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FOREWORD

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States, nor any agency thereof, assumes any legal liability or

responsibility for any third party's use or the results of such use of any information, apparatus,

product, or process disclosed in this report, or represents that its use by such third party would

not infringe privately owned rights.





ABSTRACT

The OrbitalProcessingof High-QualityDopedandAlloyedCdTeCompound
Semiconductorsprogramwasinitiatedto investigate,quantitatively,the influencesof
gravitationallydependentphenomenaon thegrowthandquality of bulk compound
semiconductors.Theobjectivewasto improvecrystalquality (structuralandcompositional)
andto betterunderstandandcontrolthevariableswithin thecrystalgrowthproductionprocess.
Theempiricaleffort entailedthedevelopmentof aterrestrial(one-g)experimentbaselinefor
quantitativecomparisonwith microgravity0a-g)results. Thisempiricaleffort wassupportedby
thedevelopmentof high-fidelity processmodelsof heattransfer,fluid flow andsolute
redistribution,andthermo-mechanicalstressoccurringin thefurnace,safetycartridge,ampoule,
andcrystalthroughoutthemelting,seeding,crystalgrowth,andpost-solidificationprocessing.
In addition,analyseswereconductedwith respectto thesensitivityof theorbital experimentsto
theresidualmicrogravity(p-g)environment,bothsteadystateandg-jitter.

CdZnTecrystalsweregrownin one-gandin/a-g. Crystalsprocessedterrestriallywere
grownat theNASA GroundControlExperimentsLaboratory(GCEL)andat theGrumman
CorporateResearchCenter(GCRC),which is now NorthropGrummanAdvanced Systems &

Technology. Experiments in the GCEL developed optimized growth conditions for the flight

experiments, experimentally empiricized the process models, and established a one-g baseline

for the 15-mm OD crystals grown in the flight furnace. The 38-mm OD crystals grown at

GCRC established a state-of-the-art commercial comparative baseline. Two/a-g crystals were

grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity

Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992. The crystal growth parameters
used on the USML-1 Mission were identical to those used in the CGF GCEL simulation

furnace and those grown in the CGF Flight Unit.

It was anticipated that the/a-g environment would damp buoyancy (gravitationally

dependent) convection, improving chemical homogeneity. More important for this

investigation, it was anticipated that the near absence of hydrostatic pressure would reduce the

hoop stresses experienced by the growing and cooling crystal, thus reducing the defect density

within the flight samples. The one-g and/a-g samples were thus analyzed for chemical

homogeneity, structural perfection, and opto-electronic performance (infrared transmission).

Macro segregation was predicted to be small in one-g and p-g, using scaling analysis, with

nearly diffusion-controlled growth. This was confirmed experimentally terrestrially in the 15-

mm samples. Radial segregation was found to vary with fraction solidified through the

shoulder region of the flight crystals, but to be nearly constant in the steady-state growth region.

Residual strain, however, was significantly disturbed due to the asymmetric gravitational and

thermal fields experienced by the USML-1 flight samples, which resulted in partial wall

contact. Thermally symmetric fields were investigated in the follow-up flight experiment on

USML-2 to improve this measurement.

FTIR transmission of both ground and flight materials was measured to be 63%, close to the

theoretical value of 67%, and invariant from 2.5 to 20 pm (4000 to 500 wave numbers). This

suggests that both the ground and flight materials were close to the stoichiometric composition.

Infrared microscopy and x-ray measurements confirmed this conclusion in that the primary

precipitates (inclusions) were Te, and their size (1-10 lam) and density suggested that both

primary flight and ground-based samples experienced similar cooling rates and were close to

stoichiometry.
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Thebestregionsof flight samples,however,werefoundto bemuchhigherin structural
perfectionthanthegroundsamplesproducedin thesamefurnaceunderidenticalgrowth
conditionsexceptfor thegravitationallevel. Rockingcurvewidthswerefoundto be
substantiallyreduced,from 20/35arc-sec(one-g)to 9/15arc-sec(p-g) for thebestregionsof
thecrystals. Thevalueof 9 arc-secequalsthebestreportedterrestriallyfor thismaterial.
Morphologically,thegroundsampleswerefoundto haveafully developedmosaicstructure
consistingof subgrains,macro-andmicro-twinning,andregionsof cross-slip.Theflight
samples,however,exhibiteddiscretedislocationswithoutmosaicsubstructurein all areas.
Defectdensitywasreducedfrom 500,000-1,000,000EPD(+ 50%)(one-g)to 800EPD(+ 50%)
(p-g). The_<500EPDp-gvalueis the lowestreported.

The thermo-mechanicalprocessmodelsuggestedthatthe low dislocationdensitywasdueto
thenearabsenceof hydrostaticpressurein _-gwhichallowedthemelt to solidify with
minimumwall content,thusreducingthethermo-mechanicalstresstransmittedto thecrystal
duringgrowth andpost-solidificationcooling. Thehighestquality materialwaspredictedto be
on theperiphery(freesurface)of theboules,unlike theterrestrialsampleswherethebest
materialis at thecore. This wasconfirmedtopographicallyandmicrostructurally.

Our follow-up experimentonUSML-2 processeda flight samplein athermallysymmetric
environment,with full wall contact. Thiswill addto thecomparativematrix andtestfurther the
validity of theprocessmodels.
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1 -- INTRODUCTION & OBJECTIVES

CdZnTe is a technologically important member of the family of II-VI compound

semiconductors. The most important application of CdZnTe is as a substrate for the epitaxial

growth of HgCdTe infrared detectors. The requirements for large-area infrared devices have led

to increased reliance on epitaxial processes to provide detector-grade HgCdTe active areas and

a concomitant demand for high-quality substrates. CdZnTe is typically grown using unseeded,

horizontal or vertical Bridgman crystal growth techniques.

HgCdTe epilayers are most commonly fabricated using liquid phase epitaxy (LPE).

However, to achieve abrupt device/substrate junctions, epitaxial growth of HgCdTe has been

driven to lower temperatures using chemical vapor deposition (CVD) or molecular beam

epitaxy (MBE). These techniques minimize interdiffusion at the interface, but are much more

sensitive to wafer quality, particularly at the surface.

One approach to minimizing interfacial strains and dislocation generation, propagation,

and/or multiplication at the substrate/epilayer interface is to lattice-match the substrate and the

epitaxial layer at the growth temperature. The lattice-matched substrate of choice for HgCdTe

is CdZnTe. In addition, fast diffusion of Hg along dislocation cores has resulted in demand for

the minimization of extended defects within the epilayers. The latter requires reduced defect

densities in the substrates, as the extended defects are likely to propagate from the substrate

surface into the epilayer.

The primary needs for these CdZnTe substrate applications are therefore: (1) increased

structural perfection (reduced defect density and residual strain) within the bulk crystals and

substrates and (2) more uniform lattice parameters (chemical homogeneity) within the

substrates, which better match those of the specific HgCdTe composition at the epitaxial growth

temperature. Our microgravity (p-g) program addresses these needs.

The objective of this program is thus to investigate quantitatively the influences of

gravitationally dependent phenomena on the growth and the quality of compound

semiconductors as a means of improving crystal quality (structural and compositional) and to

better understand and control the variables within the crystal growth process.





2--BACKGROUND

CdZnTe crystals were grown in one-g and in p-g. Crystals grown terrestrially were

processed at the NASA Ground Control Experiments Laboratory (GCEL) and at the Grumman

Corporate Research Center (GCRC). Experiments in the GCEL developed optimized growth

conditions for the flight experiments, experimentally empiricized the process models, and

established a one-g baseline for the 15-mm OD crystals grown in the flight furnace. The 38-

mm OD crystals grown at Grumman established a one-g state-of-the-art commercial

comparative baseline. Two p-g crystals were grown in the Crystal Growth Furnace (CGF)

during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 -

July 9, 1992. The crystal growth parameters used on the USML-IMission in the CGF Flight
Unit were identical to those used in the CGF GCEL simulation furnace.

2.1 CdTe/ZnTe PHASE RELATIONS

The CdTe binary compound is a single equiatomic phase, CdTe, with a congruent melting

temperature of 1092°C as shown in Fig. 1. Secondary eutectic solidification reactions on each

side of equiatomic CdTe occur at 449°C on the Te-rich side of stoichiometry and 324°C on the

Cd-rich side. There is virtually no solubility of Cd in Te or Te in Cd. The addition of ZnTe to

CdTe is crystallographically isostructural and the phase diagram calculated in this work, after

data of Yu and Brebrick, is shown as Fig. 2. Clearly, there is increasing temperature of

solidification and increasing separation of the liquidus and solidus lines with increasing ZnTe

content. The Zn solute redistribution coefficient, K 0, for the CdTe/ZnTe pseudo-ternary phase

diagram is shown as Fig. 3. For the compositional range to be investigated, nominally 0.04

mole fraction ZnTe alloys, the equilibrium redistribution coefficient, K 0, is expected to vary
from 1.3 to 1.2.

The equilibrium redistribution coefficient, K 0, can be reduced significantly if

gravitationally dependent convection can be damped, approaching diffusion-controlled growth

conditions. Scaling analysis conducted at the University of Alabama at Huntsville (UAH)

showed that even in one-g the regime of diffusion-controlled growth can be approached, for the

CGF 15-mm-diameter samples, as shown in Fig. 4.

The 38-mm-diameter samples experienced significantly more convection because of the

greater diameter and radial gradients; however, even in this case, the equilibrium redistribution

coefficient, K 0, was reduced from 1.25 to an effective redistribution coefficient, K e, of 1.10 by

careful thermal control. This significantly reduced the amount of longitudinal

macrosegregation in the commercially sized ingots in one-g.

2.2 CRYSTAL GROWTH FURNACES

The furnaces used in this program were the NASA Crystal Growth Furnace (CGF) in its

flight and Ground Control Experiment Laboratory (GCEL) versions and the Grumman

Programmable Multizone Furnace (PMZF). The latter was used to grow state-of-the-art

commercial-size crystals for comparison with the smaller NASA crystals. The CGF furnaces

grew CdZnTe crystals 15mm in outer diameter, whereas the PMZF grew 38-mm-diameter

crystals. Both furnaces employed the seeded vertical Bridgman-Stockbarger crystal growth

technique terrestrially, with an upper ampoule wall temperature of 1135°C and a lower ampoule



wall temperature of 980°C. The actual furnace wall settings differed because of differences in

the furnace thermal masses and safety ampoule/cartridge assembly (SACA) configurations.

The CGF GCEL configuration is shown as Fig. 5, and the flight furnace, integrated into the

Spacelab racks is shown as Fig. 6. The Grumman PMZF is shown as Fig. 7. The ground

furnaces are loaded horizontally and then rotated 90 ° into a vertical, thermally stabilizing

orientation relative to the Earth's gravity vector.

CdZnTe crystals are typically grown using the Bridgman or modified Bridgman crystal

growth technique. The technique we are employing is the seeded Bridgman-Stockbarger

technique. This technique establishes hot and cold isothermal zones that bracket the

solidification temperature, with a linear thermal gradient in between. The gradient is translated

at a constant velocity down the length of the sample, directionally solidifying the sample from

the cold (seed) end to the hot end. Either the sample or the furnace can be translated, and we
have selected furnace translation because vibration associated with the translation is not

mechanically coupled directly to the sensitive solidification interface.

The "external" samples were fabricated using the same growth method, and the Grumman

Programmable Multizone Furnace (PMZF) operated in a low gradient configuration (<10°C/

cm). The PMZF material has been shown in an ARPA Infrared Materials Producibility

Program to compare favorably with the best CdZnTe crystals grown terrestrially with FTIR

transmission close to theoretical and defect densities less than 10,000.

2.3 ACCELERATION ENVIRONMENT

Our experience with spacecraft laboratory environments anticipated that the residual

acceleration environment on board the First U. S. Microgravity Laboratory (USML-1) would

deviate significantly from a condition of "zero gravity." Indeed, based on a consideration of

gravity gradient and orbital attitude effects alone it was concluded, for USML- 1 at 300 km in a

quasi-circular orbit and a gravity gradient stabilized attitude, that the magnitude of the residual

acceleration increases at 0.41 x 10 .6 g/m from the spacecraft mass center in the so-called local

vertical direction, and 0.136 x 10.6 g per meter in the direction perpendicular to the orbital

plane. This results in a residual acceleration vector which is typically at a high angle relative to

the geometrical and thermal axes of the growing crystals and demanded that non-axisymmetric

calculations and terrestrial experiments be the basis for anticipating micro-g results. The effects

of atmospheric drag, crew motions, attitude maneuvers, thruster firings, and structural

vibrations also contribute significantly to the acceleration environment and can lead to

instantaneous magnitudes in excess ofl 0.3 g.

It was desired for the USML-1 mission that the residual g-vector in orbit be aligned such

that the experiments conducted within the CGF would experience a thermally and

gravitationally stabilizing crystal growth environment. This demanded that the orbiter be flown

in a specific orbital attitude, which became known as the "CGF attitude." The orbiter, CGF,

and the calculated residual g-vector orientation in the CGF attitude are shown in Fig. 8. The

calculated residual g-vector points down the axis of the flight furnace (gravitationally

stabilizing), from the hot end towards the cold end (thermally stabilizing), which offered

optimal scientific results.
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2.4 PROCESS MODELING

The empirical effort was supported by the development of high-fidelity process models of

heat transfer (Clarkson University [CUD; fluid flow and solute redistribution (UAH); and

thermo-mechanical stress (CU, GCRC) occurring in the furnace, safety cartridge, ampoule, and

crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In

addition, analyses were conducted (UAH) with respect to the sensitivity of the orbital

experiments to the residual microgravity (la-g) environment, both steady state and g-jitter.

Figure 9 shows typical output from the thermal, thermo-solutal, and thermo-mechanical models,

respectively. Specific examples of the model output will be included in the sections on

experimental results to demonstrate the utility of these models in the planning, implementation,

and interpretation of the flight and ground experiments. In addition, a section focusing on

interactive model validation will be included as Section 7, and the UAH final report will be

appended as the Appendix.

In addition to the models described above, a one-dimensional macrosegregation model at

the Space Sciences Laboratory of the NASA Marshall Space Flight Center, SSL/MSFC, was

employed to calculate macrosegregation within the 15-mm samples processed in the CGF.

Figure 10 shows results of these calculations, with empirical ground truth, one-g, data

superimposed. This is a diffusion-controlled model, and the agreement between the model and

the empirical data suggests that the growth conditions, which were anticipated to be within the

partial mixing regime, are close to diffusion controlled even in one-g. The mass transport

coefficient that gave the best fit to the one-g data was 3x 10-5 cm2/s, which is a reasonable

diffusion coefficient for this system.

A sensitivity analysis conducted using the same model suggested that further reduction of

the mass transport coefficient had no great impact on the longitudinal macrosegregation results,

as shown in Fig. 11, only shortening the initial transient. The terminal transient would be

obscured by the quench and cooling operations. As a result, experimentation involving the

investigation of diffusion controlled longitudinal macrosegregation in the microgravity

environment was not compelling, since little change would be expected and so radial

segregation was primarily considered.

Brown, et al., have predicted that as longitudinal macrosegregation diminishes, radial

segregation can become much more significant, as shown in Fig. 12. It was planned, as a

consequence, to quantitatively analyze the radial macrosegregation as an integral part of this

program, anticipating that both the one-g and _t-g results would be generated in near-diffusion-

controlled growth conditions.

2.5 CHARACTERIZATION

The CGF samples were characterized, and the results from one-g and p-g were

quantitatively compared with respect to chemical homogeneity and structural quality. These

"internal" results were then quantitatively compared with the best results accomplished

terrestrially as an "external" comparison." Characterization techniques employed in this study

included x-ray double crystal rocking curve(DCRC), x-ray precision lattice parameter (XPLP),

energy dispersive x-ray analysis (EDX), photoreflectance (PR), synchrotron white beam

topography (SWBT) (Ref. 1), and synchrotron monochromatic beam topography (SMBT).
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Both SWBTandSMBT wereperformedattheNationalSynchrotronLight Source(NSLS)at
BrookhavenNationalLaboratory(BNL). TheDCRCandXPLP measurementsweremadeat
GrummanusingBlakeInstrumentscustomsystems,with Copperradiationanda spotsizeof

Imm_. TheEDX andmicroprobemeasurementsweremadeatMarshallSpaceFlight Center.
PRwascarriedoutat 300K usingaHe-Nelaserchoppedat 200Hz, amonochromator

resolutionof about25 ._,anda typicalspotsizeof ~1mm. Theenergygapwasdetermined
from alineshapefit usingthelow-field approximation(Ref. 3,4); thezinc content(x) in Cd(1-
x)Zn(x)Te wasderivedfrom the"calibrationcurve"of Ref.2, assumingaconstantenergyshift
in thecurveto accountfor ouruseof 300Kratherthan77K. ForDCRC,XPLP, andPR,the
samplewasmountedonamicropositionerstagewhichallowedmanualor automaticscanning
overthesamplesurface.All sampleswereidenticallychemo-mechanicallypolishedusinga
diluteBr-methanolsolution(Ref.5).
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3 -- MICROGRAVITY RATIONALE

Since the days of Skylab and the Apollo-Soyuz Test Project, it has been recognized that an

orbiting spacecraft may serve as a laboratory within which to carry out crystal growth

experiments in a unique reduced gravity working environment. The attraction of this almost

weightless environment to crystal growers may be explained simply. Under terrestrial

conditions, gravitational acceleration imposes hydrostatic and buoyancy forces on the melt and

growing crystal and crystal/melt interface that can be deleterious to the structural quality and

chemical homogeneity of the product crystal. The orbital environment offers the opportunity to

undertake bulk crystal growth experiments under conditions for which the gravitationally

dependent hydrostatic and buoyancy forces are drastically reduced, thus offering the possibility

of significantly increasing structural perfection and chemical homogeneity.





4 -- INVESTIGATION & TECHNICAL PLAN

As previously stated, the technical objectives of this program are to investigate,

quantitatively, the gravitational influences (hydrostatic and buoyant) on the growth and quality

of alloyed compound semiconductors, particularly CdZnTe, obtained using the modified

Bridgman crystal growth technique. Flight experiments and supporting ground-based

experiments were conducted.

In the ground-based experimental program, at the Crystal Growth Laboratory of the

Grumman Corporate Research Center, we employed our advanced low-gradient programmable

multizone furnace systems in order to minimize the thermo-mechanical stresses imposed on the

growing CdTe crystal and during post-solidification processing. We applied our thermal model

of this furnace system to anticipate the thermal environment imposed on the crystal growth

ampoule and the longitudinal and radial thermal environments experienced by the growing

crystal and melt. A finite element model of thermoelastic stress was developed in collaboration

with Clarkson University that calculated the thermoelastic stress imposed on the growing or

cooling CdTe crystal, and displayed the thermoelastic stress field imposed on each wafer

selected from the real boules. These results were compared with the supporting experimental

and literature studies, and it was determined that alloying of the CdTe was necessary to raise the

allowable critical resolved shear stress (Ref. 6) within the growing crystal above the minimum

thermoelastic stress levels imposed by the available furnace systems, on the ground and in

flight. In addition to the thermoelastic stress studies, the influences of axisymmetric and non-

axisymmetric gravitational and thermal fields were investigated for the flight samples.

The University of Alabama at Huntsville conducted time-dependent and steady state mass,

heat, and momentum transport calculations in support of the one-g and micro-g experiments

(Ref. 7). Computer codes developed at the Center for Microgravity and Materials Research

have been used to examine the effect of the orientation and magnitude of the gravity vector on

simplified models of directional solidification using the Bridgman-Stockbarger technique. In

order to adapt these codes to the requirements of the specific solidification system under

investigation, further development of these codes was necessary. The calculated radial and

longitudinal macrosegregation distributions in the crystal in one-g and micro-g were the bases

for planning the one-g experimental matrix and the flight experiment. The flight experimental

results were quantitatively determined utilizing the previously described state-of-the-art

characterization equipment in the Grumman Crystal Growth and BNL/NSLS Laboratories. The

interpretation of these results was augmented by the furnace thermal models, the thermoelastic

stress model, and the time-dependent fluid flow and solute redistribution model.

4.1 PROGRAM PLAN

The empirical effort entailed the development of one-g experiment baselines for quantitative

comparison with the _t-g results. The efforts in one-g and la-g were supported by high-fidelity

process models of heat transfer, fluid flow and solute redistribution, g-sensitivity, and thermo-

mechanical stress. The furnace, safety cartridge, ampoule, and sample, throughout the melting,

seeding, crystal growth, and post-solidification processing were considered in these models.

The program management, experiment design, sample/ampoule development, fabrication

and delivery, flight support operations, process model validation, and sample characterization,

were conducted by the Grumman Corporate Research Center, under the direction of the
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PrincipalInvestigator,Dr. David J.Larson,Jr. Thethermalandthermo-mechanicalprocess
modelsweredevelopedat ClarksonUniversityunderthedirectionof Professor Frederick

Carlson. G-sensitivity and fluid flow and solute redistribution models were developed and

validated under the direction of Dr. J. Iwan D. Alexander of the Center for Microgravity and

Materials Research of the University of Alabama at Huntsville. Dr. Donald Gillies of the Space

Sciences Laboratory of the NASA Marshall Space Flight Center, assisted in the development,

qualification and optimization of the sample/ampoule and flight experiment, in the quantitative

prediction and characterization of macrosegregation, and quantitative characterization of

precipitate content using infrared microscopy. Prof. Michael Dudley of the State University of
New York at Stony Brook and Dr. Gabrielle Long of the National Institute of Science and

Technology headed the white and monochromatic synchrotron topography imaging teams,

SWBT and SMBT, respectively.

The process models were initially used to predict the impact of process parameter variation

(trend analysis), allowing us to design critical one-g growth experiments and to anticipate p-g

sensitivity (g-jitter and residual g orientation). Subsequently, as the models were validated

experimentally, correlation and optimization experiments in one-g and in _t-g were conducted.

Finally, the experimentally validated models were utilized to assist in the interpretation of the

_t-g results and the quantitative comparison of _-g and one°g results.

DCRC, XPLP, and FTIR measurements at GCRC were conducted by Dr. Donald DiMarzio.

IR microscopy and EPD studies were conducted by Dr. Louis Casagrande. Ampoule

fabrication and chemo-mechanical polishing were conducted by Mr. Andre Berghmans.
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5 -- EXPERIMENT DESCRIPTION

The experiment plan was to grow CdZnTe crystals in one-g and in la-g under identical

growth conditions except for the magnitude of the gravitational vector. It was anticipated that

the g-g environment would damp gravitationally dependent thermosolutal convection,

improving longitudinal and radial chemical homogeneity (macrosegregation). More important

for this investigation, however, was the near-absence of hydrostatic pressure in la-g. This

allowed the bulk liquid to minimize contact with the constraining ampoule walls, reducing the

hoop stresses experienced by the growing and cooling crystal while maintaining thermal

symmetry. It was anticipated that this might significantly reduce the defect density and residual

strain within the p-g samples. It was planned that the one-g and la-g samples were to be

carefully analyzed for chemical homogeneity (longitudinally and radially), and for structural

perfection. Optoelectronic performance was also to be mapped using Fourier Transform

Infrared (FTIR) measurements.

5.1 FURNACE THERMAL RESULTS

The Temperature/Time/Position history of the optimized ground and flight experiments

were determined to be: heat-up rate (2°C/min), post-seeding thermal equilibration time (2 hr),

solidification velocity (1.6mm/hr), applied thermal gradient (33°C/cm) and cool-down rate (2 °

C/min). These growth conditions gave the best quality crystals, highest crystallinity, and lowest

defect density, that were consistent with the available flight time and the performance
characteristics of the CGF.

5.2 SAMPLE AMPOULE CARTRIDGE ASSEMBLY

The Sample Ampoule Cartridge Assembly (SACA) is shown as Fig. 13 (a and b). This

metallic containment device protected the furnace from caustic or toxic material release in case

of an ampoule failure. In addition, the SACA provided support and alignment of the sample

ampoule and the thermocouple instrumentation. The SACA consisted of a WC 103 shell with

non-reactive coatings on the inner and outer surfaces. This exterior of the SACA was found to

change color and emissivity as a function of time at temperature. Since these color changes

suggested significant emissivity changes that could significantly impact temperature

distribution, this was investigated using the thermal model. The thermal model output is shown

as Fig. 14, confirming that significant temperature changes do take place as a function of time.

It was determined empirically, however, that the heat-up and equilibration time at temperature

was sufficient to stabilize the emissivity and to provide a reproducible thermal environment for

the sample to be processed.

5.3 INSTRUMENTATION/AMPOULE/SAMPLE CONFIGURATION

The sample ampoule and the surrounding instrumentation are shown schematically in Fig.

15. Six Type K (Chromel/Alumel) thermocouples were used. The thermocouple locations

were at the base of the seed crystal, at the desired melt-back location on the seed crystal, at the

shoulder of the ampoule, diametrically opposed thermocouples at the middle of the steady-state

growth region, and at the end of the liquid zone. The ampoule was fused silica with a carbon
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lining to minimizediffusionfrom theampouleinto themelt. Thecoatingalsowasintendedto
provideanon-wettinginterfacesothat thesamplecoulddisassociateitself from thewall
(dewet)if possibleduringtheflight experiment.In flight andgroundampoules,thecarbon
coatingminimizedstiction,thegenerationandtransferof stress,andthegenerationof structural
defects.

Theinstrumentationthermocouplesalsoservedassafetydevicesin thatif anampoulewas
breachedandCdTewasreleasedinto theSACA, thethermocoupleswereshownto fail well
beforetheSACA wouldfail. Thesefailuretimesandcontainmenttimesweredeterminedby
complementaryNASA safetystudies.
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6 -- EXPERIMENTAL RESULTS & DISCUSSION

One-g qualification and developmental tests were conducted in the CGF Ground Control

Experiments Laboratory (GCEL) to confirm hardware designs for the sample/ampoule,

ampoule/cartridge, and the interfaces between these components and instrumentation within the

Sample/Ampoule Cartridge Assembly (SACA). In addition, timeline compatibility between the

four experiments that were to run in series in the CGF on USML-1 and the flight timeline was

confirmed. Lastly, the ground test results served to empiricize the process models and

optimized the processing parameters for the flight experiment.

The final CGF ground sample, grown under the optimized process conditions, duplicated

the anticipated flight conditions and served as a "ground truth" sample for quantitative

comparison with the primary flight sample. Since we had the unexpected opportunity to

conduct a second I-t-g experiment with the flight back-up (secondary) sample, the "ground truth"

experiment for the secondary sample was conducted post-flight. Analyses of these samples

focused on chemical homogeneity, which was previously discussed, and the structural quality

of the crystals, which will be discussed in a subsequent section.

In addition to the CGF "internal" baseline, an additional "external" baseline was established

using the Programmable Multi-Zone Furnace at the Grumman Corporate Research Center. This

furnace system employed lower thermal gradients (<10°C/cm) and slower heating and cooling

rates (1 °C/rain) in order to minimize the thermo-mechanical stresses imposed on the sample

during processing. These samples were 38 mm in diameter as compared to the CGF samples

which measured 15 mm in diameter. In addition, one 15-mm-diameter sample was grown in

the PMZF system to simulate the CGF growth conditions in the GCRC furnace and to confirm

the design safety of the ampoule. These results were intended to serve as an external

comparative baseline representative of the best CdZnTe produced terrestrially. CdZnTe PMZF

material has been shown in the ARPA Infrared Materials Producibility Program to compare

favorably with the best CdZnTe crystals grown terrestrially.

The USML-1 Mission was planned to process one primary sample, with a back-up sample

in stowage outside the CGF Furnace. The primary sample was successfully processed, and due

to the premature termination of one of the other experiments, a second flight experiment was

possible, but of shorter duration. The furnace heat-up rate, seeding and thermal equilibration

time, temperature profile, and cooling rate were identical for both experiments; the primary

difference was the duration of the experiments. Since the samples were of identical lengths,

this meant that the secondary sample was furnace cooled prior to the completion of

solidification of the sample, and a substantial amount of material was solidified under non-

plane-front growth conditions. The secondary sample served to confirm the successful seeding

technique and to provide additional material from the shouldering region that solidified without
wall contact.

Conducting the second experiment demanded unprecedented actions on the part of the crew,

particularly: Payload Specialist Eugene Trinh to install the flexible glovebox on the CGF,

which enabled the processed SACAs to be removed from the CGF; Alternate Payload Specialist

AI Sacco to develop the SACA exchange procedures; and Payload Commander Bonnie Dunbar

and Pilot Ken Bowersox who exchanged the SACAs, demonstrating for the first time in the

U.S. program the ability to exchange potentially toxic materials in the closed environment of

the Spacelab. These actions proved the feasibility of conducting similar necessary operations

on Space Station, greatly increasing the productivity.
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6.1 THERMAL

The samples on USML-1 were processed in the Crystal Growth Fumace (CGF) using the

seeded Bridgman-Stockbarger method of crystal growth. Bridgman-Stockbarger crystal growth

is accomplished by establishing isothermal hot zone and cold zone temperatures with a uniform

thermal gradient in between. The thermal gradient spans the melting point of the material

(1095°C). After sample insertion, the furnace's hot and cold zones are ramped to temperature

(1175°C and 980°C, respectively), establishing a thermal gradient (33°C/cm) in between and

melting the bulk of the sample. The furnace is then programmed to move farther back on the

sample, causing the bulk melt to come into contact with the high-quality seed crystal, thus

seeding the melt. The seed crystal prescribes the growth orientation of the crystal grown.

Having seeded the melt, the furnace translation is reversed and the sample is directionally

solidified at a uniform velocity (1.6 mm/hr) by moving the furnace and the thermal gradient

over the stationary sample.

6.1.1 TEMPERATURE/TIME HISTORY

The temperature/time history of the ground and flight samples is shown in Fig. 16 and Fig.

17, respectively. The experiment durations of the Ground Truth and GCRC- 1 flight samples

are identical. The temperature/time history of the shortened duration flight experiment, GCRC-

2, is shown as Fig. 18.

6.1.2 MELTING/SEEDING

The most critical step in the crystal growth process is the seeding operation. Much of the

success or failure of the experiment will be determined by this step. The items of major

concern are the quality of the seed used, the integrity of the seed during the heat-up and melting

operation, the precision and stability of the melt-back, and the success of single crystalline

regrowth from the seed through the shoulder region. Figures 19 and 20 illustrate the difference

in melting behavior between one-g and p-g experiments. It may be seen in Fig. 19 that, as

melting in one-g is effected in the upper regions of the vertically oriented ampoule, the molten

charge drains toward the cold end, causing a measurable thermal "surge" in the thermocouples

at lower positions. This is strictly due to gravity and in the flight sample, Fig. 20, the absence
of this "surge" should be noted.

This is a "good news/bad news" situation. In one-g, a thermal surge sufficient to melt the

entire seed may develop -- clearly bad news! But this is a far more common event for large-

diameter crystals, where the thermal mass of the charge greatly exceeds that of the seed, than

for the small diameters used in the CGF experiments. Another undesirable possibility is that

the molten material will quickly drain to the shoulder region and refreeze, possibly causing

ampoule failure due to the expansion on solidification typical of most semiconductor materials.

The thermal surge or draining and resolidification are not problems in p-g, however, since in the

near absence of hydrostatic pressure the molten charge is not forced to drain toward the cold

end. The bad news in p-g is that the molten charge is not forced in contact with the seed crystal

and thus the experiment might proceed as an unseeded growth. Care is needed in the planning

and execution of both ground and flight experiments.

The heat-up and melting sequence are shown enlarged in Fig. 21. It should be noted that the
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endothermicmeltingreactionis clearlydiscerniblefrom thethermocouplerecord.Theapparent
meltingpointfor thethermocoupleplacedatthe locationof desiredmelt-back,andconfirmed
preflight to bein thecorrectpositionradiographically,wasusedasthemelt-backtemperature
duringtheseedingoperation.As such, this data point serves as an internal temperature

calibration of the melting temperature, taking into account empirical errors due to

instrumentation, accuracy, and/or software temperature conversion algorithms.

Once the seeding operation is initiated, the CGF furnace is moved, stepwise towards the

seed crystal until it is decided that the melt-back interface location is coincident with the desired

melt-back position on the seed crystal. In general, this was approximately one-third to one-half

of the total seed length (20 ram) from the hot end. Typical stepwise seeding translation and

thermal responses are shown in Fig. 22. It should be noted that the positional response is

almost instantaneous, whereas the thermal response is considerably more sluggish. As a

consequence, it is necessary to wait for thermal equilibrium to be reestablished before taking

the next incremental step. Typically, seeding could be accomplished in two or three steps in

less than one hour. The accuracy and reproducibility of this procedure and furnace were such

that no seed crystals were inadvertently melted.

The seeding operation was supported by thermal modeling, and Fig. 23 shows the thermal

model output for the final thermal profile selected for flight. The model predicted that the melt-

back interface should be near planar. Figure 24 shows the melt-back interface on the exterior of

a typical sample. The interface is clearly thermally symmetric on the periphery, and x-ray

synchrotron topographs of the GCRC-2 flight sample confirmed that the melt-back interface

was in fact very nearly a flat plane. These topographs will be presented in Section 6.5.7, "X-ray

Synchrotron Bragg Contour Mapping."

6.1.3 CGF STABILITY

The temperature stability of a furnace is of concern during thermal equilibration after

seeding in order to maintain a constant melt-back interface location without thermal

"ratcheting," which can result in a compositionally and crystallographically disturbed regrowth

interface. In addition, temperature stability is important to maintain compositional stability and

the prescribed gradient environment during steady-state growth.

The temperature stability of the CGF GCEL furnace and for the identical flight experiment,

GCRC-I, are shown in Fig. 25 and Fig. 26, respectively. It may be seen that the temperature

stability is on the order of-I.0°C in both cases. This is good, but certainly not exceptional.

The temperature stability of the PMZF ground furnace, for comparison, was on the order of _+

0.2°C, without averaging, and much better than +_0.1 °C, with averaging.

6.1.4 STEADY-STATE GROWTH

The steady state growth histories for the ground truth and GCRC-1 samples are shown in

Fig. 27 and Fig. 28, respectively. The translation rates are identical, as are the heat-up rates,

with the exception of the previously mentioned melting and draining phenomena. It was found

in the course of the experiment that the furnace power consumption in orbit was on the order of

10% less than terrestrially. It is thought that this was due to the absence of the convective heat

loss mechanism. The other difference that should be noted is the slightly steeper thermal

gradient experienced by the flight sample. This, too, is thought to be related to the reduction of

15



gravitationallydependentconvection.

6.1.5 COOLING/QUENCH

The programmed cooling of the ground and flight samples was planned to be identical. At

the termination of the GCRC-1 steady-state growth, however, a net temperature rise was noted

prior to the programmed cooling. The normal and GCRC-1 cooling curves are shown in Fig. 29

and Fig. 30, respectively. In addition to differences in the cooling rates, the possibility of

differences in solidification temperature (thermal undercooling) was investigated. It was found

in both flight and ground samples that little, or no, undercooling was exhibited, probably due to

the presence of the grown crystal acting as a seed for the rapidly cooled region.

6.2 MICROGRAVITY ENVIRONMENT & MEASUREMENT

It was anticipated that if the residual g-vector pointed down the axis of the CGF, as desired,

it would assist seeding and result in a thermally and gravitationally symmetric geometry that

was thermally stabilizing for our experiment. The orientation of the calculated (anticipated)

residual g-vector relative to the Spacelab and the CGF has been shown as Fig. 8. Inspection of

the flight samples, to be discussed subsequently, suggested that this was not correct in the

actual experiment. Thorough analysis of the acceleration data from the STS-50/USML-1

mission by UAH suggested that there was an unanticipated gravitational component that

resulted in gravitational asymmetry at the CGF location. This was most likely due to the

operation of the Shuttle Flash Evaporator System (FES), which operated on approximately a

28-hour cycle (14 hours on and 14 hours off). Figures 31(a) and 31(b) show the average

orientation of the residual acceleration vector when FES was on, recorded by (a) OARE at the

OARE location and extrapolated to the CGF location and (b) PAS on the Flight Deck and

extrapolated to the CGF location. It is clear that this residual g-vector is significantly

asymmetric relative to the CGF furnace bore axis, resulting in thermal and gravitational

asymmetry in the flight samples.

6.3 SURFACE ANALYSIS

Optical examination of the surface topography of the primary flight sample, Fig. 32(a),

shows that the areas in full contact with the ampoule wall mirror the surface topography of the

wall and coating and appear visually to be very bright reflective surfaces. The topography of

the free surfaces shows some thermal etching, but is relatively smooth and has the blue-grey

appearance of most semiconductors. The region of partial wall contact, however, is a highly

textured matte finish. The partial contact surface was found to be composed of a honeycomb of

interconnected hexagonal cells that are nearly perfect hexagons nearest the region of full wall

contact and which get progressively more elongated circumferentially as the liquid moves away

from the wall. This pattern of partial wall contact is shown in Fig. 32(b).

6.3.1 X-RAY RADIOGRAPHY

Radiographs of the flight ampoules in their preflight condition are shown in Fig. 33. A

macrophotograph of the processed flight ampoules is shown as Fig. 34, and radiographs of the
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interiorof theflight ampoules,post-flight,areshownin Fig. 35(a)(primarysample,GCRC-1)
andFig. 35(b)(secondarysample,GCRC-2). It shouldbenotedthat thebulk samplesseenin
Fig. 33,areseparatefrom theseedcrystals,althoughin physicalcontactwith theseeds.When
melted,thebulk liquid contactedtheseedcrystal,dueto theresidualgravitationalvectorand
wettingforces,andsincealiquid will alwayswet its own solid the seedingoperationwas
successfulin bothinstances.

Carefulinspectionof theradiographsinFig. 35showsthatbothof thecrystalsgrownwere
separatedfrom theampoulewall in theshoulderregion. This wasanticipatedandis referredto
as"dewetting,"althoughthis term isnot strictly correct. Wall contactwasnotreestablished
until thefull ampoulecrosssectionis reachedin thesteady-stateregionof growth,anda
significantpore,which is locatedoneachshoulder,shouldbenoted.

6.3.2 OPTICAL MACROSCOPY-BOULE

The color pattern and surface texture pattern on the surface of the GCRC-1 flight sample,

shown in Fig. 36 (prior to sand blasting the surface), and GCRC-2 suggested that each sample

solidified without wall contact throughout the shoulder region and that, when wall contact was

resumed, it was only on one side of the ampoule. Partial wall contact would be expected to

result from gravitational asymmetry, which was not anticipated, and was suspected of causing

significant thermal asymmetry, possibly solutal asymmetry, and probably mechanical

asymmetry. The thermal and thermo-mechanical models were modified, post-flight, to treat the

asymmetric cases encountered, and Fig. 37 shows a typical output. Inspection of the thermal

asymmetry, on the left, shows that the thermal disturbance was smaller than anticipated, due to

the domination of radiative heat transfer at these elevated temperatures. Maximum radial

gradients were on the order of 2°C/cm, with the free surface slightly hotter than the side with
wall contact.

The thermo-mechanical stress experienced by the sample was calculated to be below the

critical resolved shear stress at temperature of this material, unless there was stiction at the

region of wall contact. This was found to be the case, empirically, and will be discussed in

greater detail in a subsequent section.

6.3.3 X-RAY SYNCHROTRON TOPOGRAPHY-BOULE

Synchrotron White Beam Topography (SWBT) at a shallow glancing angle was used to

evaluate the surface condition of the flight samples in the three regions of varying wall contact.

The region of total wall contact gave very poor topographic images (not shown), imaging the

carbon coated inner surface of the ampoule, suggesting high levels of surface strain. The

regions of no wall contact, gave high-quality topographs which suggested that the residual

strain levels were very low. Images of the defect structure in this region suggested the

possibility that the defect density was very low and that dislocations present were discrete

rather than in a fine subgrain or mosaic structure. The regions of no wall contact showed no

sign of twinning at the surface. The regions of partial contact, however, showed strong

evidence of cross slip, and occasional twinning. Deformation of this type was restricted to the

regions of partial wall contact and suggested that the honeycomb surface structure may have

acted as a series of stiction points for the solidification interface resulting in much higher local

stresses and concomitant plastic deformation by dislocation and twinning mechanisms.
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A topographof a regionof theprimary samplethatsolidified with nowall contactisshown
asFig. 38,anda regionof thesamesamplesolidified with partialwall contactis shownasFig.
39. Notethediscretedislocationpatternandlow dislocationdensityin Fig. 38andthehigh
densityof dislocationsmanifestedasoccasionaltwinning andextensiveslip in Fig. 39.

6.4 SECTIONING PLANS

Having thoroughly analyzed the surfaces of the samples, the crystals were then oriented

using x-ray Laue techniques and wafered such that the wafer surfaces were { 111 } planes, which

is the industry standard for LPE substrates. Each flight sample was cropped to remove the

portion of the sample that was not plane-front solidified. The GCRC-1 primary sample was

sectioned on a { 111 } plane that was 15 ° to the growth axis of the crystal. The wafers from both

samples were chemo-mechanically polished and etched with a lactic acid etchant that

differentiated between the A and B faces; A (Cd, Zn) appearing dark and B (Te) appearing

bright.

6.4.1 SCHEMATICS

Figure 40 shows, schematically, the GCRC-2 boule configuration and the wafering plan for

flight sample. Each wafer was cut such that the wafer surface was a { 111 } crystallographic

plane. The orientation of the slices relative to the regions of wall contact differed from sample

to sample.

6.4.2 {111} WAFERS

The wafer arrays assembled from boules GCRC-1 and GCRC-2 are shown photographically

in Fig. 41and Fig. 42, respectively.

6.5 WAFER ANALYSES

Each wafer was subjected to a comprehensive analysis. These analyses included FTIR,

DCRC, XPLP; IR, and Optical microscopy; and Synchrotron White Beam Topography,

Synchrotron Monochromated Beam Topography, and Bragg (Strain) Contour Mapping. It was

anticipated that this spectrum of analyses would document the chemical and structural quality

of the materials. Some results were found to be different in flight samples GCRC- 1 and

GCRC-2. This is most likely due to the significantly different temperature/time histories noted

in section 6.1.1. As a result, examples from both sample sets of samples will be illustrated

where differences occur, whereas only representative results will be presented where similar
results were obtained.

6.5.1 FTIR MAPPING

FTIR transmission of both ground and flight materials was measured to be close to

theoretical; 63% versus 66% (theoretical). This suggested that both the ground and flight

materials were close to the stoichiometric composition. Infrared microscopy and x-ray

measurements confirmed that the principal precipitates were Te and their size (1-10 lam), and
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densitysuggestedthatbothprimaryflight andground-basedsamplesexperiencedsimilar
coolingratesandwerecloseto stoichiometry.

A typical FTIR spectrum is shown as Fig. 43. It should be noted that the extended flat

region of transmission and the high percentage of transmission are indicative of very high

quality material. The present industry standard is 55% transmission, and the current objective

is to move this value commercially to 60%. Transmission in the GCRC PMZF samples was

close to 65% +_1.5% for all samples over a similar wavelength range. Clearly, the commercial

standard was met throughout our investigation, strongly suggesting that our stoichiometric

control during solidification and post-solidification processing is excellent.

6.5.2 DCRC MAPPING

The flight samples were found to be much higher in structural perfection than the ground

samples produced in the same furnace under identical growth conditions except for the

gravitational level. Rocking curve widths in the best regions of the samples were found to be

substantially reduced, from 20/35 arc-sec (one-g) to 9/15 arc-sec (g-g). The value of 9 arc-sec

found in the GCRC-2 sample equals the best reported terrestrially for this material (Northrop

Grumman PMZF and LBBF 38-mm and 64-mm boules, respectively).

X-ray synchrotron Bragg reflection topography confirmed that the GCRC-1 and GCRC-2

wafer surfaces are entirely { 111 }. However, in the GCRC-2 samples, shown in Fig. 44, there

was 180" rotational twinning about the longitudinal axis. It may be seen, for the orientation

shown, that the left third of the wafers are predominantly A faces, whereas the remainder

consists of a single B face. It is thought that the left side of the wafer was the side that

developed wall contact, but we have no reason to believe that this was a factor since the

rotational twin nucleated in regions thought to have been free surfaces throughout.

Both flight samples were analyzed using DCRC mapping as a measure of residual strain in

the crystal. The results suggest that the quality of the flight material, particularly in regions

solidified without wall contact, and as judged by the full width half maximum (FWHM) of the

{333 } Bragg diffraction peak, is substantially better than that recorded for the ground truth

samples. An area map of the FWHM for GCRC-2 flight wafer 7 is shown as Fig. 45. It should

be noted that appreciable areas of the flight samples average FWHM values between 10 and 15

arc-sec, whereas the same regions in the ground truth samples averaged 20 to 35 arc-sec. The

best regions of the GCRC-2 flight wafers, as indicated by the FWHM of the {333 } rocking

curve, are 9.2 arc-sec. This is fully comparable to the best material that has been grown on the

ground, using the PMZF technology or any other commercial technology.

The GCRC-1 wafers showed a different strain pattern, as determined from the DCRC

mapping. The XPLP measurements in Fig. 46 showed a near constant radial composition

across the GCRC-I wafers, as measured using XPLP. These results confirm that, in the steady

state regions of this crystal, diffusion-controlled growth was achieved. The DCRC values at the

same measurement points, however, told a much different story. These values, shown in Fig.

47, revealed a decided gradient in residual strain from the wall contact side to the free surface

side of the GCRC-1 Wafer 3. Similar results were obtained for wafers sliced from further down

the boule. This is consistent with the output of the thermo-mechanical stress model which

predicted that the region of wall contact with stiction significantly exceeded the critical resolved

shear stress at temperature, resulting in residual strain which is greatest at the wall and which

diminishes on progressing toward the free surface.
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TheGCRC-2straindistributionsaredifferentin partbecauseof themannerin whichthe
waferswerecutrelativeto thewall contact. In regionswithout wall contact,thebestmaterialis
foundcloseto thesampleperiphery. In thegroundsamples,andthepreviouslydiscussed
regionof theGCRC-1samplewith wall contact,maximumstrainandpeakwidth were
concentratedat theperipherywherewall contactwasnoted.This suggeststhat,unlike the
groundsamplesthatwereforcedto be in mechanicalcontactwith theampoulewallsduring
processing,theGCRC-2flight samplewasnot,with aresultantsignificantreductionin strain.
Post-flightmodelingof thisprocessconfirmsthishypothesis,with thestressexperiencedby the
freesurfacesignificantlylower thanthatatthewall. This is shownin Fig. 48.

An additionaldifferencebetweenthehighestquality regionsof theflight samplesandthe
ground-basedsamplesappearsin theshapeof theDCRCpeaks.Figure49(a)showsatypical
DCRCpeakandGaussianfit for agoodregionof aPMZFgroundsample.TheFWHM is
about20arc-sec,but thefit atthebaseof thepeak,the"tail" of thecurve,is quitepoor. This
indicatesthatagreementbetweendiffractiontheoryandrealdiffraction isnot good. This
deviationoccursbecausethe"tails" of thecurverepresentthedefectstructureof thereal
samplesandthedefectdistributionin thesesamplesis not the idealdistributionthat thetheory
assumes.Figure49(b) showsthesamepeakandfit, exceptthat it is plottedon alog plot which
emphasizesthetailsof thecurveandfocusesattentionon thelackof agreementbetweentheory
andpractice.Figure50 is agroundsamplefrom acomplementarystudy,wherethetailsof the
curvearewell describedby kinematicdiffractiontheory. Thissampleregionhadafully
developedmosaicsubstructurethatconformswell to thedescriptionof an "ideally imperfect"
crystal. Figure51showsatypical {333} rockingcurvepeakfrom alow-strainregionof the
GCRC-2flight material. In thiscase,thetailsof thecurveareverywell describedby the
Gaussianfit and,takenin concertwith the low densityof discretedislocationregionsimagedon
theflight samplefreesurfaces,suggestedthepossibilitythatthis materialwas"ideally perfect"
materialratherthantheaforementioned"ideally imperfect"materialthatwecommonly
encounterterrestrially. Thecritical testfor this hypothesiswasto imagethesamples
topographicallyin transmission,sothatthedislocationstructurewasimageddirectly.These
resultswill bepresentedin asubsequentsection.

6.5.3 PRECISION LATTICE PARAMETER MAPPING

Precision lattice parameter mapping of the wafers was intended to monitor the local

variation of composition longitudinally and radially. The spatial resolution of this technique

corresponded to the x-ray beam spot size, which was on the order of 0.5 to 1.0 mm :. Sufficient

counts under each x-ray peak were demanded to justify statistical significance and a good fit to

the Gaussian distributions. Typically, the {333 } peak and monochromatic Copper radiation

were utilized for these measurements. Peak anisotropy and peak broadening will be reported
under the DCRC results.

The most important PLP results confirmed that the flight samples solidified under diffusion-

controlled growth conditions. The Zn concentration in the initial transient region of GCRC- 1 is

well described by the one-dimensional diffusion model, and the steady-state concentration

achieved for the bulk growth corresponds to the bulk alloy concentration. In addition, the radial

segregation determined along the central axis of the boule is nearly planar, suggesting a nearly

planar solidification interface and minimal convective contributions to the macrosegregation.

Typical examples are shown in Fig. 52 for the initial and steady-state longitudinal segregation

20



andin Fig. 46 for theradial segregation.

6.5.4 IR MICROSCOPY

The infrared microscopy was aimed at determining whether there was a significant

difference in precipitate distribution between the ground and flight material. The precipitates

being monitored were Te precipitates, consistent with the slight Te excess compositionally used

in these experiments. This excess was intended to maximize the resistance of the material, as

semi-insulating behavior is desirable in the substrate applications that are envisioned.

Two types of precipitates were monitored. The first, referred to in the literature as

"inclusions," result from liquid precipitation and entrapment during solidification. Because this

is a macroscopic phenomenon, these particles are large, i.e., 1 to 10 jam, and sometimes cause

problems in real applications because of their size and irregular distribution. The second

precipitates occur during cooling in the solid state. These precipitates are small, i.e., less than 1

gm, and uniformly distributed.

No difference was noted between the flight sample and ground truth distributions, although

the literature had led us to anticipate that there might be a gravitational dependence. This result

supports the FTIR results that the composition was similar in both cases, slightly Te-rich, and

that no substantive differences existed in this respect, between the flight and ground materials.

A typical IR Transmission Micrograph is shown as Fig. 53. The large triangular precipitate is a

Te "inclusion," whereas the others are thought to be Te precipitates.

6.5.5 OPTICAL MICROSCOPY

Morphologically, the ground samples were found to have a fully developed mosaic structure

consisting of subgrains and large regions of cross-slip, as shown in Fig. 54. The flight samples,

however, exhibited discrete dislocations in all cases, and very low dislocation densities in many

cases, with no mosaic substructure or cross-slip evident. The defect density was reduced from

500,000-1,000,000 (one-g) to 400-3000 EPD (_t-g) in the GCRC-I and GCRC-2 samples, which

are shown as Fig. 55a and Fig. 55b, respectively. The 500 EPD value is the lowest reported for

this material to date and is a spectacular demonstration of the importance of removing wall

contact as a source of stress during solidification and post-solidification processing.

6.5.6 X-RAY SYNCHROTRON TRANSMISSION TOPOGRAPHY

Samples of the flight and ground base materials were chemo-mechanically polished to 180 gm

in thickness and were exposed to monochromatic synchrotron radiation. Only the flight sample

could be brought into diffraction; insufficient transmission resulted in the absence of

topographic imaging for the ground samples. This suggested the probability that the higher

strain content of the ground samples prevented sufficient transmission, whereas the flight

sample permitted transmission due to greater crystalline perfection and lower residual strain.

Figure 56 clearly shows that the dislocations in this shoulder region of GCRC-2 are low in

density and are discrete over large (relative) areas. The singular bright spots are thought to be

Te precipitates, and the long straight lines are two variants of { 111 } twins. This micrograph

confirms the discrete nature and low number density of dislocations in the flight material, as

previously concluded from optical microscopy and the surface topographic studies.
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6.5.7 X-RAY SYNCHROTRON BRAGG CONTOUR MAPPING

Bragg contour mapping uses the highly monochromatic x-ray source as a high-resolution

interferometer. Small angular steps are taken across the angular range of a Bragg reflection,

and the resulting regions that diffract at each setting are recorded on film or on an x-ray camera.

These sequences can then be overlaid, and an image of the strain regions diffracting for each

step can be generated. This appears as a series of strain contours, which can be quantitatively

related to the thermo-mechanical models, or can be integrated to result in a full topographic

image for comparison with optical or infrared images of the same regions. An example for a

PMZF wafer is shown as Fig. 57. It is clearly seen that the high-strain regions are located at the

periphery and anisotropically, as predicted by our model, but that there is also a large core of

high-quality material, intemally. This demonstrates the Strain Contour technique.

For the region of the seed crystal referred to earlier, another variation of this technique was

utilized. An x-ray diffraction vector interacts with the strain tensor at the surface of the crystal,

and strain images can be optimized by rotating the sample relative to the x-ray beam so that the

strained feature of interest is perpendicular to the incident x-ray vector. An example of this is

shown in Fig. 58a and Fig.58b for the seed region of GCRC-2. In Fig. 58b, the diffraction

vector is perpendicular to the melt-back interface of the seed crystal, whereas in Fig. 58a the

diffraction vector is perpendicular to the growth and geometrical axes of the seed/regrowth

region of the sample. In the case of Fig. 57b, the melt-back interface is resolved clearly, and is

shown to be the nearly planar interface anticipated by the thermal model and ground testing. In

Fig. 57a, strain contours are clearly delineated as the regrowth approaches the shoulder, but the

melt-back interface is diffuse. This example demonstrates that, to optimize a specific strain

feature, using monochromatic synchrotron radiation, the best strain contrast will be obtained

when the feature is normal to the diffracting beam.

22



7 -- PROCESS MODELING

The thermo-mechanical process model was used uniquely to predict the residual strain

fields within the crystals grown. This was accomplished by first predicting the thermal fields

experienced by the grown crystals and comparing the model predictions with the actual

temperatures monitored during the crystal growth run. Once agreement was confirmed, the

stresses experienced by the crystal were calculated using the thermo-mechanical process model

developed at Clarkson University. The model predicted the stresses experienced within each
boule. This stressed boule was then sliced on the computer exactly as the real boule had been

empirically. The individual wafer slices, with superimposed residual stress fields, were then

illustrated, for comparison with the strain images obtained using synchrotron topography. End

effects were particularly important to depict rigorously. When done correctly, the correlation

between the predicted excess stress images and the empirically determined strain images were

dramatic evidence for the power of this new technique, and demonstrate that even an elastic

model is valuable as a first approximation. Examples are shown for the residual stresses within

wafers sliced from a model PMZF boule shown as Fig. 59. These slices coincided literally with

slices taken from the real boule. Slice 13 was imaged using SMBT, Fig. 60, and the enlarged

stress image from Fig. 59 is superimposed in Fig. 61. It is clear that major sub-grain features

result directly from the stress field imposed during processing. We believe that this

prediction/correlation is the first time that this has been accomplished for structural defects

within a grown crystal, and is an example of the integrity of the models that we have developed.

Our follow-up experiment on USML-2 will process the flight sample in a thermally

symmetric environment, with full wall contact, hopefully without stiction. This will add to the

comparative matrix and test further the validity of the process models.
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8 -- EXPERIMENT SUMMARY & CONCLUSIONS

FTIR transmission of both ground and flight materials showed that the infrared transmission

was close to theoretical, 63% versus 66%, suggesting that the crystals grown were close to the

stoichiometric composition in both the ground and flight experiments. Infrared microscopy

confirmed that the principal precipitates were Te, and their size (<1-10 pm) and density

suggested that the primary flight and ground base samples experienced similar cooling rates and

were similar in composition.

Macrosegregation was predicted (using scaling analysis) to be low even in one-g crystals,

and this was confirmed experimentally. Nearly diffusion controlled growth was achieved even

in the partial mixing regime on the ground. Radial segregation was monitored in the flight

samples and was found to vary with fraction solidified, but was disturbed due to the asymmetric

gravitational and thermal fields experienced by the flight samples.

The flight samples were found to be much higher in structural perfection than the ground

samples produced in the same furnace under identical growth conditions except for the

gravitational level. The flight material was properly described as "ideally perfect" material

from a diffraction standpoint, whereas ground material was described as ideally imperfect

material. The rocking curve width of the best flight material matched the best achieved

terrestrially, 9.2 arc-sec, using any growth technique. The dislocation density was reduced from

50-100,000 in the ground samples, to 500-2500 in the flight samples. The low dislocation

density completely eliminated the dislocation substructure that is typical of all ground material.

The dislocation reduction is thought to have resulted from the near-absence of hydrostatic

pressure in la-g, which allowed the melt to solidify with minimum or no wall content, resulting

in very low stress being exerted on the crystal during growth and during post-solidification

cooling.
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Fig. 24 Macrophotograph of Melt-back Interface on Seed
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Fig.35 PostflightRadiographsof theFlightSamplelAmpoules

Fig.36 GCRC-1BouleSurfaceMorphology

52





Fig. 37 Thermal Model of Asymmetric Thermal Distribution
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Fig.38 FreeSurfaceTopographof FlightSampleGCRC-1

Fig.39 PartialWallContactSurfaceTopographof FlightSample
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Fig. 42 Photograph of GCRC-2 {111} Wafers
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CdZnTe FLIGHT

Fig. 44 GCRC-2 Etched Wafers Showing Rotational Twin
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Fig. 48 Stress Distribution for Flight Sample with Partial Adhesion
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(a)

(b)

Fig. 54 One-g Microstructure Showing: (a) Microtwins, (b) Mosaic Structure
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(a)

(b)

Fig. 55 GCRC-2 Flight Sample: (a) EPD -2400; (b) EPD -400
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Fig. 56 Transmission SMBT Showing Dislocation Array in GCRC-2
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Fig. 57 {422} Bragg Contour Image of One-g PMZF Sample

68



Fig.58 GCRC-2SeedSMBTopograph:(a)g =0°; (b)g = 90°

Excessstress(MPa) 0._

0.50

0.47

0,43

0.40

0.36

0.32

O.29

0.2.5

O.22

0.18

0.14

0.11

Q 07

004

slice 13

Fig. 59 Thermo-mechanical Model Output, Wafer 13

69





Fig.60 SMBTopograph of Wafer 13

Fig. 61 Superposition of Figures 58 & 59 Showing Correlation
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1. INTRODUCTION

The First United States Microgravity Laboratory (USML- 1) flew on Columbia on

STS-50 from 25 June to 8 July 1992. The Grumman Corporate Research Center (GCRC) flew

one of the four crystal growth experiments accommodated in the Crystal Growth Furnace.

The GCRC experiment involved the growth of CdZnTe, a compound semiconductor, by

directional solidification. As part of the GCRC team, led by Dr. D. Larson, the Center for

Microgravity and Materials Research was responsible for pre-flight assessment of the.

sensitivity of transport conditions to residual acceleration (or g-jitter), for post-flight analysis

of measured residual acceleration data and for preliminary research on mechanisms leading to

detachment of the melt form the ampoule wall.

Accordingly, this report is split into six sections including this section. The second

section describes the results of a study on the g-jitter acceleration-sensitivity of the transport

of Zn in dilute CdTeZn melts. The third section deals with an analysis of the evolution of the

average axial composition profile during solidification under zero-g conditions and comparison

with the observed profile from one of the Grumman USML-1 flight samples. In the fourth

section, the results of our analysis of USML-1 acceleration data is presented and discussed.

The fifth section includes an analysis of possible modes of separation of the melt from the

ampoule during growth under low-gravity accelerations. In the final section, a summary of

publications and conference papers arising from work related to this project are listed.



2. SENSITIVITY OF BRIDGMAN GROWTH OF CdZnTe TO LOW GRAVITY

ACCELERATIONS

2.1 Introduction

The work presented here is an examination of the sensitivity of species transport in

solidifying CdZnTe melts to microgravity accelerations characteristic of low-earth-orbit

spacecraft. In particular, the system under investigation is a model of the Grumman Corporate

Research Center's CdZnTe experiment which was flown on USML-1 in July 1992. The bulk of

the work described here was carried out as part of a preflight analysis. Additional post-flight

analyses were carried out to assess effects of recorded microgravity disturbances (see

section 3 for a description of the microgravity environment on USML-1).

The motivation for this work stems from the knowledge that, depending on the

orientation of the interface in the residual gravity field, buoyancy-driven convective effects in

Bridgman-type crystal growth systems can still cause significant lateral composition

variations in the crystal even at gravity levels 10 -6 times that experienced on Earth [1-5]. For

the CdZnTe system flown on USML-1, density gradients caused by thermal and

compositional varitaions can result in buoyancy-driven convection pre- and post-flight

estimates of residual acceleration effects were necessary. It has been demonstrated [5] that

predictions based on scaling arguments can also be made provided there is sufficient specific

knowledge of the system behavior under a range of conditions. Preferably, such knowlegde

should be obtained from practical experience. In the absence of experimental results, such

knowlegde can be obtained from numerical simulation.

For CdZnTe melts, as for most semiconductors the Prandtl number (Pr - v/K) is less

than unity. That is, the momentum diffusivity (or kinematic viscosity v) is smaller than the

thermal diffusivity, 1<. In such systems, flows are driven throughout the melt interior by

buoyancy forces. At low levels of residual acceleration (and, thus, small buoyancy forces) the

resulting convection, as we shall see, has little effect on the transport of heat. However, the

same cannot be said for species transport. In general, species or solute diffusion is much

slower than momentum diffusion (i.e. Sc = v/D, where D is the solute diffusivity and is

usually >1).. In this case a sluggish residual flow can modify a diffusion field whenever the

convective velocities are of the same order of magnitude as the diffusive velocities.

In order to assess the effects of low gravity acceleration we examine a simplified

model of CdZnTe growth by directional solidification. The model, results and a discussion of

the results are described in the following sections.

2,2 The model system

The 2D model system depicted in Fig. 1 represents the directional solidification of a

dilute CdZnTe melt (4% ZnTe). Solidification takes place as an ampoule of width W is

translated through a temperature gradient. The translation of the ampoule is simulated by



Property

Growth velocity (Vg)

Ampoule length

Ampoule width

Kinematic viscosity (v)

Thermal diffusivity (I<)

Solute diffusivity (D)

Schmidt number (Sc)

Distribution coefficient

Solute expansion coefficient (13s)

Thermal expansion coefficient (13T)

dimension

[cms -1]

[cm]

[cm]

[cm 2 s "1 ]

[cm 2 s-I ]

[cm 2 s-1 ]

[v/D ]

Kyl

Value

5x10-5

6.86

1.5

4.35 xl0 -3

1.08 ×10 -2

?

10, 20, 30

50, 70, 100

1.2

0, 0.3

5 xl0 -4

Source
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supplying a doped melt of bulk composition coo, and density Pm, at a constant velocity Vm at

the bottom of the computational space (inlet), and withdrawing a solid of composition Cs =

Cs(X,t) from the top (crystal-melt interface). The temperature gradient is imposed at the walls

and is modelled after temperature profiles predicted for the CGF furnace (see Appendix A).

At the crystal-melt interface, located at a distance L from the inlet, the temperature is taken

to be Tm, the melting temperature of the crystal. The boundaries of the hot zone are held at a

higher temperature Th. The interface is held flat since we wish to confine our attention to

compositional non-uniformities caused by buoyancy-driven convection, rather than variations

resulting from non-planar crystal-melt interfaces.

Table 1 (Zn) CdTe: Physical Properties

The values of the physical properties were taken from the following sources:
1. Based on estimates of the interface composition during steady growth and from the phase diagram.
2. V.M. Glazov, S. N. Chizhevskaya and S. B. Even'ev, Russian J. Phys. Chem. 43 (1969) 201.
3.. V.M. Glazov, S. N. Chizhevskaya and N. N. Glagoleva, Liquid Semiconductors, (Plenum Press, New

York, 1969)p. 161.
R. F. Brebrick, J. Crystal Growth 86 (1988) 39-48.

6. S. Sen, W. H. Konkel, S. J. Tighe, L. G. Bland, S. R. Sharma and R. E. Taylor, J. Crystal Growth 86 (1988)
111.

7. S. Mokatef, Journal of Crystal Growth 104 (1990) 883.

* The length is chosen from a consideration of our modelling of Teledyne Brown's thermal profile. An " inlet"
condition at the top of the computational space accounts for the fact that we are neglecting finite ampoule size
effects.
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The governingequationsarecast in dimensionlessform using L, rdL (_:is the melt's
thermal diffusivity), 13rnK2/L2, Th-Tm, and cooto scale the lengths, velocity, pressure,

temperature,and solute concentration.The dimensionlessequationsgoverning momentum,
heatand solutetransfer in the melt are then

Otl F q

+ (grad ),,=-gradp+ Pra- + LRaPrO+ RaPrCJg(t), (1)

div u = O, (2)

80
_-_ + u. grad0 = A0, (3)

?C + u. grad C) =AC, (4)S_&
Pr 17[

0 = (T(x,t) - Tm)/(Th - Tm) and C - Cm(X,t)/C m are dimensionless variableswhere, u(x,t),

which respectively represent the velocity, temperature solute concentration. Pr = v/_:, Ra =

[3(Th-Tm)L3g/v_, Ras =13ccooL3g/v_ and Sc = v/D are, respectively, the Prandtl, Rayleigh,

solutal Rayleigh and Schmidt numbers, and v is the kinematic viscosity and D the solute

diffusivity. The term g(t)in (1) specifies the orientation of the gravity vector. The Rayleigh

numbers are taken to be the value of Ra at the Earth's surface, thus the magnitude of g is the

actual acceleration magnitude relative to 1 g. The effective Rayleigh numbers are, thus, the

magnitudes of Ra g(t) and Ras g(t).

The following boundary conditions apply at the crystal-melt interface (y=l)

PegPr 3C = Pe (l-k)C, (5)
0=0, u.N- Sc ' uAN=0, ay g

where Peg = VgL/D and N is the unit vector normal to the interface. We define the measure of

compositional non-uniformity in the crystal at the interface to be the maximum lateral

difference in concentration given by

_(t) -Csmax - Csmin%, (6)
C

say

where Cs is the (dimensional) solute concentration in the crystal, and Csav is the average

concentration. The following boundary conditions are applied at the "inlet" (y--0)

Pe Pr
0=1, u.N- g UAN=0, "-'3---V--_=Pe

Sc ' 3y g

At the side walls the conditions are

(C-l). (7)



PePr
u.N- Scg ' U.ew=0' gradC,ew=0' (8)

with a temperatuedistribution 0 = 0(y) on the walls. Here ewis the normal to the ampoule
wall, and N (the normal to the melt-crystal interface)is parallel to the ampoulewall. In this
model, transient effects related to the gradual decreasein the melt length are ignored. It is
thus implicit that theampouleis sufficiently long for transienteffects to benegligible [ 1-6].

When we undertookthebulk of this work, neither the valueof the diffusivity of ZnTe
CdZNTe melt was not known. Thus, we undertooka parametricstudy using values of the
Schmidtnumber(the ratio of melt kinematicviscosity to dopantdiffusivity) in the range10 <

Sc < 100. We now believe (assuming that the viscosity is close to CdTe's viscosity) that a

Schmidt number of 100 is closest to the truth since, when we compare simple 1D simulations

to radial averages of experimental profiles a value of 3-4 x 10 -5 cm2s -1 seems to give the best

fit (see section 3). We also assumed that the value of the solute expansion coefficient to be

0.3 (about the same as HgTe in CdHgTe melts [7]). The melt density thus decreases with

increasing Zn concentration. Since zinc is preferentially incorporated into the crystal during

growth the ZnTe concentration increases away from the growing crystal. In otherwords, it

reinforces the decrease in density with increasing temperature. This has the effect of

"damping" convection only when the steady acceleration vector is antiparallel to the growth

direction.

2.3 Solution method

The governing equations were recast in the stream-function vorticity formulation and solved

using a pseudo-spectral Chebyshev collocation technique [8,9] which incorporates the

influence matrix method [9].

2.4 Steady acceleration

For steady accelrations of 10 -6 g magnitude oreinted paralel and anti-parallel to the

interface, the lateral composition nonuniformity was on the order of 0.01%. Thus, in practice

for accelerations of these magnitudes and orientations, lateral or radial nonuniformity will be

controlled by the devaition of the interface shape from planarity. Figure 2 shows the

temperature field for a steady acceleration of 10 .6 g. It is insensitive to the convective motion

due to the low magnitude residual acceleration causing the motion and the low Prandtl

number. Note that, in addition to the axial temperature gradient (-12.4 K cm-l), a shallow

lateral temperature gradient is present in the upper part of the melt region.

Figures 3-6 illustrate the velocity and solute fields for two cases where the steady

residual acceleration is parallel to the crystal melt interface. For purely diffusive conditions

(i.e. no convective motion), the velocity vectors would all be the same length and

perpendicular to the crystal-melt interface. Furthermore, the isoconcentrates and crystal-melt

interface would be parallel. At 10 -5 g (see Fig. 3b) a single convective cell has formed. For

the choice of thermal and solute expansion coefficients used here the solute contribution to
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buoyancyis not important.The motion of the liquid reflects the influence of the temperature
field on the density.The cooler denserliquid sinksparallel to the crystal-melt interfacein the
acceleration direction. The isoconcentrates in the melt are distorted. The resulting
composition non-uniformity, {, observedat the interfaceis 4.8% for Sc=10.At accelerations
less than 10.5 g the strength of the cell diminishes as the convective velocities become
comparablein size to the crystal growth rate. At 10 -6 g (see Fig. 3a), there is a barely

perceptible deflection of the velocity vectors from a purely longitudinal flow.

The solute fields, associated with the flows depicted in Fig. 3 are shown in Figs. 4 -6

for different Schmidt numbers. Table 2 gives the magnitudes of the non-uniformity at the

interface in each case. For small Schmidt numbers, _ is ten times higher for 10 -5 g than for 10-

6 g. For the cases examined here, the non-uniformity increases with Schmidt number. Note

that for the purely diffusive case, the isoconcentrates are parallel to the flat crystal-melt

interface and the concentration increases exponentially with increasing distance from the

crystal. Deviations from this diffusive profile result from convective transport in the melt. The

effect of increasing Sc is then twofold :

1 - Even in the absence of convection, the concentration gradient is increased.

2 - The effect of convection is most significant for higher Sc.

As far as the second effect is concerned, for a fixed Grashof number there will be a value of Sc

at which _ reaches a maximum. This has been demonstrated in earlier work by our group (for

low gravity situations) and also by others [10,11].

If the results are expressed in terms of a "Favier-Camel" type transport diagram (see

Fig. 7), our results clearly place us in a diffusive transport regime. At fixed Sc, as the

acceleration is increased, we see that the system is moving toward the so-called convective-

diffusive transition. At fixed Gr, the parametric study also shows that the system first moves

parallel and then away from the convective-diffusive transition. As Sc increases the system

will move further into the diffusive regime. As mentioned above, the nonlinear dependence of

lateral compositional non-uniformity on Sc has been documented in other systems [12-14]. It

can be simply explained upon consideration of the fact that at a fixed value of Gr, the flow has

some ability to penetrate into the solute gradient zone. The degree to which convection is

able to influence transport within this region will diminish as Sc becomes large since the

width of the steep concentration gradient zone will decrease as Sc increases. This reflects a

decrease in the solute diffusivity. Clearly, for 10 _< Sc _< 100, the isoconcentrates shown in

Figs. 4-6 show that the flows predicted for 10-5-10 .6 g will always have the ability to

penetrate into this zone for the cases we have examined owing to the fact that at these

growth rates the concentration gradient is relatively shallow.

2.5 Time-dependent acceleration

In order to understand the effect of the orientation of time-dependent acceleration on

Zn transport during solidification, we have examined the effects of a number of simple and

complex time-dependent acceleration profiles. In all but the extreme cases, we found the
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compositionaluniformity to be relatively insensitive.The results examinedin detail below
correspondto Sc=10,andthe accelerationis sinusoidalwith magnitude10-3 g andfrequency
10-2 Hz.

Table 2
Compositionalnon-uniformity _. The accelerationis parallelto the crystal-meltinterface.

Residual acceleration ( g )

10-6

Schmidt ( Sc ) Non-uniformity ( _ [%] )

10 0.05

20 0.19

30 0.39

50 0.93

70 1.6

100 2.3

10-5 10 0.43

20 1.4

70 4.8

6.1100

For all the cases discussed here (and others examined to date), the non-uniformity at

the interface was found to be very small, on the order of 1%, for the acceleration considered.

For the case of CdTe:Zn, various orientations of the acceleration vector were considered. The

system was found to produce significantly different responses according to the acceleration

orientation.

Acceleration parallel to the interface

The temperature field (see Fig. 8) shows little distortion owing to the low

characteristic thermal diffusion time, and gently oscillates with the frequency of the driving

force. Note that, as for the Ge:Ga cases reported in [12] there are radial as well as axial

temperature gradients.

Figure 9 shows the segregation as a function of time with the corresponding maximum

velocities. There is a long transient in the segregation (2500 seconds). The non-uniformity

increases until the velocity transient is over. Note that at these times the segregation is

modulated at the same frequency as the acceleration. After t=800s, a second peak appears.

The magnitudes of the original and the new peak gradually approach one another. This is also

seen in Fig. 9. This behavior can be explained as follows. The isoconcentrates initially

oscillate preferentially to one side (one maxima per period) because they have been driven to

one side by the velocity transient. Since during the transient there will have been net rotation

of the fluid in one direction, the compositional non-uniformity will reach a maximum toward the



endof the velocity transient. Oncethe fluid behavesregularly the solute field slowly adjusts
to this state.The compositionalnon-uniformity graduallyreducesand reachesa significantly
smallervalueafter anelapsedtime on the orderof the characteristicdiffusion time XD.

The velocity transient is short (see Figs 9b-c). Figure 10 shows the velocity field for

25, 50, 75 and 100 seconds. The velocity is in phase with the driving force owing to the low

Strouhal number (see later discussion). Note that the vector plots are not to the same scale.

Acceleration tilted five degrees with respect to the interface

In this section, the effects of orienting g in other directions are examined. The first

case is for an acceleration oriented 5 degrees with respect to the interface.

Figure 11 illustrates the segregation with the corresponding maximum velocities as a

function of time. Clearly, there are some differences in comparison to the case when the

gravity is parallel to the interface. In the maximum velocity profiles (see Figs 11b-c), note

that the velocity is approximately in phase with the driving force. This is consistent with the

low value of the Strouhal number. However, the peaks do not have the same magnitude. This

suggests that a mean flow has been generated which has a clockwise direction. This is

attributed to the fact that for cases of non-parallel g (non-axisymmetric), the vertical

component of this acceleration results in the generation of a mean flow (see discussion in the

next section ). Note that, near the interface, the density is higher. Therefore, as can be

deduced from Figs. 1 lb-c, the mean flow has a clockwise direction.

The net circulation of the flow in one direction builds up a mean non-uniformity which is

slightly greater than that obtained for parallel acceleration. The segregation profile is shown

in Fig. 1 la. As for the parallel acceleration case, a second peak appears at about 600 s.

However, the magnitude of the first peak decreases with time whereas the magnitude of the

second peak increases and eventually dominates. The initial motion of the fluid drives the

solute to one side. A maximum in interface concentration develops on this side and is

modulated at 10 -2 Hz as the fluid oscillates. After the fluid transient is over, the solute slowly

diffuses to the other side until the spatial and temporal concentration distribution is

compatible with the regularly oscillating velocity field. Since, in this case, a clockwise mean

flow has developed, the transient concentration maximum is shifted such that a maximum

appears on both sides but is larger on the right side due to the mean flow.

Figure 12 shows the concentration field at 25, 50, 75 and 100 s. Note that there is a

maximum on one side and the concentration field oscillates about this continuously increasing

maximum. At longer times, the mean flow causes a non-symmetric oscillation. Figure 13

shows the concentration field at 725, 750, 775 and 800 s. The non-uniformity at the interface

at this time is small (see Fig. i l a ) and,as expected, solute is oscillating from side to side.

This is also reflected in the concentration field of Fig. 14 at 2025, 2050, 2075 and 2100 s.

Acceleration oriented 45 degrees with respect to the interface

In order to further investigate the previous results, the cases of gravity oriented rd4

and 3rt/4 degrees with respect to the vertical axis have been studied and analyzed.

Depending on this orientation, the axial component of the density gradient will tend to



9

diminish or augmentthe fluid flow. Simply by analyzingthedensity gradientand taking into
accountthe orientation of the accelerationthe direction of the meanflow can be ascertained

asfollows. Figure 15shows this schematically. In Fig 16a,the gravity is alwaysparallel to
the interface.At earlier times,the flow hasan anti-clockwisedirection becauseit is initially
ffriven in this direction from a state of rest and takes a short time to relax to a regularly
oscillating condition.At longer times,the buoyancyforceswhich characterizeeachhalf of the
oscillation cycle are equal in magnitude but opposite in sign. Under theseconditions, and
becausethe flow Reynold's number is small, no mean flow is expectedunlesstemperature
oscillations are large.

Now considergravity to be orientedwith 7 in therange_/2 < 7< _ with respect to the

vertical axis (see Fig 15b). The associated flow can be viewed as responding to the

components of the instantaneous acceleration acting parallel and perpendicular to the

interface. During the first half of the period the instantaneous acceleration acting parallel to

the interface dominates the flow and results in an anti-clockwise roll. The instantaneous

perpendicular component acts on the fluid on the right side so as to retard its vertical motion.

During the second half of the period, the instantaneous acceleration acting parallel to the

interface dominates the flow and results in a clockwise roll. The instantaneous perpendicular

component now increases the velocity of the downward moving fluid on the right side while

the motion of the rising fluid on the left side is retarded. After the velocity transient is over,

an average clockwise motion of the fluid develops.

Figure 16 illustrates the non-uniformity and the corresponding maximum velocities as

a function of time when g is oriented at 3_/4 with respect to the vertical axis of the ampoule.

As expected, the maximum magnitude of the velocities for the first half of the period is

smaller than that for the second half. This causes the clockwise direction of the flow. The

compositional non-uniformity behaves in a manner similar to that for the 0.55rt case. The

reversal in the direction of the oscillation of the dopant concentration occurs at about 400 s. It

then oscillates to the other side due to the clockwise direction of the mean flow.

Fig 17 shows the concentration field at 100, 150, 350, 400, 500 and 1000 s. Note that

the non-uniformity is quite small near the interface; it oscillates on one side of the ampoule

until about 400 s (see also Fig. 16), and subsequently oscillates on the other side as the

composition field reaches dynamic equilibrium with the velocity field.

In Fig. 15c, the acceleration is oriented with 7 in the range of 0 <y__r_/2. For the first

half of the period, the acceleration component parallel to the interface again results in a

counterclockwise roll. The vertical component, however, now enhances the downward motion

of the fluid on the left side while slowing the rising fluid on the right hand side. During the

second half of the period, the vertical acceleration component retards all vertical fluid motion.

This eventually results in an average counterclockwise fluid motion.

Fig. 18 illustrates the case when g is oriented rd4 with respect to the vertical axis of

the ampoule. Note the first peak in the maximum velocity profiles is the largest and results in
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the counterclockwisedirectionof the meanflow. The concentrationfield for one period at 25,
50,75 and 100secondsis shownin Fig. 19.

Time-average of the transport equation

As a first approximation, the time-average of the basic equations of conservation can be

written by considering the primitive variables as a sum of a mean and fluctuating part. The mean

conservation equations are then obtained by taking the time-average of the dimensionless equations.

Thus, the mean transport equation can be determined by considering the time-average of equation

(4).The occurrence of a mean transport effect (manifested in the finite mean value of _ in Fig. 9.) can

be explained by the following argument. Our results show that the velocity field and composition

fields behave approximately like

U_

PegPr

Sc
N + Uc(X)sin(cot+q_v), c = Co(X) + Cl(X)sin(cot + q)D)'

where Uc represents the velocity due to buoyant convection, c0(x) is a mean composition profile

(which in the absence of the oscillating flow would correspond to a one-dimensional diffusion profile),

Cl(X) is the oscillating part of the composition and Ov and _)D are the velocity and solute phase

differences with respect to the oscillating acceleration. The contribution of the oscillating flow to the

mean transport can be estimated by taking the time average of the term (u.V)c over one period of

the acceleration. The time average of the product of the oscillatory parts of the velocity and

composition fields then yields a non-vanishing term given by

(Uc.V)c @in(cot + qbv)Sin(cot+%) ) = 1 coS(_v _ %)(uc.V) c I.

Here the time average over one period (2_/co) is denoted by < >. Thus, in this case,

unless the velocity and composition fields oscillate at exactly 90 ° out of phase there will be

some contribution to mean transport even though the mean velocity is practically zero. Note

that, it is sufficient but not necessary that the orientation of g breaks the symmetry of the

buoyancy field. Indeed, inspection of the equations reveals that mean flow is possible even

when the acceleration is parallel to the gradient of the density. This will certainly occur for

Pr>l and also for Sc>l whenever thermal and/or solutal expansion coefficients and wherever

thermal and solutal gradients are large enough to contribute significantly to the density

gradient. The higher Prandtl (Schmidt) number fluids will tend to yield oscillating temperature

(composition) fields. Time averaging the buoyancy field will now yield a mean body force that

must produce a mean flow. The magnitude of this flow will depend on the significance of the

oscillating thermal and solutal contributions of the solute field. Small amplitude oscillations

tend to yield insignificant contributions. This is evident in the results presented earlier, and is

also seen in results of previous work [12].
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Generation of mean flows

For an oscillating body force g(t), the following situations can result in the generation
of a mean flow •

1) For high Prandtl numbers, Pr, the temperature field will, for sufficiently large Gr,

exhibit oscillations. Under these conditions, the temperature field might, for example, behave

as,

-- A

0 = O(x) + O(x)sin (o_ t + q_),

where 0 is the mean temperature and 0 is the amplitude of the oscillation of the temperature.

The time average of the body force is then •

( Io^ t) *^Gr* Pr 2 + e sin(_t +9_ sin_ = Gr Pr 2 e (sin(_t +9_)sino_t/,

which is non-zero. A non-zero mean body force will generate a mean flow. Note that here

Gr* = Gr g/g0 represents the effective Grashof number and _: is the phase due to thermal

diffusion effects.

2) Gr* >> 1: A time average of the convective momentum transport /u. grad u_ may

also generate mean flow terms for high Gr* oscillating flows.

3) Orientation of the body force. As we have seen in the previous section the

orientation of g(t) with respect to the temperature field can also result in mean flow

generation whenever the oscillating body force breaks the symmetry of the temperature field.

2.6 Symmetry breaking Flow transitions

In our investigation of transport under steady acceleration levels approaching terrestrial

conditions we found that for an axial acceleration parallel to the growth direction with Ra=

282,203, a quasi-steady solution with two symmetric co-rotating cells was obtained. This

persisted for some time and then the rate of change of vorticity exhibited a rapid increase.

This occurred as the flow underwent a transition from a symmetric flow with co-rotating cells

to a single-cell non-symmetric flow. Similar behavior has been observed in other 2D models

[15,16] and we are currently collaborating with researchers at the Institute for Fluid

Mechanics in Marseille, France, on an investigation of flow transitions of this type (see

reference [15] for recent results). In a different system (Ge:Ga) and for a melt aspect ratio

(L/W) of 1 we have observed such a transition at Ra~5000. However, to date we have

observed such transitions only in 2D models. For a cylidrical ampoule such transitions can

occur for cases where the cylider is is "heated-from-below" and for perfectly conducting walls

or perfectly insulating walls. Further work is necessary to determine whether the CdTe:Zn

system might exhibit such behavior during ground-based experiments. Should this be the

case, a 3D calculation would be necessary to get a better idea of the solutal and thermal

Rayleigh numbers at which this occurs in 3D systems.
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2.7 Summary

Our work to date has determined that transport under expected Spacelab low gravity

conditions will be dominated by diffusive transport. Given the planned attitude motion of the

Orbiter and the location of the experiment relative to the gravity-gradient, centrifugal, and

l_redicted range of atmospheric drag acceleration, it is unlikely that the compositional

uniformity will be even marginally sensitive to quasi-steady residual acceleration and should

not respond adversely to typical unsteady and transient disturbances except under extreme

circumstances. It will however, be susceptible whenver quasi-steady accelerations

(characteristic of residual acceleration arising from gravity gradient and atmospheric drag) are

greater than 10-6g and are oriented parallel to the melt crystal interface. For the cases of

residual accelerations associated with vibration, the frequency, amplitude and spatial

orientation of the acceleration vector appear to play an important role in determining the

response of the system. For example, for residual accelerations where the acceleration

oscillates about positive and negative of a fixed direction in the system, the orientation of this

direction relative to the density gradient determines whether a mean flow is generated in the

system. The mean flow produces a mean compositional nonuniformity.

During the course of our work we observed three basic aspects of transport

phenomena not previously recognized:

1) If the vibration direction breaks the symmetry of the buoyancy field, then a mean

flow will be produced which, under extreme conditions as far as spacelab conditions are

concerned, can lead to a compositional nonuniformity in the crystal.

2) For sinusoidally oscillating accelerations, even when the mean flow is negligible, a

mean compositional nonuniformity arises when the phase difference (hv-(hD, between the

oscillating velocity and composition fields, is different from 90 ° . 2) For oscillatory g-jitter, if

the orientation of the g-jitter vector does not lie parallel to a symmetry axis of the density

field, then the driving force is inherently asymmetric and a mean flow will result.

3) For steady axial acceleration, as terrestrial conditions are approached, a transition

from symmetric to a non-symmetric flow was observed. Whether this can be expected under

more realistic conditions remains to be determined.
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3. COMPARISON OF A DIFFUSION MODEL WITH PRELIMINARY RESULTS

3.1 Introduction

In this section we compare the results of a 1D model with preliminary results of

c?)mpositional analysis carried out at Marshal Space Flight Center [1]. The model equations

are exactly those proposed by Clayton et al. et al. [2]. The limitations of 1D diffusion models

are well-known and have been discussed at length in the literature (for references see [3]).

Nevertheless, they can still be of use in a preliminary analysis of flight data. The reason for

this is that for the weakly convective conditions predicted in section 2., the average axial

composition profile is close to the classical diffusion profile even when there is significant

lateral nonuniformity in melt composition. Thus, a fit of averaged experimental profiles to an

unsteady ID diffusion model can give a reasonable estimate of the diffusion coefficient. This

allows us to narrow the range of Schmidt numbers for the Cd0.96Zn0.04Te melt. Since we only

have electron microprobe compositional analyses of the flight sample #2 we cautiously

estimate the diffusion coefficient to be between 3 - 4x10 -5 cm2s -1. (The lower value has been

independently obtained by Gillies et al. [I] from averaged data taken from ground samples.)

If we assume the viscosity to be that of CdTe, this places our estimate of the Schmidt number

in the range i00-150.

3.2 Results

The compositional data from flight sample #2 is shown in Fig. 1. Note the abrupt

changes in composition at 10.1 mm and 15.2 mm. We carried out a set of calculations to see if

these changes could correspond to rate changes. The results are shown in Figs. 2-7. Three

rate changes were examined. Fig.1 corresponds to a rate change from 1.6 mm/hr to 8 mm/hr,

Fig. 2 from 1.6 mm/hr to 16 mm/hr and Fig.3 from 1.6 mm/hr to 32 mm/hr. Note that the

concentration changes following each change of rate are sharp, in contrast to those exhibited

in Fig. 1. This may reflect that the model assumes an immediate response to changing

thermal conditions, for example a local deviation from the expected temperature gradient due

to the proximity of a free surface, or that latent heat release is not accounted for by the model.

This question can only be properly addressed with a model that accounts for the deviation of

the interface shape from planarity and that accounts for latent heat release at the advancing

crystal surface.
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4. QUALITATIVE ANALYSIS OF MELT�AMPOULE WETTING CONDITIONS

4.1 Ampoule-melt and crystal-ampoule wetting conditions

There are three mechanisms that can lead to loss of contact between a melt and

ampoule, and a crystal-melt surface and the ampoule [1]. For the CdZnTe microgravity

experiment, loss of contact probably occurred due to two of these mechanisms. The reasons

for this are outlined below. The first is the formation of macroscopic voids in the ampoule. The

second is the so-called dewetting process most recently advanced by Duffar et al. [1]. A

melt solidifying in a partly tapered ampoule may undergo loss of contact in the immediate

vicinity of the crystal-melt interface (see section 4.3). Although this will generally be a

transient phenomenon, it may persist for some time if conditions for necking are satisfied,

particularly if it is coupled with the microscopic dewetting process discussed in section 4.2.

Obviously these conclusions are qualitative and are based on simple geometric and

thermodynamic arguments. More complicated phenomena, such as contact line dynamics at

the ampoule-melt contact, may also have to be accounted for explicitly.

4.2 Crystal.melt-ampoule wall contact under low gravity conditions

During directional solidification the melt, particularly under low gravity conditions, the

melt may locally lose contact with the ampoule wall. As a result, solidification may take

place without the constraint of the ampoule wall. For crystals that expand upon freezing, e.g.,

semiconductors, this leads to a reduction of the stress caused by the constraining ampoule

wall. The general mechanisms that might lead to loss of contact are discussed by Duffar et

al. [1] and are summarized below. This is taken as a starting point for discussing the

solidification of semiconductors in tapered ampoules and possible mechanisms for maintaining

loss of wall contact near the growth front. Then, the extent to which these mechanisms may

apply to CdZnTe solidification is estimated based on limited thermodynamic data and from

qualitative evaluations of previous experiments.

4.3 "Loss-of-contact "mechanisms

4.3.1. Free Volume, bubble and void formation: The formation of voids, bubbles and

other free volumes in semiconductor melts seems to be a thermodynamically and

mechanically unavoidable situation. Under low gravity conditions, these bubbles will

generally not migrate to a common location. They are formed due to such diverse sources as

sample volume variations, sample filling defects, degassing and under conditions when the

liquid will separate into zones due to capillary instability. The following discussion will deal

with the latter. The behavior of liquids in partially filled containers has been addressed in a

preliminary fashion by Sen and Wilcox [2,3]. They carried out an experimental study to

examine the phenomenon of loss of contact between partially wetting and non-wetting liquids

and containers under low gravity conditions. Their results are discussed below.
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Stability of the melt volume

The first thought that comes to mind when considering total melt detachment from a

cylindrical ampoule wall under low gravity conditions is that the melt volume may assume a

prolate cylindrical shape. We know from extensive work on liquid columns or bridges that the

Siability of a cylindrical liquid column depends on its volume, V, aspect ratio A = L/2R, where

L is the column length and R is the radius, and on the contact angles made by the bridges

with their solid supports (in this case the crystal). For the case of a non-wetting melt, one

can envisage the formation of such a volume (depicted schematically in Fig. 27). However,

the shape stability will be limited by capillary instability once the aspect ratio of the melt

becomes sufficiently large. We already know that for melts having volumes = _R2L, the

maximum value of the aspect ratio Amax is _. For other volumes and depending on the

growth angle 0s, the value of Amax may increase or decrease.

CRYSTAL MELT

Fig. 27. Schematic depiction of melt volume following complete or partial loss of wall contact

The maximum stable melt length can be increased by allowing for a significant

difference between melt ampoule volume (see Fig. 28). However, a significant increase

beyond L/D = re, requires volumes greater than the right circular cylindrical volume that could

be contained within the bridge and, thus, would be impractical for a solidification experiment.

In addition, it must be assured that the melt is anchored at both at the crystal and at the far

end. For melt lengths greater than Amax, or simply not sufficiently well anchored, the liquid

will break up into zones. The number of zones and their shape will depend on the volume of

the melt relative to the available space in the ampoule. In addition, the wetting properties of

the melt and ampoule appear to be crucial. For example, Sen and Wilcox [2] observed that for

partially wetting melts the liquid broke up into zones. The extent to which the bulk of the

surfaces of these zones will wet the ampoule wall depends on the wetting angle 0w. For non-

wetting melts, contact may be lost along the bulk of the zone provided that the third fluid

phase (for example a vapor) is able to displace the melt.
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Any residual acceleration will also affect the melt volume. The quasi-steady

component of acceleration may push the melt such that partial wall contact is established.

Sen and Wilcox [2,3] examined different ampoule shapes and found that a triangular cross

section ampoule provided the most regular contact free conditions. They ascribed this to the

ease with which the third phase could move around the ampoule. They also conjectured that it

could be possible for a non-wetting phase to completely lose contact with the wall.

4.3.2. "Dewetting" [1] : Dewetting refers to the loss of melt-ampoule contact

immediately ahead of the growth surface due to the presence of surface roughness on the



45

inner ampoulewall. According to a recentmodel [ 1], dewettingmustoccur in the presenceof
a rough ampoulesurfaceand will dependon thegrowth angle0sandthe wetting angle0w. In
addition, a more sophisticated, and very likely more realistic model must consider the
dynamics of the receding melt-ampoulecontact line and the consequencesfor the contact
angle0w.

It is necessarythat compositewetting occurbetweenthe ampouleand the melt as a
precursorto dewetting.The condition that compositewetting occur is [1]

I/R < -2 cos(0_ - r), ( 1 )

where R = g/pgh, c is the surface tension, g is the acceleration due to gravity, h is the

characteristic height of the liquid above the surface in the acceleration direction and p is the

density of the melt. The angle r is shown in Fig. 29. It is measured with respect to the

perpendicular to the macroscopic ampoule wall and characterizes the steepness of the

asperite. Under zero gravity conditions it is easier to obtain composite wetting since I/R

tends to zero. Note that for a quasi-steady acceleration with a magnitude g, not oriented

axially, the composite condition may only be satisfied locally.

Composite wetting can be simply explained by considering the rough surface to be

composed of microscopic asperites. For sharp asperites (see Fig. 29), the local equilibrium

condition at a sharp edge shows that when the solid angle 8 is greater than re, the liquid

cannot penetrate to the comer. For smooth asperites, the contact angles satisfies the well

known condition [4]

TMvCOS0w ----TVA- _A. (2)

where -¢ is the surface energy of the melt-vapor (MV), vapor ampoule (VA) and melt-

ampoule (MA) respectively. When smooth asperite sides are steep, the wetting angle

0w may not be accommodated in the groove so the melt loses contact with the wall. For

sharp asperites, the microscopic contact angle may take values in the range 0w+8 > 0 > 0w

(see Fig. 29).

/ i///j -TA

Fig. 29 The melt-ampoule contact angle at an asperite.
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Once composite wetting is established, the process of dewetting described by Duffar

et al.[1] occurs in much the same way as for the necking process. Possible contributing

processes are not covered explicitly in their paper and are currently being studied at the

CMMR. Whatever the details of the process, however, it seems reasonable, given the

available experimental data, to assume that dewetting of melts occurs in association with

ampoule roughness.

It should also be emphasized that the idea of dewetting is developed under the

assumption that the melt partially wets the ampoule, i.e., the contact angle is less than _. For

non-wetting melts, the removal of the constraint of gravity leaves open the possibility that

loss of melt-ampoule contact occurs independently of the above mechanisms as discussed in

4.3.1

The last mechanism that can be considered is necking, and although necking does not

occur in most semiconductor melts which expand upon solidification it is worth reviewing the

process since it gives some insight into what may happen at a tapered ampoule.

4.3.3. Necking [1,5] : Shrinkage of a solid upon solidification, resulting in a higher

density solid than the adjacent melt can lead to the phenomenon of necking, i.e., a

considerable reduction in the crystal radius relative to the initial seed. This occurs with some

metals. If shrinkage occurs, then the behavior of the melt at the ampoule-crystal-melt contact

line will be determined by the wetting angle 0w made by the melt with the ampoule, and the

angle of solid wetting 0s or growth made by the melt with its own solid (see Fig. 30). If the

sum 0w + 0s > n, then the melt will tend to draw the crystal away from the ampoule wall at

angle a' = r_ - (0w + 0s) with the growth direction. The introduction of a tapered ampoule with

a taper angle, [3, will result in a reduction in the tendency to draw the crystal away from the

wall. That is, necking will occur only if 0s - [3 + 0w > n. For most semi-conductors, however,

solid expansion rather than contraction occurs upon solidification. Thus, for the right circular

cylindrical ampoule shown in Fig. 30, a semiconductor crystal will generally remain in contact

with the wall. Obviously, necking will be a mechanism for maintaining loss of contact between

the ampoule and the melt-crystal surface. However, if a semiconductor crystal is grown in an

ampoule with a tapered geometry (see Fig. 31), then the loss of contact may occur. It can be

maintained provided that the expansion of the freezing as it leaves the "seed holder" and

enters the tapered section does not continue to force contact with the wall. That is, if the

angle 7 is less than the taper angle 13,then loss of contact may be initiated. The extent of the

melt region that loses contact and the time (or distance solidified) for which this can be

maintained will depend on the difference 13q', the growth angle Os and the wetting angle 0w.

For a shallow taper, with 13> 7 and 0s + ('/- 13)+ Ow > _, necking can occur. (Necking is more

difficult to initiate than for cases where the solid shrinks upon freezing). Note that for the

dewetting mechanism discussed earlier, necking can occur if the dewetted area propagates

several asperites ahead of the growth interface provided that 0s - r + 0w > r_, where r is the
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angleshownin Fig. 29. For CdTe melts on graphitecoatedquartz6, the wetting angle 0w is

about 108 degrees at the melting temperature.

However, the above "mechanism" assumes that the ampoule surface is smooth, that

tl_e melt contact line recedes smoothly and that the contact angles 0w and 0s always have the

same value. For rough surfaces, the contact line has a tendency to be locally pinned at

certain irregularities and will generally allow for a range of angles than a single one. Even for

smooth surfaces there may be a certain deformation of the surface that is allowed before the

melt-ampoule contact line moves.

CRYSTAL

MELT 0w = melt-ampoule

contact angle

= angle of solid wetting

Fig. 30 Relationship between angle of solid wetting and contact angle for a necking crystal. Note that

0s is measured with respect to the growth direction and 0w with respect to the ampoule wall.

CRYSTAL

AMPOULE

Fig. 31 Loss of contact in a tapered geometry
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5. LOW GRAVITY ACCELERATION ENVIRONMENT IN USML-1

5.1 Introduction

The First United States Microgravity Laboratory (USML- 1) flew on Columbia on

S.TS-50 from 25 June to 8 July 1992. Three accelerometer systems measured and recorded

data during the mission. The Orbital Acceleration Research Experiment (OARE) is a triaxial

electrostatic accelerometer package with complete on-orbit calibration capabilities [1-3]. It is

designed to characterize the Orbiter's aerodynamic behavior in the rarefied-flow flight regime

through measurement of low frequency (<5 Hz), low magnitude accelerations. The Space

Acceleration Measurement System (SAMS) was developed to monitor and measure the low-

gravity environment of MSAD-sponsored science payloads on the Orbiter [4,5]. SAMS

consists of up to three remote triaxial sensorheads connected to a main unit by cables. The

sensors use a pendulous proof-mass and force-rebalance coil system to measure acceleration.

Both OARE and SAMS record the acceleration of the Orbiter with respect to a frame of

reference fixed to the accelerometer sensor. The Passive Accelerometer System (PAS) was

designed to measure the quasi-steady residual acceleration caused by a combination of

atmospheric drag and the gravity gradient. The system is used to determine the residual

acceleration environment experienced by experiments with respect to a frame of reference

fixed to the Orbiter. Acceleration is computed indirectly using a modified form of Stokes' Law

using the recorded motion of a small steel proof mass along an oriented tube filled with liquid.

5.2 Experiment Locations

The experiment carrier for USML- 1 was the Spacelab. The Orbiter center of gravity

was about (1091.9", -0.4", 374.0") halfway through the mission. The Passive Accelerometer

System (PAS) measured the quasi-steady acceleration environment of the Flight Deck and

Spacelab on USML- 1. A description of the PAS and PAS results is given elsewhere in this

document Three SAMS heads recorded data in the Spacelab in Racks 3, 9, and 12, see Table

1 for locations. The OARE sensor was located at (1153.28", -1.33", 317.81"). Note that all

locations are given in Orbiter structural coordinates, see Fig. 32. Quasi-steady accelerations

and vibrations measured by these accelerometers are discussed in the following section.

5.3 Disturbance Sources and Resultant Acceleration Levels

The two main components of the low-gravity environment of the Orbiter are quasi-

steady accelerations and vibrations caused by oscillatory and transient sources. These two

components are discussed below in general and specific sources present during USML-1 are

outlined.
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Quasi-steady accelerations: The three major, predictable components of the

quasisteady acceleration environment of orbiting laboratories are aerodynamic drag, gravity

gradient, and rotational (tangential and radial) effects. These contributions are discussed at

length in the literature [6-8]. Modelling of these effects at the CGF location on USML-1

indicate that predicted total contributions were between 7x10-8 g and 9x10-8 g in X-body,

between 2x10-7 and 3x10-7 g in Y-body, and between -8x10-7 and -3xi0-7 g in Z-body, see

Fig.33. Quasi-steady accelerations have a frequency component on the order of 10-4 Hz,

consistent with the orbital period.

An additional acceleration in the same magnitude range was identified in OARE and

PAS measurements taken during USML-I. A component of this acceleration was identified as

the venting force of the Flash Evaporator System (FES) [9]. The FES is a component of the

Orbiter Active Thermal Control Subsystem (ATCS) [10]. Along with the radiators and

ammonia boilers, the FES acts to meet total system heat rejection requirements during flight.

Tt is also used to dump excess potable water in flight. The FES is located in the Orbiter aft

fuselage and is composed of a high-load and topping system contained in one envelope.

Steam generated from the topping evaporator is ejected through two opposing sonic nozzles

on each side of the 'aft Orbiter: (1506", +128", 305") in structural coordinates, see Fig. 34.

The high-load evaporator is not normally used on orbit because it has a propulsive vent; it

was not used on orbit during USML-1 [Q. Carelock, personal communication].

During USML-1, two nozzle FES operations, in topping mode, occurred with about a

28 hour periodicity. The FES removed water at about 10.5 lb hr-1 for 14 hours, followed by a

14 hour off period, see Fig. 35. USML-1 FES operations caused total thrust along the X-body

axis of -0.03 lbf and along the Z-body axis of 0.018 lbf [9]. The resultant linear accelerations

caused by the FES activity are gx=-l.2xl0-7 g, gz=7.6x10-8 g, where gx and gz are

acceleration in the X-body and Z-body directions. Y-body accelerations due to FES

operations cancel due to the opposing nozzle configuration.

Figs. 36 and 37 show the average orientation of the residual acceleration vector

recorded by OARE when FES was off and on [11]. The data represented here were

extrapolated to the CGF location [2] and the signs have been adjusted to transform the data

into an Orbiter fixed reference frame. Note that the -Xb, +Zb nature of the FES venting force

influences the acceleration vector.

Fig. 38 shows the average orientation of the residual acceleration vector recorded by

PAS in the Flight Deck and extrapolated to the CGF location [1 1]. All PAS Flight Deck

measurements were taken while the FES was on. Note that the vector orientation indicated

by PAS is consistent with that shown by OARE when the FES was on.
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The Orbiter Food Water and Waste managementSubsystemprovides basic life

support functions for the flight crew. Two componentsof this system provide storageand

dumping capabilitiesfor potableandwastewater. Threewastewaterdumpsoccurredduring

Spacelaboperations on USML-1. The contributions of these water dumps and the FES
contributionarediscussedin moredetail in anattachedpreprint in Appendix 2.

Vibrational Environment : The vibrational environment on-board a manned orbiting

laboratory is influenced greatly by both spacecraft operations and crew activity. Large

magnitude disturbances caused by Orbiter Reaction Control System firings and crew

exercise, especially if not isolated, are propagated throughout the craft as vibrations at

Orbiter, carrier, and subsystem structural modes. Oscillatory disturbances from spacecraft

fans, motors, and pumps also cause excitation of structural modes. On a smaller scale,

localized vibrations at experiment component structural modes can be excited by Orbiter

operations and by experiment specific operations. In the remainder of this section we discuss

the vibrational environment on USML- 1 as caused by Orbiter Reaction Control System

activity and crew exercise.

The Orbiter Reaction Control System (RCS) provides thrust for attitude (rotational)

maneuvers and small velocity changes (translations) when the Orbiter is above 21,336 m

[10]. RCS modules are located in the forward fuselage nose area and in the left and right

OMS/RCS pods, attached to the aft fuselage. The forward RCS has 14 primary and 2 vernier

RCS engines; the aft RCS has 12 primaries and 2 verniers in each pod. Primary RCS (PRCS)

engines provide 870 lb of thrust each; vernier RCS (VRCS) engines provide 24 Ib of thrust

each. Both RCS engine types can be used in steady-state thrusting mode for one to 125 sec

or in pulse mode with a minimum pulse time of 0.08 sec.

On average, 125 RCS thrusters fired per hour between MET day 3 and MET day 7 on

STS-50. This is the count of total firings and does not take into account the fact that several

thrusters often fire at the same time for attitude control. If simultaneous multiple firings are

considered as a single event, the average number of firings per hour decreases by about 65%.

Fig. 39 is a histogram of the total RCS count from MET 92 hr to MET 184 hr. Note that the

attitude deadband was changed from 0.5" to 0.1 ° at approximately 120 hr. RCS activity

increases by about 98% after this change.

Instantaneous linear accelerations produced by a VRCS firing would be about lx10-4 g.

Instantaneous linear accelerations produced by a PRCS firing would be about 3.5x10-3 g.

Various engine firing durations, simultaneous firings of opposing and/or complementary jets,

the excitation of structural modes, and acceleration data sampling rates make it difficult to

identify a single acceleration value from accelerometer data.
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RCS activity for attitude control is generally necessarybecausethe Orbiter tends to

drift out of a desiredattitude.Suchdrifting is due,for example,to orbit degradationrelatedto

aerodynamicdrag and attitude instability. In addition, Orbiter induced accelerationswill

requireattitudecorrection.An exampleof this which occurredduringUSML- I involvessupply

water dumps.
Potableandwastewateraccumulatedin flight is stored in 74 kg capacitytanks which

can be dumpedoverboardvia vents on the port side of the Orbiter: potable water ports at
(620", -105.5", 342") and waste water ports at (620", -105.5", 336"), in structural

coordinates,seeFig. 34. Three wastewater dumpsoccurredduring Spacelaboperationson

USML-1. Eachwaterdumplastedone hour.The 0.09 lbf venting thrustalong the Y-body axis

caused linear accelerations of approximately gy=3.8x10-7 g. Because of the vent

configuration,X-body andZ-body accelerationsarenegligible. RCSdata for a waterdump at

MET 6/17 indicate that thrusteractivity increasedfrom about 30 firings an hour prior to the

dump, to about30 firings a half hour during thedump,Fig. 40. This increasein activity was in

responseto Orbiter motion causedby the port side waste water dump which causesthe

orbiter to yaw. Fig. 41 showsan accelerationvector magnitudefor the period shown in Fig.

40. Note that transientaccelerationmagnitudesrelatedto VRCS activity are in the 1-4x10-4

g range.

Fig. 42 shows OARE data for an earlier waste water dump. The acceleration

magnitudesaredifferent than the Fig. 41 SAMS databecauseof the different filtering applied

to the data. Note, however, that the Yb and Zb (Fig. 32 lb & c) data clearly show the

responseof the Orbiter to the negativeyaw VRCS jets fired to counteractthe water dump

torque [9].

Another vibration source which existed during USML-1 was crew use of exercise

equipment.During this mission,ergometerexerciseoccurredin threeconfigurations: with the

cycle ergometerhard-mountedto the Flight Deck, with the cycle ergometerattachedto the
ErgometerVibration Isolation System (EVIS) in the mid-deck, and with the cycle ergometer

suspended by bungees in the aft Flight Deck area. A comparison of vibration levels among

the three exercise configurations on USML-1 is presented in Ref. [4]. Vibration levels related

to exercise are not particularly noticeable above the general background in SAMS Head B

(CGF) data. Fig. 43 shows a period during which bungee isolated exercise occurred. Exercise

begins approximately 15 minutes into the plot. The pedalling frequency of about 1.2 Hz is

easily seen in Fig. 43c. Excitation of Orbiter/Spacelab 3.5, 3.7, and 4.7 Hz structural modes

can be seen, although no comment about the power in these modes can be made because this

is above the SAMS filter cut-off frequency. These modes may, in part, be excited because of

their coincidence with upper harmonics of the exercise frequency.
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5.4 Conclusions

The three accelerometer systems flown on the First United States Microgravity

Laboratory mission together provide a working characterization of the quasi-steady

acceleration and vibration environment experienced by experiments during the mission. The

OARE provided a measure of the quasi-steady acceleration environment over the extent of

the mission. The PAS provided a more real-time spot check of the environment for up to 20

minute periods. The data sets resulting from these two systems give consistent values for

the residual acceleration vector magnitude and appear to give a consistent estimate of the

vector direction. Comparisons of the OARE and PAS data sets can only be made for the

times when PAS was used. It is important to note that all PAS measurements were taken

when the Flash Evaporator System was venting excess water.

Acceleration magnitudes obtained from OARE and SAMS cannot be directly compared

because of the different filtering and processing applied to the data. The two data sets can be

used, however, to confirm activity that both record. The OARE and the SAMS data sets both

indicate that waste water venting forces at the port side vent site require increased RCS jet

activity to counteract Orbiter torquing. RCS data from the mission also support this increase

of RCS activity.

SAMS data collected during USML-1 also provide an indication of the vibration levels

related to crew exercise. This subject has been covered quite thoroughly in the literature [4]

and in this meeting. Neither OARE nor PAS is designed to measure exercise related

vibration magnitudes or frequencies.

OARE and PAS accelration measurements taken during USML-1 indicate that some

force acting on the orbiter produced an "extra" acceleration component which cannot be

accounted for by atmopsheric drag, radial and tangential (Euler) effects. Quasi-steady

acceleration measurements made by OARE and PAS and extrapolated to the CGF region are

consistent. Both instruments indicate that the gravity gradient component in the negative Xb

direction was augmented by an acceleration of about 0.5 x 10-6g and that the atmospheric

drag was smaller than 0.5 x 10 -6 g. Venting forces related to FES and water dump activities

contribute accelerations on the order of 10-7g. FES activity has a periodicity of about 28 hours

and this is manifested in the OARE data. These venting contributions do not account for the

total difference between measured and modelled quasi-steady accelerations for USML-1 (see

also Appendix 2). The discrepancy may be due to an error in estimating the venting forces of

the FES nozzles. Other potential sources are still under investigation.

As far as the impact on solute transport conditions in the CdZnTe melt is concerned,

the overall quasi-steady magnitudes would not be expected to contribute significantly to
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lateralcompositionnonuniformity is concernedeventhoughthe orientationof the acceleration

vector often deviatedconsiderably from the desired axial orientation. Thruster firings of

significant duration (0.5-2.0 seconds)occurredat regular intervals (4-8 minutes) for a large

p.grtionof the GCRC experiments. Simulationof the CdZnTemelt's responseto thesefirings

suggeststhat resultingperturbationsto the melt compositionfields will benegligible.
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modelled using actual Orbiter state vector data from MET 63 hr to 89 hr.
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Figure 34 Approximate locations of Orbiter cg, waste and potable water vents (H20), and Flash

Evaporator System vents (FES). See text for coordinates.
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Figure 36 Average orientation of residual acceleration vector recorded by OARE when FES was
off. Data recorded at OARE location and extrapolated to CGF location. From [ 11].
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Figure 37 Average orientation of residual acceleration vector recorded by OARE when FES was
on. Data recorded at OARE location and extrapolated to CGF location. From [11].
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Figure 38 Average orientation of residual acceleration vector recorded by PAS when FES was on.
Data recorded in Flight Deck and extrapolated to CGF location. From [11].
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Figure 39 Total number of RCS jets fired in one hour periods. Note that simultaneous firings are
considered as multiple events and that all firings are of VRCS jets.
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Figure 43 SAMS Head B (CGF) data during bungee isolated exercise. (a) Vector magnitude,
exercise begins, about 15 minutes into plot. (b) Combined amplitude spectrum, pre-
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6. PUBLICATIONS AND PRESENTATIONS

6.1 Presentations

Results of our work during the period of performance of this contract have been the

subject of the following presentations at conferences, workshops and colloquia:

M. J. B. Rogers, R. P. Wolf and J.I.D. Alexander, "Correlation of acceleration data on STS-50",

Joint "L+I" Science Review for USML-1 and USMP-1, Huntsville Alabama, September,
22-24, 1993.

J.I.D. Alexander, "Analysis of Experiment Sensitivity to Residual Acceleration" Invited

presentation at the International Symposium on Microgravity Science and Application,
Beijing, China, May 10-12, 1993

J.I.D. Alexander, "Modelling or Muddling? Analysis of Buoyancy Effects on Transport under

Low Gravity Conditions," World Space Congress, Washington D.C. August 28-
September 5, 1992.

A. Fedoseyev and J.I.D. Alexander, Modelling of Solidification fronts in Ampoules under Low

Gravity Conditions", Alabama Materials Science Conference, Sept. 1993, Huntsville A1.
P. Larroude, J. Ouazzani and J.I.D. Alexander, "Flow Transitions in a 2D Directional

Solidification Model," Proceedings of the 6th Material Science Symposium, European
Space Agency, Brussels, Belgium, 1992.

S. Amiroudine, "Vibrational Convection and Transport Under Low Gravity Conditions," S.E.

Conference on Theoretical and Applied Mechanics (SECTAM) XVI, April 12-14, 1992,
Nashville, Tennessee.

Ll.D. Alexander,"Numerical Analysis of the Effects of Low Gravity on Convection and

Transport," Case Western Reserve University, Department of Mechanical Engineering,
February 6, 1992.

J.I.D. Alexander, "Numerical Simulation of Low-g Fluid Transport," AIAA Short Course on
Low-Gravity Fluid Mechanics, January 10-12, 1992, Reno, Nevada

J.I.D. Alexander, "The Effects of Vibration on Convection and Transport During Directional
Solidification," University of Erlangen, September 10, 1991.

J.I.D. Alexander, "Numerical Analysis of the Sensitivity of Experiments to Spacecraft Low

Gravity Environments", April 9, 1991, Clarkson University, Department of Mechanical
Engineering, Potsdam, New York.

J.I.D. Alexander, "Vibrational Convection and Transport Under Low Gravity Conditions,"

Society of Engineering Science 28th Annual Technical Meeting, November 6-7 1991,
Gainesville, Florida.

S. Amiroudine,"Sensitivity of Bridgman-Stockbarger Crystal Growth to Residual Acceleration,"

5th Annual Alabama Materials Research Conference, September 25-26, 1991,
Birmingham, Alabama.

J.I.D. Alexander, "Numerical Analysis of the Sensitivity of Crystal Growth Experiments to

Spacecraft Residual Acceleration," IUTAM Symposium on Microgravity Fluid

Mechanics, September 2-6, 1991, Bremen, Germany.

J.I.D. Alexander, "Numerical Analysis of the Sensitivity of Crystal Growth Experiments to
Spacecraft Residual Acceleration," Gordon Conference on Gravitational Effects in

Physico-Chemical Systems, (Poster) Plymouth State College, June 16-21, Plymouth,
New Hampshire.

J.I.D. Alexander, "Residual Acceleration Effects on Low Gravity Experiments," Institute de

Mrcanique des Fluides de l'Universit6 d'Aix-Marseille II, January, 1991, Marseille,
France.
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M. J.B. Rogers,R. P.Wolf andJ.I.D. Alexander,"Correlationof accelerationdataon STS-50",
Joint "L+I" Science Review for USML-1 and USMP-1, Huntsville Alabama, September,

22-24, 1993.

6.2 Papers published:

J.I.D. Alexander, "Analysis of Experiment Sensitivity to Residual Acceleration", to appear in

Microgravity Science and Technology.

M.J.B. Rogers, B. P. Matisak and J.I.D. Alexander, "Venting force contributions: Quasi-steady
acceleration on STS-50", to appear Microgravity Science and Technology.

M. J. B. Rogers, R. P. Wolf and J.I.D. Alexander, "Correlation of acceleration data on STS-50",
Joint "L+I" Science Review for USML-1 and USMP-1, Huntsville Alabama,

September, 22-24, 1993.
P. Larroude, J. Ouazzani and J.I.D. Alexander, "Symmetry Breaking Flow Transitions and

Oscillatory Flows in a 2D Directional Solidification Model," in press, European Journal

of Mechanics, 1993.

J.P. Pulicani, S. Krukowski, J.I.D. Alexander, J. Ouazzani, and F. Rosenberger, "Convection in

an Asymmetrically Heated Cylinder,"Internationai Journal of Heat and Mass

Transfer, 35, 2119-2130, 1992.

6.3 Theses

Sakir Amiroudine, "Bridgman-Stockbarger Crystal Growth in Low Gravity: Numerical Analysis

of the Effects of Steady Oscillatory Residual Acceleration on Dopant Uniformity." M.S. Thesis,

University of Alabama Department of Mechanical Engineering, 1992.



REPORT DOCUMENTATION PAGE _,,,,,,,_o_
OMB Net 0704-0188

Pul_icreportingburdenfo¢thta collectionof InformaUonIs estimttndto average 1 hourperresponse.Includingthe timelot'reviewingInstnc'_ons,setu'¢hingmdBtlngdata sources,
gatheringand maintainingthedata needed,andcompletingand reviewingthe ¢olklc_onOfinlormlitlon. Sendcommentsrllgan:llngthis burden estlmlltllor Imyothlwaspectof this
oollectk_ of Information.IncludingsuggestiOrUllot reducingthlll burden,Io WaslllngtonHeedquatlenlServices,Direclorlitefor InlormlilionOperationslind Reports,1215Jefferson
DavisHighway,Suite1204, Arlington.VA22202-.4302,lind tothe Offlonof Managementand Budget.PaperworkReductionPropel (0704-0188),Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1998 Contractor Report "

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

"Shuttle Mission STS-50: Orbital Processing of High-Quality CdTe Compound

Semiconductors Experiment." Subtitle: "Final Flight Sample Characterization

Report"

6. AUTHOR(S)

Principal Investigator: D. J. Larson, Jr.

Co-investigators: L. G. Casagrande, D. Di Marzio, J. I. D. Alexander, F. Carlson,

T. Lee, M. Dudley, & B. Raghathamachar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Northrop Grumman Corporation

Advanced Systems & Technology

Bethpage, New York 11714

9. SPONSORING/MONITORING AGENCY NAME(S} AND ADDRESS(ES)

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

Contract Number:

NAS8-38147

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

MSFC Technical Monitor: Linda Jeter

Final Report

12a. DISTRIBUTiON/AVAILABILITY STATEMENT

Unclassified

Availability: NASA MSFC

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to

investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk

compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better

understand and control the variables within the crystal growth production process. The empirical effort entailed the

development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (It-g) results. This

effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute

redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the

melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments

was analyzed with respect to the residual microgravity (It-g) environment, both steady state and g-jitter. CdZnTe crystals

were grown in one-g and in It-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments

Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two It-g crystals

were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission

(USML-1), STS-50, June 24 - July 9, 1992.

14. SUBJECT TERMS

Orbital processing, compound semiconductors, CdTe, crystal growth, microgravity,

process models, fluid flow, solute redistribution, thermo-mechanical stress, seeding,

convection, macrosegregation, synchrotron, x-ray topography, Space Shuttle, USML

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

145

16. PRICE CODE

i20. LIMITATION
OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
PrescribedbyANSI Std. 7.39-18
298-102





AT01S 0

TURNER J/PUBLICATION

MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE AL.

2

DELETIONS OR CHANGES 544-4494

RETURN ADDRESS AT01D
Document Code: 2444


