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Abstract

Wavelets present a method for signal processing that
may be useful for analyzing responses of dynamical sys-

tems. This paper describes several wavelet-based tools
that have been developed to improve the efficiency of

flight flutter testing. One of the tools uses correlation fil-

tering to identify properties of several modes throughout

a flight test for envelope expansion. Another tool uses

features in time-frequency representations of responses
to characterize nonlinearities in the system dynamics.

A third tool uses modulus and phase information from

a wavelet transform to estimate modal parameters that

can be used to update a linear model and reduce conser-

vatism in robust stability margins.

1. Introduction

Flight flutter testing for envelope expansion is a time-

consuming and dangerous procedure because of the rel-
ative inefficiency of traditional methods. The most com-

mon of these methods is to track damping of structural

modes throughout the envelope and predict the onset

of flutter through decreases noted in the corresponding

trends [11]. The danger with this method, and therein
the main cause of inefficiency, is the possibility of un-
expectedly encountering a flutter instability as a result

of sudden changes in damping that are not indicated by

trends. Thus, the envelope is expanded using small in-

crements in flight condition that reduce the possibility of
such an occurrence.

NASA Dryden Flight Research Center has been develop-

ing tools to increase the efficiency of flight flutter testing
by reducing the required amount of flight time while si-

multaneously increasing safety to aircraft and crew [15].

These tools encompass several areas of flight flutter test-

ing ranging from excitation to data transfer to stabil-
ity prediction. In particular, tools have been formulated

that use wavelets to accurately analyze the types of data
that are typically measured during flight flutter testing.
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Wavelets represent a type of processing that relaxes sev-
eral constraints on the signal that are assumed to be

satisfied when using traditional Fourier processing [24].

The wavelet transform has been used for a wide variety

of signal and image processing applications; however, its
use for dynamical systems, and particularly flight flutter

testing, has been somewhat more limited to applications

such as denoising in the time-frequency domain [3, 7].

A tool has been developed recently to use wavelets as ba-
sis functions for a correlation filter that identifies modal

properties [8]. This tool uses inner products between
data and a set of wavelets as a measure of correlation.

The modal properties of the system are then identified

by noting the associated properties of the wavelets that

are highly correlated with the data.

Another wavelet-based tool that has been recently de-

veloped uses wavelet maps to extract information about

nonlinearities in system dynamics [16, 17]. This tool con-
siders features and trends in the time-domain represen-

tations of transient responses to indicate the presence of

nonlinearities. Furthermore, these features and trends

can be exploited to characterize the nature of the non-
linearities.

A third tool uses wavelets for parametric estimation of

modal dynamics and state-matrix elements [4]. This tool
is developed in conjunction with a flutter analysis tool

such that the parameter estimates are incorporated into
the analysis to reduce the amount of modeling error con-

sidered by robust stability metrics [12]. This tool is espe-

cially appropriate for flight flutter testing by considering
an on-line formulation of the tool that estimates modal

parameters during flight [5].

This paper presents these wavelet-based tools that have

recently been developed for use during flight flutter test-
ing. These tools have been previously documented;

therefore, the purpose here is to present a summary and

compendium of the recent advances.

This paper is divided into 3 main sections such that each

section is devoted to a particular tool. The discussion is
limited for brevity to the basic theoretical foundation

and an example to demonstrate each tool in a flight test
context. References are listed that can be consulted to
obtain more extensive information.
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2. Correlation Filtering

This section presents the wavelet-based tool for correla-

tion filtering. Laplace wavelets are introduced in terms of

damping and natural frequency to represent basis func-

tions for the tool. The filtering uses these functions to

generate a correlation coefficient and indicate modal pa-

rameters of the system. The tool is demonstrated by

filtering data from an envelope expansion flight test.

2.1. Laplace Wavelet

The Laplace wavelet, ¢, is a complex, analytic, single-
sided damped exponential.

{ Ae-:_(t-_)e-J";(t-_) : tE[r,r+T]¢_(t) = 0 :else

The parameter vector, "y = {w,(,r}, determines the
wavelet properties. These parameters are related to

modal dynamic properties by associating w with fre-

quency, _ with viscous damping ratio, and r as a time
index. The coefficient A is an arbitrary factor used to

scale each wavelet to unity norm. The range, T, ensures
the wavelet is compactly supported.

This function is called a Laplace wavelet to emphasize

that its derivation is related to the Laplace transform.

In particular, the Laplace wavelet has a strong similarity
to the inverse Laplace transform of the transfer func-

tion for an underdamped, second-order system. Thus,

the Laplace wavelet is generated by considering features

anticipated in mechanical system responses.

2.2. Laplace Wavelet Dictionary

The analysis of response data from dynamical systems

often uses assumptions of linearity such that the system

response should be a linear combination of subsystem

responses [10]. These subsystems are second-order single
degree of freedom systems in the case of modal analysis.

Signal decomposition of the response into the subsystem

responses for steady-state data can be accomplished via

Fourier transforms which use a basis of infinite length
sinusoids of varying frequencies.

Transient response data are difficult to effectively decom-

pose even for linear systems since the system response

is composed of subsystem responses with time-varying
magnitudes. The basis of infinitely long sinusoids used
by the Fourier transform is not ideal for this nonstation-

ary data. Wavelets may be used for signal decomposition
of transient response data since they inherently allow

time-varying magnitudes of the subsystem responses.

The concept of a dictionary is introduced to describe a

set of wavelets used for signal decomposition [24]. This
dictionary is distinguished from a basis since the re-

sponse of any dynamical system may not necessarily be

expressed as a linear combination of the finite number of

entries in the dictionary. The dictionary approximates

a basis assuming the responses to be analyzed are simi-

lar in nature to the Laplace wavelets. The dictionary is
basically a database of waveforms.

A finite set of wavelet parameters is used to generate the

dictionary. A discrete gridding of the parameter space
results in sets f_, Z and T.

z = {¢l,¢2,...,¢q}cT_+n[0,1)
T = {rl,r2,...,rr}CT_

The dictionary is defined for the set of Laplace wavelets
whose parameters are contained in these sets as denoted
by'yE f_ x Z x T.

2.3. Filtering Approach

An inner product operation measures the correlation be-

tween signals. Correlating a signal, f(t), with a Laplace

wavelet, ¢_(t), measures similarity between frequency

and damping properties of the wavelet and the system
that generated the signal.

A correlation coefficient, _7 E R, is defined to quantify
the degree of correlation between the wavelet and a time

signal. This correlation coefficient considers the angle
between the vectors such that the maximum coefficient

results from correlating parallel vectors.

_ = v_l< ¢-r,f(t) >I
II¢.ll_llfll2

/¢'r is a matrix whose dimensions are determined by the

parameter vectors of {w, ¢, r}. A useful correlation coef-
ficient n(r) is defined for on-line modal analysis to cor-

relate frequency and damping at each time value. Peaks
of the surface plot of n-r for a given r relate the wavelets

with the strongest correlation to the data. Define _(r)
as the peak values of t¢7 at each r and define _ and
as the parameters of the Laplace wavelet associated with

the peak correlation.

Cez

A normalizing factor of v_ allows _;(r) = 1 when the sig-
nal in some time interval T is a linear combination of the

real and imaginary components of a particular wavelet.
The formulation of to(r) searches for a maximum value

across values of w and _. This search can use subsets of

ft and Z to find local maxima and compute a _¢vector

at each time index. The subset searching is analogous
to finding multiple peaks of interest on a frequency spec-

trum plot, with the added variables of damping and time.

The support range T is not explicitly used to define

but it can greatly affect the computed value. Small T
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may increase ,¢ for signals not strongly correlated while

large T may decrease ,_ to the noise floor even for signals

which are strongly correlated. Thus, T can not be chosen
arbitrarily. Knowledge of crest factors, signal-to-noise

ratios, and effective decay rates observed in the data can

all be used in guiding the choice of T.

A correlation filter approach computes the ,_ vector for a
response signal. The dampings _ and frequencies 5 asso-

ciated with peak ,¢ values indicate the modal properties

of the system which generated the data. This filter acts
as a transform from the time domain to a modal param-

eter, or stability, domain. This stability estimate should

be representative of the modal properties of the system

if the data represent a linear, time-invariant system in

free decay.

2.4. Flight Data Analysis

Application to actual aircraft data is required to evalu-
ate Laplace wavelet correlation filtering for use in a flight

test environment. Consider the DAST aircraft (Drones

for Aerodynamic and Structural Testing), a remotely pi-
loted research drone which encountered explosive flutter

in June 1980 [9].

The results of correlation filtering are presented in Fig-

ure 2. Figure 2a presents the acceleration response of
the left wingtip while Figures 2b, 2c, and 2d present

the peak correlation, frequency, and damping values as

a function of time. A threshold _(_-) > 0.8 is applied to

avoid clutter on the plot without discarding interesting
information.

L •F r • L L LLk

F r' r-rl rc

Figure 2: Correlation Filtering of the DAST Data with the
Laplace Wavelet Dictionary: Left Wingtip Acceleration (a),
Peak Correlation Values ,¢(r) > 0.8 (b), Wavelet Frequen-
cies Associated with Peak Correlations (c), Corresponding
Wavelet Damping Values (d)

Figure 1: NASA DAST vehicle in flight

The last 40 s of flight data demonstrate the transition
from stable flight to the onset of flutter and thus are

of interest for evaluating correlation filtering. This data

corresponds to flight at 15,000 # over which the Mach
number varies between approximately 0.80 and 0.825.

Wing-tip accelerations are measured at 500 Hz in re-

sponse to symmetric aileron pulses and are used to ana-
lyze modal properties of the vehicle. A flutter suppres-

sion controller was engaged during this flight; however,
the vehicle encountered a flutter instability due to an

implementation error.

The response data was correlated with a Laplace dictio-

nary based on support T = 2 s. The starting time indices
for filtering, 7, are data dependent and correspond to lo-

cal maxima with an emphasis on transient excursions.

The remaining elements of the dictionary are members
of the sets fl and Z.

f_ = {10:0.25 : 30}

Z = {0 : 0.003 : 0.063}

Classical flutter testing uses trend analysis based on

grouping correlations for a given pulse into an average

value. The results from performing this operation on
the data in Figure 2 are presented in Table 1.

t, s _ _, Hz
-36 0.035 18.25

-32 0.030 18.75
-27 0.027 19.0

-22 0.026 19.0

-17 0.025 19.2
-13 0.022 19.0

-9 0.025/0.009 19.5/18.5
-5 0.018/0.0 19.5/18.5
-2 0.005 19.7
-1 0.000 19.7

Table 1: Frequency and Damping Values Estimated by Cor-
relation Filtering
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As can be seen in both Figure 2 and Table 1, the average
frequency and damping values show a roughly steady

trend until the impulse at t = -13s at which time the

dominant frequency edges up slightly by 0.5 Hz and the

damping tends toward zero. From t = -9s and later,
a progressive increase in residual dynamics observed in

Figure 2a indicates the arrival of the stability boundary.

As the frequency spread converges to a single frequency,

the damping values converge to zero. These estimates

agree with previous parameter estimation results [1].

This analysis demonstrates that frequency and damp-

ing estimates provided by Laplace wavelet analysis are a
diagnostic tool useful for free decay analysis because it

provides time-varying estimates at arbitrary resolutions,
which are not available from Fourier or traditional linear

estimation techniques. This information is particularly
useful in cases such as the DAST where pulse responses

of closed-loop systems are observed specifically with the

intent of tracking modal dynamics in the time domain.

The parameter _ can be utilized to determine sample
length period of the dominant wavelet pattern in the

data. This periodicity can be interpreted as a measure

of the dominant sinusoidal frequency component in the

response data under the approximations that the Mor-
let wavelet is essentially sinusoidal in nature. Thus, the

dominant scale is loosely related to the well-known con-

cepts of ridges and instantaneous frequency [23].

Values of _ are computed at each instant of time to

produce a time-varying measure of dominant scale and

frequency; however, there are instances when no value

can be computed. For example, the real Morlet wavelet

will be alternating from in-phase to out-of-phase with
a sinusoidal signal and so there wilt be instances when

the wavelet does not correlate well with the signal. The

possible misinformation that could result from this is

eliminated by applying a threshold factor that ignores
portions of the wavelet map with no noticeable energy
or low correlation factor.

3. Analyzing Nonlinearities

This section discusses the tool that uses wavelets to ana-

lyze nonlinearities. This tool generates a time-frequency

representation of a signal and then uses associated dom-
inant features to indicate information about nonlinear-

ities in the dominant dynamics. Responses from lin-

ear and nonlinear pitch-plunge systems are analyzed to
demonstrate how nonlinearities are detected and charac-

terized with this tool.

3.1. Extracting Dominant Scales
Wavelet maps can sometimes be difficult to interpret be-

cause of the large amount of information contained in

this two-dimensional representation. Many applications

are only interested in the dominant components of a sig-

nal and consequently are only interested in the dominant
information from these maps. One method of extracting

dominant information is to identify the scales associated

with peaks in the wavelet maps, F(r, a), that are associ-

ated with the Morlet wavelet [24].

Consider a vertical strip F(ti, a) that represents the mag-

nitude of the correlations between the signal f(t) and
wavelets at position r = ti for the vector of scales a E A.

Define F_ as the maximum peak magnitude correlation

for this strip which corresponds to a wavelet with scale
defined as _ E A.

-- "r=t,

F_= F(t_, _) = max F(t_, a) = max F(r, a)
aEA aEA

3.2. Nonlinear Testbed

An aeroelastic testbed is used at Texas A£:M Univer-

sity for flutter research using a prototypical aeroelastic

wing section. This system allows pitch-plunge motion
to represents the bending-torsion motion that is often
association with a classical flutter mechanism.

Nonlinearities are introduced to the system dynamics

through the stiffness associated with pitch movement.

This stiffness is described by a nonlinear polynomial

function of the pitch angle. Such structural nonlineari-
ties occur in physical aeroelastic systems and have been

investigated to determine their effect on inducing limit

cycle oscillations [6].

Models of the Texas A&M aeroelastic system are formu-

lated using three types of stiffness functions to investi-

gate a variety of behaviors related to different nonlinear-
ities. These functions associated with the pitch stiffness

are chosen to represent a linear spring, a nonlinear hard-

ening spring, and a nonlinear softening spring.

The linear spring constant is denoted kti,_.

klin = 2.82

The softening spring function is denoted kso/_.

kso/t = 2.82- 20052 -[- 10000a 4

The hardening spring function is denoted khard.

]Chard = 2.82 - 62.3a + 3709.7c_ 2 - 24196.0c_ 3 + 48757a 4

The models with each of these springs can be linearized
around the equilibrium condition at the phase-plane ori-

gin by eliminating higher-order terms in c_. Each lin-

earized model is identical and has a pitch-mode natural
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1200

(a)
frequency at 1.29 Hz. Thus, the the linear and nonlinear
systems at stable flight conditions should behave simb

larly for responses with small a values.

3.3. Pitch Responses
Simulated free-decay responses are computed for each

nonlinear model using a 4 th order Runge-Kutta algo-

rithm to integrate the equations of motion with a time

step of .001 s. The pitch responses are shown in Figure 3.
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Figure 3: Simulated Time Responses of the Pitch Angle of
Each Model at Airspeed U=8 rn/s : Linear kzi_ (a), Nonlinear
Softening k.oft (b), Nonlinear Hardening kha,'d (C)

The plunge responses are not presented here because

they are not used for the current analysis. The plunge

mode has a higher damping than the pitch mode and

consequently the plunge response decays quickly to zero.

Conversely, the pitch motion continues with a magni-
tude that is sufficient to demonstrate properties of the

dynamics and so the analysis will focus only on the pitch

response.

Time-scale information is obtained by computing the
continuous wavelet transform of these time responses.

Figure 4 presents the maps F(r,a) generated by a

wavelet analysis on the pitch data using real Morlet
wavelet basis functions.

Figure 4 shows 2-dimensional plots of the 3-dimensional

wavelet maps. The correlation magnitude between the
wavelet and signal at each position and scale value is

represented by a shade of gray with white implying low

correlation and black implying high correlation. Such
a shading approach is not optimal for representing these

wavelet maps since several closely spaced scales will often

appear to have a similar correlation magnitude and the
resulting signal decomposition appears to be spread over

these scales; however the 3-dimensional images are often

more difficult to display.
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Figure 4: Wavelet Transform Maps of the Pitch Data Ob-
tained from the Models Simulated at Airspeed U=8 rn/s
: Linear kli. (a), Nonlinear Softening k,oft (b), Nonlinear
Hardening kh_,,-d (C)

3.4. Detecting Nonlinearities
The detection and characterization of nonlinearities af-

fecting the system dynamics is difficult based on the gen-

eral time responses of Figure 3 and corresponding time-
frequency maps of Figure 4. The concept of dominant
scales is therefore introduced as a means to extract the

most important information and simplify the analysis of
nonlinearities.

Figure 5 presents the plots of _ corresponding to the

peak magnitude wavelets from the maps of Figure 4.
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Figure 5: Scale 57 Corresponding to Peaks of the Wavelet
Transform Maps of the Pitch Data Obtained from the Models
Simulated at Airspeed U=8 m/s : Linear k.. (a), Nonlinear
Softening k_oft (b), Nonlinear Hardening kh_,,'d (C)

The wavelet maps in Figure 4 and the scales _-7 corre-

sponding to the peaks of those maps in Figure 5 show

clear differences in the responses from each spring. These

plots may not be immediately obvious to interpret; how-
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ever, a careful examination reveals the wavelet analysis

presents information which can be directly compared to
properties of the dynamical systems. Interpretation is

aided by referring to convenient regions of the time re-

sponse.

Region I 0 < t < 2 s

Region II 2 < t < 7 s
RegionIII 7<t< 10s

Consider the wavelet information from Region I corre-

sponding to the responses for t < 2 s. This portion of the

responses from eac_h system is dominated by the plunge

displacement which is evident from further analysis of

time-domain plots that are not presented here [16]. The
dominant scale associated with each response is initially

low and corresponds to the high-frequency dynamics of

the plunge mode. The presence of this dynamic is a result
of the pitch-plunge coupling through the mass matrix in

the equations of motion.

The transition at the end of Region I is caused by the de-

cay of the plunge-mode response and an emerging dom-
inance of the pitch-mode response. This early decay is a

result of the larger damping in the plunge mode as com-
pared to the pitch mode. The wavelet map demonstrates

an increase in dominant scale to correspond with the de-

crease in frequency between between dominant modes.

The response in Region II is dominated by the dynamics
of the pitch motion with only a small contribution from

the coupled plunge motion so this data is useful for an-

alyzing the dynamics of a single degree of freedom pitch

system. The dominant scale, _, demonstrates signifi-
cantly different behavior for the wavelet analysis of the

three systems as evident from Figure 5.

The constant scale _ for the linear system response in

Region II is directly indicative of linear system dynam-

ics. The response in this Region results from a linear and

time-invariant system with a single mode so the domi-
nant frequency in the response should be constant and
thus the dominant wavelet scale should be constant. The

dominant scale has a value of _ = 625 and a corre-

sponding frequency is computed as the sampling rate of

1000 Hz divided by this scale. The true frequency is
then computed by normalizing the ratio by 1.2 which is

the dominant wavelength of the Morlet wavelet. Thus

the linearized responses shows a dominant frequency of
1.333 Hz which is similar to the predicted natural fre-

quency of the pitch mode for the linear system.

The time-varying values of _ associated with the re-

sponses in Region II from the system with a nonlin-

ear hardening spring are considerably different than the
scale for the linear system. Consider that the response

from the system with a hardening spring initially shows

a small dominant scale and increases with time. The

effect of a hardening spring is to incur a larger restor-
ing force at large amplitudes as compared to a linear

spring. This force returns the system to the origin faster

and consequently the response has a higher frequency
for the nonlinear system. The difference between non-

linear and linear decreases as the response decays to a

smaller amplitude and so the frequency in the responses

becomes nearly identical. Thus, the wavelet maps reveal

this behavior because an increasing scale is indicative of
a decrease in frequency.

A similar analysis on the dominant scales associated with

the response of the nonlinear system with the softening

spring demonstrates the wavelet maps can detect and
characterize this nonlinearity also. In this case, the soft-

ening spring results in a lower frequency in the response

as compared to the linear system but the difference is
small when the response amplitude is small. The domi-

nant scale is initially larger for the response of the non-

linear system as compared to the linear system and de-

creases as time increases. Thus, the wavelet map reveals
the initial frequency is lower in the response of the non-

linear system but it increases as the response decays to
small amplitude.

The Region III analysis from Figure 5 notes the dominant

scales, and consequently the frequency components, are

similar for the responses from each system. This result

is expected because the response magnitude has decayed
as a result of damping and so each system can be approx-

imated by the same linearized dynamics. The period of

the dominant wavelet is _ = 625 which corresponds to
a frequency of w = 1.33 Hz and matches the natural

frequency of the linearized system.

The wavelet maps of the time responses are clearly in-
dicative of nonlinearities under the assumptions of free-

decay responses from single-mode, time-invariant sys-

tems. In particular, the responses in Region II reveal

distinct differences between the responses of linear and
nonlinear systems. Furthermore, these differences can
be used to characterize the nature of the nonlinearities

in the system dynamics.

4. Model Updating

This section presents the tool for parametric estima-
tion of modal dynamics. A theoretical overview of the

wavelet-based estimation is derived in terms of magni-
tude and phase characteristics. The # method for flutter

analysis is then discussed with respect to extending the
baseline method to include the estimation tool. Robust

flutter margins are generated for an F/A-18 using a nom-

inal model and a model updated by the wavelet tool.
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4.1. Parametric Modal Estimation

Consider f(t) = k(t)cos(¢(t)t) as a general harmonic

signal that may represent a typical sensor measurement.
The corresponding wavelet transform, F(a,r), can be

analytically derived for a set of Morlet wavelets.

F(a, 7-) = v/-dk(t)e-(a¢(t)-_o)_e_¢(t)_

The modulus and phase of this wavelet transform are of

interest because they indicate modal properties of the
system. In particular, these quantities can be evaluated

for a given scale, ai, that corresponds to a natural fre-

quency, of the system.

IF(a,,T)l = v/-_k(t)e -(a'¢(t)-_°)=

Z[F(ai,_)] = ¢(t)_

A concept of instantaneous frequency can be easily de-
rived using the expression of phase of the wavelet trans-

form [22]. This concept shows that a general time-

varying envelope, k(t), or time-varying phase, ¢(t), of the

signal can be determined from the modulus and phase of

the wavelet transform for specific frequencies.

Flight data measured during flutter testing will often dis-

play features associated with viscously-damped, single

degree of freedom systems. The corresponding envelope
and phase functions can be explicitly written by noting

that f(t) = Ae -¢_*t COS(Wdt q- ¢o) describes the mea-

sured signal. The corresponding wavelet expression for
the envelope and instantaneous frequency for these sys-

tems can be formulated based on the general expression.

k(t) = If(a"r)l -- Ae -_"t
_/_ze_(ai4_(r)__o)2 --

¢(t)7 = /[F(ai, T)] = Wdt h- ¢o

The expression using phase of the wavelet transform in-
dicates that the relationship between instantaneous fre-

quency and damped natural frequency can be expressed
as ¢ _ Wd. Similarly, the envelope decay rate can ex-

pressed as _wn. Thus, modal parameters of the system

can be estimated by analyzing modulus and phase of the
wavelet transform.

4.2. p Method with Wavelet Processing

A method to compute stability margins of aeroservoelas-

tic systems has been formulated based on robust stability
theory[12]. This method uses a set of structured opera-

tors A, referred to as uncertainty, to describe errors and
unmodeled dynamics in an analytical model. The struc-

tured singular value, #, is used to compute a stability

margin for this model that is robust, or worst-case, to

the uncertainty operators[20].

The # framework represents systems as operators with
interconnections known as linear fractional transforma-

tions. This paper will use the notation F(P, A) to repre-

sent a feedback interconnection of the plant, P, and an

associated uncertainty, A.

Flight data is incorporated into the /_ method by for-
mulating an uncertainty description that accounts for

observed variations and errors[13]. A model validation

analysis is performed on the plant model to ensure the

range of dynamics admitted by the uncertainty is suffi-
cient to cover the range observed with the flight data.

An ASE stability margin, F, is determined by computing

# with respect to an uncertainty description, _, that ad-
mits variations in dynamic pressure and an uncertainty

description, A, that describes modeling errors[14]. This

margin relates the largest change in dynamic pressure

that may be considered while guaranteeing the plant
model is robustly stable to all errors described by A.

An implementation of the # method with modal param-
eter estimation has been formulated that analyzes the

wavelet maps of flight data to extract frequencies and

dampings. A plant model, P1, is computed by updating

elements of the nominal plant model, Po, with the modal

parameter estimates. Only a limited subset of dynamics

will be observed in the data so only a correspondingly
limited subset of the plant modes will be updated. The

parameters describing dynamics that are not observed

by the data can not be estimated so the updated plant
will directly use the nominal plant elements to describe

these dynamics.

An uncertainty description, A1, is generated for the plant

with updated modal parameters, P1, using a model val-

idation procedure. This description will generally be
smaller than the description associated with the nom-

inal plant because the updated model should be more

representative of the flight data. Essentially, the updated

model is centered within the range of dynamics observed

by the flight data.

The conservatism in robust margins computed by the

p method arises from excessive uncertainty descriptions
needed to account for errors in a model. The decrease

in uncertainty resulting from updating the model by the

parameter estimation process may correspondingly de-
crease the conservatism in the robust stability margin.

4.3. F/A-18 HARV

Robust stability margins for the aeroservoelastic dynam-
ics of the F/A-18 HARV are computed using the #

method with wavelet filtering. This aircraft, shown in
Figure 6, is a twin-seat fighter that was modified to

include thrust vectoring paddles on the engines and a

research flight control system [21]. The flight system
also included a method to generate excitation signals for

measuring aeroservoelastic responses by summing pro-

grammed digital signals to the controller commands to

the actuators [2]. Inputs from 5 to 25 Hz were added to
the control surface commands at angles of attack from 5

to 70 deg of c_ at lg.
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Figure 6:F/A-18 HARV

The # method was used to analyze the stability margins
at several points in the envelope; however, this paper

will only consider the worst-case condition [18]. This
worst-case margin is associated with the antisymmetric

modes of the lateral-directional dynamics for the aircraft

at Mach 0.3 and an altitude of 30000 ft with the dynamic
pressure at _ = 41 lb/ft 2. The baseline/_ method indi-

cates an instability may lie close to the flight envelope so

any reduction in conservatism could be significant.

A set of operators are used to indicate uncertainties in

an analytical model. A complex operator, Aim, is a mul-

tiplicative uncertainty in the control inputs to the plant

and accounts for actuator errors and unmodeled dynam-
ics. Another complex operator, A_d, relates the control

inputs to the feedback measurements to account for un-

certainty in the magnitude and phase of the computed

plant responses. The remaining operator, AA, is a real
parametric uncertainty affecting the modal parameters

of the open-loop state matrix to describe errors in natu-

ral frequency and damping parameters.

The block diagram for robust stability analysis of the
F/A-18 HARV aeroservoelastic dynamics is shown in

Figure 7. This figure includes an operator, _, that af-
fects the nominal dynamics to describe changes in flight
condition and is used to interpret/_ as a stability mar-

gin [14]. Additional operators, Wad d and W_,_, are shown

as weightings to normalize the frequency-varying uncer-
tainty operators, A_ad and A_.

noise

U

Figure 7:F/A-18 HARV UncertaintyBlock Diagram for
Robust StabilityMargin Analysis

ing the modulus and phase of the wavelet transform of ac-

celerations measured in response to sine sweeps through

the control surfaces. An uncertainty description, A1, is
derived to account for features in the data that can not

be exactly reproduced by the updated model.

Table 2 presents an example of the modal properties for

the original and updated models. The parameters are

larger for the updated model than for the original model
because the flight data indicates the theoretical values

are too low. Consequently, the amount of variation in

the parameters that results from uncertainty is consid-
erably less for the updated model than for the original

model. Note the absolute amount of variation in damp-

ing is actually greater for the updated model; however,

the percentage of variation is less and this is the impor-
tant consideration for this analysis.

model _v (Hz)
F(Po,Ao) 15.69 + .63 .010 ± .007

F(P1,A1) 16.51 ± .35 .045 ± .023

Table 2: Modal Parameters and Uncertainty Variations for
the Wing Fore-Aft Mode for Each Model

4.4. Models and Uncertainty

An initial model of the aircraft, P0, is computed us-

ing 6 rigid-body modes and 10 antisymmetric structural

modes along with 20 states associated with the unsteady
aerodynamics. The control system adds 90 states to ac-

count for actuator dynamics and 29 states for the feed-
back controller.

An updated model, P1, is computed by using modal pa-

rameter estimates to replace elements of the structural

modes of P0. These parameters are generated by analyz-

4.5. ASE Stability Margins

Nominal stability margins are computed for the plant
model using the original theoretical modal parameters

and the updated models using parameters estimated

from wavelet filtering. These margins are computed from

a # analysis with respect to the variation in flight condi-
tion, _, but ignoring the modal and complex uncertainty

operators. The nominal stability margins, F, are given
in Table 3 and demonstrate the largest decrease from the

nominal dynamic pressure of _ = 41 Ib/ft 2 that may be

considered before the models incur an ASE instability.
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model F

F(Po, 0) -268 lb/ff 2 14.8 Hz
F(P1,0) -368 Ib/ft 2 14.8 Hz

Table 3: Nominal Stability Margins for Each Model

The original theoretical model has a nominal stability
margin of F = -268 Ib/ft _ resulting from a critical insta-

bility of the wing fore-aft mode at 14.8 Hz. The margin

is increased by updating the model with modal param-

eter estimates; however, the wing fore-aft mode remains
the critical mode. This increase in stability margin asso-

ciated with wavelet filtering is not guaranteed to occur

for all applications; rather, the filtering is designed to
make the nominal model more accurate. The nominal

model for the F/A-18 HARV had low dampings so the
wavelet filtering increased the modal damping levels and,

in a sense, made the plant effectively more stable and in-

creased the stability margins.

These nominal margins are all greater than the dynamic

pressure at this flight condition so they demonstrate the

nearest instability to the flight envelope occurs at a neg-

ative dynamic pressure, which is physically unrealizable.
Thus, the nominal dynamics are free of ASE instabilities

within the research flight envelope.

Robust stability margins are computed with respect to

the uncertainty description of Figure 7 and given in Ta-
ble 4. The original model and uncertainty description is

represented by F(P0, A0) while the updated model with
reduced uncertainty description is given by F(PI, A1).

model F aJ

F(Po, Ao) -4 Ib/f't _ 15.4 Hz
F(P1, At) -222 lb/f't 2 7.0 Hz

Table 4: Robust Stability Margins for Each Model

The stability margin of the original model is strongly
affected by considering uncertainty. This margin is re-

duced from F = -268 lb/f_ for the nominal dynamics
to F = -4 lb/f-t 2 for the dynamics with respect to uncer-

tainty. The critical mode remains th e wing fore-aft mode
despite the uncertainty; however, the dynamic pressure

at which this mode becomes unstable is quite different.

This robust stability margin demonstrates the nominal

model may be misleading and the nearest unstable flight
condition may actually lie close to the flight envelope.

The robust stability margin for the model F(P1,A1),

which uses modal parameter estimates, is significantly

larger than the margin of the original system. The
wavelet processing is able to identify a more accurate

model with less associated uncertainty so the conser-

vatism in the margin is reduced. The robust stability
margin for this model is F = -222 Ib/f'_ and indicates

the nearest instability for the updated model, despite

the range of dynamics incurred by uncertainty, is at a
negative dynamic pressure and so the flight envelope is

robustly free of ASE instabilities.

The critical mode associated with the robust stability

margin for the updated model is the first fuselage bend-
ing mode, which is different than the critical mode as-

sociated with the nominal margin. This shift in critical

modes results from the inclusion of uncertainty that al-
lows a variation to the fuselage dynamics that becomes

unstable before the wing fore-aft mode. Similarly, the

critical mode for the robust stability margin of the orig-

inal model F(P0, A0) is the wing fore-aft mode, but the

reduced uncertainty associated with F(P1, A1) shifts the
critical mode so the variation in fuselage dynamics for the

updated model encompasses the critical instability.

Comparison between the nominal results in Table 3 and
the robust results of Table 4, both in F and modal fre-

quency, clearly show the change in stability characteris-

tics resulting from model updating and the correspond-

ing uncertainty updating. The original model showed a
substantial decrease in margin for the instability associ-

ated with the wing-fore .aft mode when uncertainty was

included. The updated model showed a much smaller

decrease in margin despite the shift in modal instability.
For this model, wing fore-aft modal frequency increased

about 1 Hz from its theoretical value to the updated

value and thereby became a less significant factor in the
stability margin calculation compared with the fuselage

mode. This result confirms that the effect of parameter
estimation in model validation can be a critical factor for

predicting robust stability margins.

5. Concluding Remarks

Wavelet analysis produces a time-frequency representa-

tion of data from which informative features may be ex-
tracted. This paper has shown several applications of

wavelets that are valuable for flight flutter testing. A

correlation filter is developed that can identify modal
properties and indicate coupling and perhaps the onset of

flutter during envelope expansion. Another application

can be used to characterize nonlinearities in the system

that may indicate behaviors such as limit cycle oscilla-
tions. Also, a method of modal parameter estimation

is developed that can be used to update models and re-

duce conservatism in robust stability margins and allow
envelope expansion to proceed to points that may be ini-

tially considered as dangerous because of excessive con-

servatism in original models.
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