporated into the result and it is shown that 

the predicted far field acoustic spectrum at 90° to the jet axis is essentially the same as the one 

proposed by Tam and Auriault.5 

 

The Acoustic Analogy Equation and its  Far-Field Solution 

 As indicated in the Introduction, reference 6 shows that the Navier-Stokes equations  can 

be rewritten (for an ideal gas) as the linearized Navier-Stokes equations about a very general 

“base flow” but with different (in general non-linear) dependent variables, with the heat flux 

vector replaced by a generalized enthalpy flux and with the viscous stresses replaced by a 
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generalized Reynolds stress. This is a true acoustic analogy (in the Lighthill18,19 sense) in that it 

shows that there is an exact analogy between the flow fluctuations in any real flow and the linear 

fluctuations about a very general “base flow” due to an externally imposed “viscous” stress and 

“heat flux” vector. When the “base” flow is taken to be the unidirectional transversely sheared 

mean flow 

( ) ( )1 2 3 2 3, , , ,
constant (1)

i iv U x x x x
p p

= δ ρ = ρ
= =

                 

where  x = { }1 2 3, ,x x x is a Cartesian coordinate system, v = { }1 2 3, ,v v v denotes the velocity, p the 

pressure and ρ the density, the general equations reduce to the modified Lilley’s1 equation 
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is the variable-density Pridmore-Brown20 operator 
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is the square of the mean-flow sound speed, γ = the specific heat ratio, t denotes the time, 
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denotes the convective derivative based on U, 
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1 (6)
2e i ip p v vγ −′ ′ ′ ′≡ + ρ  

is a generalized pressure fluctuation 

21 (7)
2ij i j ij ije v v vγ −′ ′ ′ ′ ′≡ −ρ + δ ρ + σ  

is the generalized stress tensor and 

0 (8)i i i ij jv h q v′ ′ ′ ′ ′η ≡ −ρ − + σ  

is the generalized stagnation enthalpy flux. 

Here, 

1 (9)i i iv v U′ ≡ − δ  

21 (10)
2oh h v′ ′ ′≡ +  

(11)
1

ph h γ′ ≡ −
γ − ρ

 

denote fluctuating quantities with h being the enthalpy and ij′σ and iq ′ being the fluctuating 

viscous stress and heat flux vector, respectively, which are believed to play a negligible direct 

role in the sound generation process18,19 and are therefore neglected in the following. The 

fluctuating enthalpy flux i
′η will also be neglected since, as noted in the Introduction, this 

quantity is generally considered to be unimportant for cold jets1,7,8—except perhaps at small 

angles to the downstream axis.10 

 Then eq. (2) can be formally solved in terms of the free space Greens’ function21 

( ),G t τx y, , which satisfies 

( ) ( ) ( ), (12)LG t tτ = δ − δ − τx y, x y  
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and has outgoing wave behavior at infinity, to obtain the following expression 
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for the pressure autocovariance22 (notice that ep ′  reduces to p′ in the far field) 
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where V denotes integration over all space, T denotes some large but finite time interval, the 

propagation factor ( ), ,ij tγ τx y  is defined in appendix A and  
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is the density-weighted, fourth-order, two-point, time-delayed fluctuating velocity correlation-

with the indicated arguments referring to all three terms preceding the parentheses. The details 

are given in appendix A. 

 Lighthill18,19 pointed out that acoustic predictions tend to be less dependent on the 

detailed structure of the turbulence when variations in retarded time across the correlation 

volume ∆ η  can be neglected, which is a reasonable approximation in a reference frame 

ˆ (16)c oU τ≡ −η iξ  

moving with the local convection velocity, ( )cU y ,of the turbulence. Ffowcs Williams11 showed 

that this idea is best implemented by introducing the moving frame correlation tensor 

( ) ( )ˆ; , ; , (17)M
ijkl 0 ijkl c o oR τ R U τ τξ ξ +≡y y i  
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into the relevant pressure autocovariance formula (eq. (13) in our case) to obtain 
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Our interest is in the far field spectrum 

( ) ( )21 , (19)
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which can, in principle, be calculated by taking the Fourier transform of eq. (18) and using the 

convolution theorem.21 Unfortunately, this cannot be done in practice because the Fourier 

transform of ( ); ,ijkl oR τy η , and therefore of ( ); ,M
ijkl 0R τξy , does not exist16 (see p.179). This 

difficulty can be overcome by replacing ( ); ,ijkl oR τy η  with  

( ) ( ) ( ); , ; ,0 ; ,0ijkl o ij klR R Rτ −y y y + ηη 0 0  where ( )0; ,ijR τy η  is defined by eq. (30). This does 

not change the radiated sound because ( ) ( ); ,0 ; ,0ij klR Ry y + η0 0  is steady and, therefore 

produces no sound. It then follows that 
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is the Fourier transform of ijγ  (we use capital letters to denote Fourier transform of the 

corresponding lower case quantity) and we introduced ( )Iω |x y ,the acoustic spectrum at x due 

to a unit volume of turbulence at y, i.e., 

( ) ( ) (22)
V

I I dω ω= ∫x x y y  

in order to simplify the formulas.22 The relevant far field expansion of ijΓ  is given in 

appendix B. 

 The only approximation made up to this point is the neglect of the enthalpy and viscous 

source terms, but eq. (20) will depend on the turbulent source correlations only through 

( ) ( ), , , (23)M
ijkl o ijkl o

V

R dτ ≡ τ∫ ξy y ξR  

if variations in retarded time across the correlation volume are neglected, i.e., if 

( )ˆ ;kl cU∗Γ + + τ ωx y iξ  is assumed to be constant over the correlation volume.11 However, the 

definition (17) implies that the integration variable in eq. (23) can be changed back to η , which 

means that 

( ) ( ), , , (24)ijkl o ijkl o
V

R dτ ≡ τ∫y yR η η  

i.e., the source correlation can be expressed in either the fixed or moving frame once the retarded 

time is neglected. (But introduction of the moving frame is necessary in order to get the correct 

0τ -dependence in kl
∗Γ .) 

 Equation (20) can now be written more simply as 
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where 

( ) ( )1, , (26)
2
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ijkl ijkl o oe d

∞
ωτ

−∞

Φ ω ≡ τ τ
π ∫y yR  

is the spectral tensor of the source correlation and  

 c
c

UM c∞
≡  (27) 

is the convective Mach number of the turbulence. This result shows that it is only necessary to 

model the overall spectral tensor itself and not the detailed two-point time delayed correlations of 

the turbulence. However, the radiated sound should still be relatively insensitive to the detailed 

turbulence structure even when the latter quantities are modeled (as is at least partially done 

below). This would not be the case if the moving frame had not been introduced before 

neglecting the retarded time variations.11,22 

      Our interest here is in the spectrum at 90° to the jet axis where cosθ = 0. Appendix B shows 

that 
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when 2 2

0 c  =c = c o  nstant∞ , i.e., in the isothermal case. 
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The Quasi-Normal and Axisymmetric Turbulence Approximations 

To proceed further, we need to know something about the source spectral tensor Φijkl. The usual 

approach12,13,3 
 is to begin by assuming that the turbulence is quasi-normal16 (see ref. 10) in order 

to obtain some relations among its components. It then follows that (see comments preceding 

eq. (20)). 
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is the second order correlation. To further reduce the number of independent components it is 

usual to assume some kinematically possible symmetric form for the second order correlations. 

Early studies23 assumed the turbulence to be isotropic, but that turns out to be incompatible with 

the Harper-Bourne17 measurements that will be introduced below. The simplest assumption 

compatible with his results is the one introduced in references 12 and 13, namely that the 

turbulence is axisymmetric which implies that16 

( )
( )

0 0 0 1 1

0 1 1

; ,

(31)
ij o i j ij i j
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R A B C

D

τ = η η + δ + δ δ
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where A0, B0, C0, and D0 are functions of y, 0τ , and ⊥η ; A0, B0 and C0 are even functions ⊥η  and 

D0 is an odd function of this quantity. This model is chosen because it is the most general of 

those whose mathematical properties have been studied in the literature and because it reflects 

the fact that the cross flow velocity components tend to be much more similar to one another 
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than to the stream-wise component—even for non-axisymmetric flows. Inserting  eq. (31) into 

eq. (29) and inserting the result into eq. (25) via eqs. (24) and (26) yields (after a straight forward 

but tedious calculation that  follows along the lines of the one in appendix A of reference 12) 
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are seemingly independent spectral functions. However, the coefficients A0, B0, C0, and D0 are 

not all independent and when compressibility effects are neglected (i.e., when ρ is treated as a 

constant) these turbulence correlations can be expressed in terms of two independent scalar 

functions of y, 0τ , ⊥η , and 1η , say a and b, both of which are even functions of the latter 

variable.14,15,24 The resulting expressions for the two point correlations are given in appendix C, 



 12

where they are used to express the integrals over V in eq. (33) in terms of a and b. Equations  

(C–1) to (C–4) suggest that these latter quantities will scale like 

( )2 2
1 1, / 2 (34)b u B L⊥ ⊥= ρ η η  

and 
 

( )2
2 1

1 1
, (35)g a b u D ⊥≡ − = ρ η ηη η  

where 
 

1 1 1/ (36)Lη ≡ η  

/ (37)L⊥ ⊥ ⊥η ≡ η  

1L  and L⊥  denote characteristic stream-wise and transverse length scales of the turbulence, B and 

D are O(1) functions of the indicated arguments, 

( )2
1 11

,0 (38)u Rρ ≡ 0  

and 
 

( )2
2 22 ,0 (39)u Rρ ≡ 0  

 Turbulence measurements suggest that 
 

1
(40)

4
L
L
⊥ε ≡  

 
ought to be small. In fact, Harper-Bourne’s17 measurements (to be discussed below) suggest that 

22.7 10−ε × . The scalings (34) through (40) are inserted into eqs. (C–5) through (C–9) of 

appendix C where it is shown that 
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when ( )2O ε  terms are neglected-the ratio r is defined by 

2 2
2 1 (42)r u u≡ ρ ρ  

and B is given by eq.(C–14). 

 
 Lacking any specific data to the contrary, it seems reasonable to suppose that  
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Equation (32) then becomes 
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 The Harper-Bourne Spectrum 

 The results can not be made more explicit without inputting more specific information 

about the turbulence structure. This is accomplished with the aid of some recent measurements17 

of the two point fourth order stream-wise velocity correlation spectra along the centerline of the 

mixing layer in a low Mach number jet, which would most closely correspond to 
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11

1, , , , (47)oi
o o oH e R d
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ω ≡ τ τ
π ∫y yη η  

with the quasi-normal approximation that is being used in the present analysis.  

 Harper-Bourne17 divided 0H  into the three components (see his eq. (2.5) and (2.7) on 

p. 2) 
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where 1l , l⊥  are the spectral stream-wise and transverse length scales (not necessarily the same 

as the time domain length scales 1L  and L⊥  introduced above) and 

1 (49)p
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η
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No assumption is made about the decomposition of the correlations into products of their space 

and time components with this approach.  

 The first factor can be evaluated from his measurements of ( )1111 0, ,R τy 0 , which are well 

represented by the exponential oe−λ τ  -implying that 
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 Inserting these into eq. (43) and using the result in eq. (44) shows that 
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Harper-Bourne’s measurements seem to indicate that ( ), ,1R η ωy  behaves like 1e− η , which, as 

pointed out by Khavaran et al.,27 is inconsistent with Hinze’s24 parabolic vertex requirement. We 

therefore apply a Gaussian filter to his measured value of R, say mR , to obtain  
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⎝ ⎠

η η η⊥
η η =⊥

β⎛ ⎞π ⎜ ⎟
⎝ ⎠

∫ y
y  

which smoothes out the cusp at 01η =  but, otherwise behaves similarly to mR  (note the data 

scatter around 1η  = 0 in Harper-Bourne’s fig. 14(a)). The Error function factor, ( )2

1

1
e erfc.l

l

β
β⎛ ⎞⎜ ⎟

⎝ ⎠
, 

has been inserted in the denominator in order to insure that R still satisfies the normalization 

condition, ( ),0,0R y  = 1, when ( ), ,01mR η =y 1e− η . In fact it is easy to show more generally 

that, with this choice of ( ), ,01mR ηy ,  

( )
1 11 1 1 1

1 1

1

, ,01

erfc. + erfc.
2 2

(56)
2erfc.

R

l l
e e

l l

l

−η η

η

⎛ ⎞ ⎛ ⎞η ηβ β− +⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠=
β⎛ ⎞⎜ ⎟

⎝ ⎠

y

 



 17

which behaves like 1e− η  for large 1η  but has continuous slope at 1 0η = . 

 Inserting eq. (55) into eq. (52), using the convolution theorem, and inserting the result 

into eq. (51) yields 

( )
( ) ( ) ( )

( ) ( )
2 2/4 2 3 2

1 1 12
0 2

2 4 2 2

1 1

2 ,

exp. erfc. ( )

(57)

cU
c c m

I

u e U U l l R l
C

x c l l

ω

− βω
⊥

∞

⏐

λρ ω + κ
=

β β λ + ω ω

⎡ ⎤
⎣ ⎦ y

x y

 

where 

( )
( )

, 1
2 112 , ,1 1

0
(58)

m

m

R l

i l
R e d d

∞ ∞ − π η
≡ π η η η η η∫ ∫ ⊥ ⊥ ⊥

−∞

y

y  

 
which reduces to eq. (51) when 0β = . 

 

Comparison with the Tam and Auriault result 

 The form 

 
2

1 (59)mR e e⊥ − η−η=  

agrees fairly well with Harper-Bourne’s measurements when 1η  = 0 and ⊥η ≠  0 and also 

when ⊥η  = 0 and 1η ≠  0. Inserting this into eq. (58), integrating over η and inserting the result 

into eq. (57) shows that 
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( )
( )

( )

2/4 5 2 2
2 1 1
0 2

2 4 2 2

1 1

2

2
1

2

exp. erfc. ( )

1
(60)

1 2

cU
c

c

I

u e U l l
C

x c l l

U

l

ω

− βω
⊥

∞

⏐

λρ κ
=

β β⎛ ⎞ ⎛ ⎞ λ + ω ω⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ω+ ⎜ ⎟⎢ ⎥κ⎝ ⎠⎢ ⎥
⎢ ⎥+ π
⎢ ⎥⎣ ⎦

x y

 

 

The form (59) is consistent with the assumption that ( ) 2 2
1/ 2 , oB D a e ⊥−η= = η τ  when 1l  and l⊥  

are taken to be constants (i.e., independent of ω), which then implies that the ratio of integrals in 

eq. (46) is equal to ½ and that 2 3Γ =  in eq. (43). So that for r = ½, γ = 1.4, and cU  = 0.65 UJ   

 

1 (61)
2 2J s J

U
U l D

∇
κ ≈ ≈  

 

where 0.345sl ≈  denotes the characteristic length scale of the mean velocity divided by the jet 

diameter JD . Harper-Bourne’s measurements show that l⊥ and 11  are relatively constant and that 

the latter can be approximated by 1 .691 Jl D≈  at sufficiently low frequencies. It therefore follows 

that the square bracket in eq. (60) is approximately equal to unity, which means that the resulting 

90° acoustic spectrum should be of the form 

( )
( )

( )
2/ 2

2 2
(62)

cUeI
− βω

ω
ω⏐ ∝

ω + λ
x y  
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which is the same as the spectral form proposed by Tam and Auriault,5 who take 
3

2
1

2
l

c

cl k
U u
β =

ε
 

and c kτ
ελ =  (see eq. (53) of ref. 4) where lc  and cτ  adjustable constants and k and ε (not to be 

confused with the ε in eq. (40)) are determined from a k-ε RANS calculation. Notice that this 

result behaves like 2ω  as ω→ 0 and converges like ( )2/ cUe− βω  as ω → ∞ . 

 However, Harper-Bourne demonstrates that the separable form (59) does not work at 

oblique separations where 1η  and ⊥η  are both non-zero and, more importantly, his fig. 13 shows 

that 1l  and l⊥  are only constant at relatively low frequencies with the scaled length scales il  and 

l⊥  becoming constant as ω → ∞ . It, therefore, follows from eq. (57) and the asymptotic behavior 

of the Error function (ref. 29, p. 298 #7.1.23) that ( )Iω x y  converges like ( )2/ cUe− βω  when 

.constκ ≈  and ω → ∞ , i.e., it has the same high frequency behavior as Tam and Auriault result 

(62). The general formula (57) therefore coincides with that result at both high and low to 

moderately-low frequencies-even with frequency dependent length scales.  

 The two results differ at intermediate to moderately high frequencies by the factor  

( ) ( )

( ) ( ) ( )

2

0 0
1 1

2

1 1

2
2

1
2 0 0

11

exp. erfc.

exp. erfc.

1
(63)

1 2
c

l l

l l

U l l

l ll
⊥

⊥

⎛ ⎞ ⎛ ⎞β β⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

β β⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ω+ ⎜ ⎟⎢ ⎥ ⎛ ⎞ ⎛ ⎞κ⎝ ⎠⎢ ⎥ ⎜ ⎟ ⎜ ⎟×
⎜ ⎟⎜ ⎟⎢ ⎥+ π ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 

(where ( )0
1 .691 Jl D=  and ( )0l⊥  are the initial constant values of 1l  and l⊥ ), which is no longer 

equal to unity at these frequencies but becomes constant as ω → ∞ . On the other hand, 
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Khavaran et al.27 point out that the Tam and Auriault5 data comparisons do not account for 

atmospheric attenuation. Figure 1 ( taken, in part, from ref. 27) shows that the latter comparisons 

(curve 2) under predict the high frequency portion of the spectrum for a Mach number 0.5 cold 

jet when atmospheric absorption effects are included. But multiplying the result shown in 

curve 2 (which involves a summation over the jet) by the overall (or average) correction factor 

(63) (with 1l and l⊥  given by the formulas in Harper-Bourne’s fig.13), which is hopefully 

relatively independent of the choice of source point, leads to curve 1, which is in much better 

agreement with the data. It would, of course, be better to sum the actual formula (57) over the jet 

with appropriate local values for the parameters, but since the measurements are all at a single 

location, this does not seem to be warranted at the present time.            

 Harper-Bourne obtains the best fit to his data with the non-separable form 

2 4
1 (64)mR e ⊥− η +η=  

which can be inserted into eq. (57) via eq. (58) to obtain 
 

( )
( ) ( )

( ) ( )( ) ( )

2

2/4 2

12

0 2 3
22 4 2 2 2

1
1 1

3 2

1

exp . erfc. ( ) 1 2

(65)

c
U

c

c

u e U
C

x c l
l l

U l l

I

− βω

∞

⊥

ω

λρ ω + κ

β β λ + ω ω + π

×π

⏐ =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

x y

 

 which has the same high and low frequency behavior as eq. (60) but is slightly different from it 

at intermediate frequencies. More in depth data comparisons may be needed to determine if this 

result will provide a better representation of the data. 
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Discussion 

 As noted in the Introduction, Morris and Farassat4 argue that, for the same mean flow 

calculation, the Tam and Auriault result (62) yields a better prediction of the 90° acoustic 

spectrum than methods based on the usual acoustic analogy approximations. They also show that 

this type of spectrum can be obtained within the acoustic analogy frame work if the usual source 

modeling is applied to 
2

2 ijkl
o

D R
Dτ

 rather than to ijklR  as was done above. But this would imply 

that the ijklR spectrum becomes infinite like 2−ω  as ω→ 0, which is certainly not consistent with 

experimental results. The conventional acoustic analogy approach leads to a multiplicative factor 

of 4ω  in the spectrum22 (rather than the 2ω  factor in eq. (62)) due to the quadrupole nature of the 

source). The 2ω  factor is characteristic of a dipole source. In the present approach, the energy 

equation introduces the dipole type source term ( )
2

121 i
i

U D e
x Dt

∂ ′− γ −
∂

 in the acoustic analogy 

eq. (2) which combines with the quadrupole source and a portion of the physically realizable 

spectral function (eq. (48)) that arises from the non-separable nature of the source to produce the 

correct spectral form. 

 It is important to keep in mind that while the 90° spectrum is useful from a diagnostics 

point of view, the maximum acoustic intensity occurs at relatively small angles to the 

downstream axis for most (if not all) high speed air jets. The predictions of the present model 

would differ from the Tam and Auriault5 results at these angles or, for that matter, from any 

modification of the conventional acoustic analogy.  
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Appendix A 

The Pressure Autocovariance 

 The formal Green’s function solution to eq. (2) can be written as 

( ) ( ), , , (A 1)e i j ij
V

p t v v t τ d dτ
∞

−∞

′ ′ ′= ρ γ −∫ ∫x x y y  

where i jv v′ ′ρ  is evaluated at , τy , 

( )

( ) ( )

2 2

1

2

1 2

1, ,
2

2

1 , , (A 2)

ij in jm ij nm

m n m n

i
j

t

D Uc c
y y D y y y

U D G t
y D

⎡ γ −⎛ ⎞γ τ ≡ δ δ − δ δ⎜ ⎟⎢⎝ ⎠⎣
⎛ ⎞∂ ∂ ∂ ∂ ∂+⎜ ⎟∂ ∂ τ ∂ ∂ ∂⎝ ⎠

⎤∂+δ γ − τ −⎥∂ τ ⎦

x y

x y

 

where all the terms in square brackets are part of the differential operator and we have integrated 

by parts to transfer the derivatives from the source term to G. Inserting this into eq. (14), 

changing integration variables to t1 ≡ t – τ 2 and  

1 2τ ≡ τ − τ , and introducing eq. (15) yields 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 1 2 1 2

1 1 1 1 1 1 11

1 , , , ,
2

, , ; , (A 3)

T

ij o kl i j k l
T V

ij o kl ijkl
V

p t t t v v v v d d d d dt
T

t t t R d d dt d

∞

−∞

∞

−∞

−

′ ′ ′ ′≡ γ + − τ γ − τ ρ τ ρ τ τ τ

= γ + + τ γ − τ τ −

∫ ∫∫ ∫∫

∫∫ ∫∫ 1

x y x y y y y y

x y x y y y y y y

 

which upon introducing the separation vector  

(A 4)≡ − −1y yη  

can be written more compactly as eq. (13) with 
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( )

( ) ( )

0 0

1 1 1

,

, , ,

(A 5)

ijkl

ij o o kl

t

t t t dt
∞

−∞

γ + τ

≡ γ + + τ γ +

−

∫

x y;η

x y x y η  

The quantities 1 1 1, ,t τy  are dummy integration variables and we are using the fact that G and 

therefore ijγ depend on t and τ  only in the combination t − τ . 
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Appendix B 

Far Field Expansion and Neglect of Retarded Time 

 Taking Fourier transforms of eq. (12) with respect to 1 1(  - )x y  and (t – τ ) shows (since G 

can depend on these quantities only in these combinations) that 

( )
( )2 (B 1)
2

k oG ⊥ ⊥δ −
= −

π

x y
L  

where 

( )

( )

2

2

2 2

21 2,3 (B 2)

~

~
o

k
j j

o

c
x xkU

k c
j

kU

∂ ∂≡
∂ ∂− ω

+ − = −
− ω

L

 

is the reduced Rayleigh operator and 

( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )1 1

3

2

1 1

; ,
2

, ,

(B 3)

o

i k x y t

U k
G k i

e G t d t d x y

⊥ ⊥

− − −ω −τ⎡ ⎤⎣ ⎦

ω −
ω ≡ −

π

τ − τ −

−
∫∫

y
x y

x y  

where ⊥x  and ⊥y  have the obvious meaning. Inserting this into eqs. (21) and (A–2) shows (after 

some rearrangement) that 

( )( )
( ) ( )

( )

( )( )

1 1

1 1

2

12

1
2

1 1

(B 4)

ij in jm ij nm
m

ik x y
o i

n

ik x y
o

j

c
y

e G dk i
ykU

e GU dk
y kU

∞
−

−∞ ⊥

−∞

⊥−∞

⎛ γ − ∂⎞Γ = − δ δ − δ δ ⎟⎜ ∂⎠⎝

∂ − δ γ −
∂ω −

∂ −
∂ ω −

∫

∫

y

y
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 This result is much simpler in the far field where ( )U ⊥x → 0 , 2 2
0c c∞→  = constant, and 

( )
( )

2 2/

0 , ,

as (B 5)

x k c

o
eG k
x

x

⊥ ∞− − ω

⊥
⊥

⊥

→ ϕ ω

→ ∞ −

yG
 

 Here, x⊥ ⊥≡ x  and 1 2

3
tan x

x
−ϕ ≡  denotes the circumferential angle. Inserting this into eq. (B–4) 

and using stationary phase to evaluate the integrals now shows that 

( )
( )

( )
( )

( )

1

1

cos

2 2

2

1

cos
0

2 sin

2 sin 1
2

cos 1

1 1
cos 1

, cos ,

as (B 6)

i x y c

ij ij

i x c

in jm ij nm

m n

i

j

i y c

e i
x c

e i
x c

c
y yM

i U
y M

e
c

x

∞

∞

∞

ω − θ

⊥
∞

ω

∞

⊥

⊥

− ω θ
⊥

∞

π ω θΓ → − Γ ≡

π ω θ ⎡ γ −⎛ ⎞− δ δ − δ δ⎜ ⎟⎢⎝ ⎠⎣

ω∂ ∂×
∂ ∂θ −⎡ ⎤⎣ ⎦

⎤δ γ − ∂− ⎥
ω ∂ θ −⎡ ⎤ ⎥⎣ ⎦ ⎦

⎛ ⎞ω× ϕ θ ω⎜ ⎟
⎝ ⎠

→ ∞ −

x y

y

y

yG

  

where x ≡ |x| is the radial coordinate, θ = arcsin x
x

⊥⎛ ⎞⎜ ⎟
⎝ ⎠

 is the polar angle of the observation 

point and 

( ) (B 7)M U c⊥ ∞≡ −y  

is the “acoustic” Mach number at the source point. 

 Since eq. (B–1) reduces to Helmholtz’s equation when k = 0, ( );0,oG ⊥ ⊥ ωx y  is given 

by21 (see p. 811) 
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.

( )
( )

( )

2
1

2

2
4

3

4 2

1 2
2 2

as (B 8)

o o

i
c

iG H
c c

e
c xc

x

⊥ ⊥
∞

⊥ ⊥
∞ ∞

⎛ ⎞ω π− +⎜ ⎟
⎝ ⎠

∞
⊥

∞

⊥

⎛ ⎞ ⎛ ⎞ω ω= − −⎜ ⎟ ⎜ ⎟
π ⎝ ⎠ ⎝ ⎠

⎛ ⎞ω π→ − ⎜ ⎟ ⎛ ⎞π ω⎝ ⎠ ⎜ ⎟
⎝ ⎠

→ ∞ −

x y

x y

 

when cos 0θ =  and 2 2
0 c  =c = c o  nstant∞ , it follows from eqs. (B–5), (B–6), and (25) that 

( )

( )

0

24

3

,0,

2
(B 9)

2 2

i
i c xce e

c
⊥ ⊥ ∞ ⊥

⊥

π
− ω ⋅∞

∞

ϕ ω

⎛ ⎞ πω= − −⎜ ⎟ ωπ ⎝ ⎠

y

x y

G

 

and therefore that eq. (28) holds. 



 28

Appendix C 

Reduction of Correlation Coefficients 

 It is shown in references 15, 24, and 14 that 

2 2
3

22 2
1

(C 1)a bR a
⊥ ⊥

η ∂ ∂= + − −
η ∂η ∂η

 

2 3
23 (C 2)aR

⊥ ⊥

η η ∂= − −
η ∂η

 

2
2

12
1

(C 3)bR
⊥ ⊥

η ∂= −
η ∂η ∂η

 

11
1 (C 4)bR ⊥
⊥ ⊥ ⊥

∂ ∂= − η −
η ∂η ∂η

 

so that integration with respect to the circumferential coordinate shows that 

( )

22 2
2
22 2

1

2
2

12
1

1 3
2 8

1 (C 5)

V o

a bR d

b a d d

∞ ∞

⊥
⊥−∞
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⊥ ⊥

⎡ ⎛ ⎞⎛ ⎞∂ ∂⎢= η + ⎜ ⎟⎜ ⎟ ⎜ ⎟π ∂η ∂η⎢ ⎝ ⎠ ⎝ ⎠⎣
⎤⎛ ⎞∂ ∂− η η η η −⎥⎜ ⎟⎜ ⎟ η ∂η∂η ⎥⎝ ⎠ ⎦

∫ ∫ ∫η
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∞ ∞
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2
2

11 22 2
1

1

1 1
2 2

(C 9)

V o

bR R d a

b d d

∞ ∞

⊥
⊥ ⊥−∞

⊥ ⊥
⊥ ⊥

⎡ ⎤⎛ ⎞∂ ∂= − η⎢ ⎥⎜ ⎟π η ∂η∂η ⎝ ⎠⎦⎣
⎛ ⎞∂ ∂η η η −⎜ ⎟∂η ∂η⎝ ⎠

∫ ∫ ∫η
 

 Inserting eqs. (34) and (35) into these results and integrating over ⊥η  shows that 

( ) ( )
( )

( )

2 2
22 23
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2 2 2 2
1 1 1 1
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where we have put 

1 (C 14)BB ⊥
⊥ ⊥ ⊥

⎛ ⎞∂ ∂≡ − η −⎜ ⎟η ∂η ∂η⎝ ⎠
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and r is defined by eq. (42).  
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