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ABSTRACT

This paper discusses a method for the

identification and application of reduced-order

models based on linear and nonlinear aerodynamic

impulse responses. The Voherra theory of

nonlinear systems and an appropriate kernel
identification technique axe described. Insight

into the nature of kernels is provided by applying

the method to the nonlinear Riccati equation in a
non-aerodynamic application. The method is

then applied to a nonlinear aerodynamic model of

an RAE 2822 supercritical airfoil undergoing

plunge motions using the CFL3D Navier-Stokes

flow solver with the Spalart-Allmaras turbulence

model. Results demonstrate the computational
efficiency of the technique.

INTRODUCTION

As the complexity of modem computational
fluid dynamics (CFD) codes increases, so does

their computational cost and execution time. As

a result, these codes are not used routinely in

disciplines where the information provided by

these codes could be of great benefit. These
disciplines include aeroelasticity,

aeroservoelasticity, optimization, and preliminary

design. In order to improve this situation, the
development of reduced-order models has become

a major goal of several national and international

organizations H-'.

A reduced-order model is a simplified

mathematical model that encapsulates most, if
not all, of the fundamental dynamics of a more

complex system. Due to its mathematical

simplification, the computational cost (CPU
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memory, execution time, and turnaround time) of
using a reduced-order model can be orders of

magnitude lower than the computational cost of

using the original more complex system. In the

case of CFD codes, development of aerodynamic

reduced-order models provides a cost-effective

means for incorporating CFD analyses into
several disciplines where, heretofore, it has not

been incorporated.

This paper will discuss reduced-order

aerodynamic models based on linear and nonlinear
aerodynamic impulse responses. Previously 9"_2,

the concept of an aerodynamic impulse response
was introduced and its relationship to the more

traditional aerodynamic functions (Wagner's,

Theodorsen's) was defined. Aerodynamic impulse

responses are obtained from any CFD model of

interest using standard digital signal processing

techniques and the Volterra theory of nonlinear
systems 9"1-'. Computationally-efficient linear and

nonlinear digital convolution schemes are then

applied for predicting the response of the
nonlinear aerodynamic system to arbitrary inputs.

The paper begins with mathematical

definitions of time-invariant and time-varying

systems. This is followed by a description of the

Volterra theory of nonlinear systems, including
derivation of the kernel identification equations.

These kernel identification equations are then

applied to nonlinear systems in order to gain

insight into the nature of the kernels. The

nonlinear systems investigated include: first, a
nonlinear Riccatti circuit which will illustrate the

nature of kernels and then a plunging airfoil

using the CFL3D (Navier-Stokes) flow solver

with the Spalart-Allmaras turbulence model.

MATHEMATICAL SYSTEMS

A time-invariant (TI) system, also referred to

as a shift-invariant, stationary or autonomous

system, is a system whose fundamental

properties do not change with time. That is, the
equations defining a TI system are not explicit
functions of time so
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An example of a simple, TI, nonlinear system is

a pendulum. Although the full nonlinear

equation of a pendulum is certainly a function of

time which can exhibit nonlinear, unsteady
responses if an unsteady excitation is applied,

neither the length of the pendulum nor the mass

at the end of the pendulum are functions of
time J3.

Differential equations with constant
coefficients are TI because the coefficients are not

explicit functions of time. But not all TI

systems are defined by equations with constant
coefficients. Time-invariance is sometimes

mistakenly interpreted as implying functions that

are independent of time. Even a classical,

fundamental text such as Ref. 14 misinterprets

nonlinear, TI systems as systems that do not
accept time-dependent forcing functions. This is

clearly not correct since the time-invariance of a

system refers to the system itself and not to the

characterization of the inputs or outputs (i.e.,
steady or unsteady) of the system.

A time-varying (TV) system, also referred to

as a non-stationary or non-autonomous system,

is a system whose fundamental properties do

change with time. That is

f = f(x, 4, R, ..., t)

An example of a TV system is a rocket during
launch. The mass of the rocket, mostly fuel, is

spent very quickly. The mass of the rocket, and

therefore the rocket's dynamics, are changing

with time. The identification of impulse

responses for a time-varying system is typically

more complicated than for a TI system.

Reference 15 addresses the problem of Voiterra
kernel identification for TV, nonlinear systems.

Fortunately, for many of the problems in

aircraft unsteady aerodynamics, aeroelasticity, and
aeroservoelasticity, the governing nonlinear

equations are time invariant. Although an

airplane's fuel quantity, or mass, is certainly not

constant, present-day analyses treat an airplane's

fuel loading as separate, constant-mass cases (full

fuel to near empty, for example) as opposed to a
continuously-varying quantity. The linearization

of these TI, nonlinear equations about an

operating point yields the familiar TI, linear
equations that comprise the majority of modem-

day, linear analysis techniques within these
disciplines.

The Navier-Stokes equations do not have any

coefficients that are explicit functions of time.

As a result, the Navier-Stokes equations are, by
definition, time invariant KLt2. The discretized

Navier-Stokes equations, or CFD codes, do

exhibit time-varying behavior at certain

conditions, especially in the initial time steps
when the residual (error) is in the process of

converging to an acceptably small number. But

the residual term is a byproduct of discretization

that is not present in the continuous-time Navier-

Stokes equations. A condition of consistency
requires that, in the limit, the discretized system

approach the original, continuous-time system.

Therefore, given appropriate discretization and
convergence of the residual, the discretized

Navier-Stokes equations should be, and are in

fact, TI as well. This is important since it would

be unacceptable for a discretization process to
transform a TI system into a TV system, as the

associated dynamics of a TI system versus those

of a TV system are vastly different.

VOLTERRA THEORY

Introduction

The Volterra t6 theory was developed in 1930.

The theory is based on functionals, or functions
of other functions, and subsequently became a

generalization of the linear convolution integral

approach that is applied to linear, time-invariant

(LTI) systems.

The basic premise of the Volterra theory of
nonlinear systems tT"ta is that any nonlinear

system can be modeled as an infinite sum of

multidimensional convolution integrals of

increasing order. This infinite sum, presented
here in continuous-time form, is known as the

Volterra series and it has the form

y(t) = h0 + 7hl(t-r)u(.r)dr +
0

ot) oo

j" J'h2(t- rl,t- r2) u(r 1) u(r 2) drtdr 2 +...
00

+7...7h n (t- r I ..... t- r n )u(r I )...u(m )d r I ...dr n
0 0
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where y(t) is the response of the nonlinear

system to u(t), an arbitrary input; h_j is a steady

value about which the response is computed;

h(t) is the first-order kernel or the linear unit

impulse response; h2(zt,_2) is the second-order

kernel, and hn(x z..... xn) is the n_-order kernel. It

is assumed that: 1) the kernels, input function,
and the output function are real-valued functions;

2) the system is causal ; and 3) the system is
time invariant.

Inspection of Equation (I) reveals some very
interesting and characteristic features of the

Volterra series. The value of h0 is known based

on the steady-state value of the system at a

particular condition. It does not require any
special identification technique. This will be

discussed in more detail when applied to an

aerodynamic system. Also, if the kernels of

order two and above are zero, then the response of

the system is linear and is completely described

by the unit impulse response hi(t), and the f'trst-

order convolution integral.

The higher order kernels (h2('_1,'172) .....

h,(z_ ..... x,)) are the responses of the nonlinear

system to multiple unit impulses, with the

number of impulses applied equal to the order of

the kernel of interest : e.g., h2('_1,'172) is the

response of the nonlinear system to two unit

impulses applied at two points in time, xi and

"_2" The variation of the time difference between

these two times characterizes the second-order

(nonlinear) memory of the system. Therefore,
the second-order kernel is a two-dimensional

function of time: t and the time difference T = x_-

"t:. This mathematical definition follows directly

for the nth-order kernel, although visualization of
these functions can become difficult for orders

=re'eater than three. As will be shown, these

kernels are also a function of the amplitude of the

input used for identification.

The impulse response of a linear system is

referred to as the memory of the system.

Convolution then allows exact prediction of the

response of the system to an arbitrary input
because all responses of the system are scaled and

shifted superpositions of this memory function t:.
It is important to understand that the set of

arbitrary inputs includes any and all possible

inputs, from steady (step) inputs to random
inputs, thus the term "'arbitrary". For the linear

case, the arbitrary input has no amplitude or
frequency limitations.

For a nonlinear system approximated by a

Volterra series, the higher-order kernels are a

measure of the nonlinear memory of the system.

Unlike the linear system, however, the arbitrary
nature of the input, primarily with respect to

amplitude, does have some limitations due to the
fact that the Volterra series is truncated for

practical applications. As Boyd t_ has shown, the

convergence of the Volterra series is limited by
the infinity norm of the input (maximum value).

If this norm exceeds a particular value, then

convergence of the series, and, theretbre, the

predictive ability of the series, is not guaranteed.
The infinity norm of the input is, of course,

system dependent and will not usually be known

a priori. Similarly, the convergence of the series
is a function of the number of components that

are identified for a particular kernel. Rugh _7and
Boyd L9 discuss Volterra's (and Frechet's)
extension of the Weierstrass theorem to nonlinear

systems with finite (or fading) memory, and its

relationship to the Volterra series.

Wiener :° contributed significantly to the

development of the Volterra theory and, as a
result, the theory is sometimes referred to as the

Volterra-Wiener theory of nonlinear systems.

Reference 21 presents a kernel identification

technique based on auto- and cross-correlation
functions. References 22-29 are additional,

excellent sources of information regarding the

Voherra theory of nonlinear systems.
This research focuses on the time-domain

Volterra theory because CFD analyses are

typically performed in the time domain. There
exists, however, a great deal of information on

the frequency-domain Volterra theory _7'_s'3°. The

frequency-domain Volterra theory deals with the
multidimensional Fourier transforms of the time-

domain kernels. The resultant functions are

referred to as higher-order spectra 3t-_:. A double
Fourier transform of a second-order kernel is

referred to as a bispectrum. Whereas time-
domain Volterra kernels may be better suited for

computational methods, the frequency-domain

methods appear to be better suited for

experimental identification techniques. Boyd et
al "__describe a frequency-domain technique that

was successfully applied to the experimental
identification of the second-order kernel of a

nonlinear electroacoustic transducer (speaker)
system. The theory also has some very

interesting applications in the fields of general

turbulence :" and low-frequency drift oscillations

(LFDO) experienced by moored vessels in
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turbulentseas_s.A time-domain Volterra kernel

identification technique is described in a
subsequent section.

Weakly Nonlinear Systems

One approach for obtaining Volterra series

representations of physical systems is to assume

that the system is a 'weakly' nonlinear system.

A weakly nonlinear system is well defined by the
first two kernels of the Volterra series so that

kernels of third order and above are negligible.

Boyd, Tang, and Chua 33mention some physical

systems that are accurately modeled as weakly
nonlinear systems including electromechanical
and electroacoustic transducers and some

biological systems. In this study, it is assumed

that the nonlinear aerodynamic system that is

identified from the Navier-Stokes equations is a
weakly nonlinear, second-order system. It is

important to develop expertise with the
application of Volterra methods to nonlinear

aerodynamic models in a systematic manner and a

weakly-nonlinear model provides this type of

gradual approach to the problem.

Although this truncation may exacerbate
known convergence and amplitude restrictions of

the Volterra series, it is of interest to investigate
the effectiveness of this truncated model to

practical applications. The truncated, second-
order Volterra series is

y(t) = h0 + 7hl(t-z) u(z)dr +
0

oooo

.[ .fh2(t- Zl,t- r 2 ) u('r I ) u(r 2) dZldr 2
00

(2)

For the applications considered in this study,
kernel identification will consist of the

identification of the first- and second-order kernels

with ho clearly stated as appropriate.

Kernel Identification

The advantage of the Volterra series

approach tot modeling nonlinear systems is that

once the kernels are identified, the response of the

nonlinear system to an arbitrary input can be
predicted. The problem of kernel identification,

therefore, is central to the successful generation

of an accurate Volterra series representation of a

nonlinear system. The most obvious approach
for identifying the kernels is to derive analytical

expressions for the kernels from the governing
nonlinear equations of the system of

20.22.23

interest Although this approach is

theoretically applicable to any set of nonlinear
equations, including the nonlinear fluid flow
equations such as TSD, Euler, and Navier-Stokes

equations, it would require a significant amount

of effort to analytically compute the kernels for

different configurations and for various inputs.
Instead, a kernel identification technique is desired

that uses the output of a CFD model directly for

quick and efficient kernel identification, regardless

of the CFD code being used and the particular
model geometry.

In Eq. (2), analytical application of unit
impulses (Dirac delta functions) results in

equations that define the first- and second-order

kernels. The equations are derived in detail in

Ref. 12 and are presented here in final form:

ht(z,) = 2yo(zt)-(l/2)y.,('rt) (3)

h,_(%'t2) = (1/2)(y:(%'_2) - yo(zi) - y0(x2)) (4)

where yo(%) is the response of the nonlinear

system to a single unit impulse applied at time

% ; y0('L,) is the response of the nonlinear system

to a single unit impulse applied at time "t:2;

yt(zt,'c2) is the response of the nonlinear system

to two unit impulses, one at time "_t and one at

time "_., ; and y,.('_) is the response of the

nonlinear system to a single impulse at time "_t

(same time as y0('ri)) but with double the

amplitude. For a TI system, y0('LO is just yo(%)

shifted in time to '_z. It should be noted that xt
is held constant (usually at t=0) while x2 is varied

for the computation of yl(%,'_,_).

The first-order kernel, h(%), is a one-

dimensional function of time. Clearly, for a
purely linear system, the first-order kernel is

identical to the linear unit impulse response. For

a nonlinear system, the first-order kernel captures

a first-order, amplitude-dependent deviation from
linearity (i.e., nonlinearity) because it is

comprised of two impulse responses of different

amplitudes.
Once the first-order kernel has been

computed, computation of the second-order kernel

requires computation of several y t(z,,7:_,)

responses for varying values of z,. As a result,
the second-order kernel is a two-dimensional
function of time. It is a function of time t and a
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function of the time difference between z, and z_,.

As the time difference between l:t and z 2 is

varied, this leads to several values of y,('ci,z2)
that, in turn, leads to several values of the

second-order kernel. These responses are hereby
refi:rred to as "components" of the second-order

kernel. Subsequent examples will clarity this

concept.

EXAMPLE- NONLINEAR CIRCUIT

A simple nonlinear system that can be used to

illustrate the kernel identification technique is a
series circuit consisting of a linear inductance, a

nonlinear resistance, and a voltage source -'8,

shown in Figure 1. The governing equation for

this circuit is the Riccati equation

dy + o_y + _y2 = x(t)
dt

with y(t) the current around the circuit, x(t) the
input voltage, and ot and e parameters from the
nonlinear resistance. After discretization of the

Riccati equation, the first-order kernel and several
components of the second-order kernel, for this

system, are generated using a time step of 0.01.
A time lag (difference between "_l and x2) of T =

0.01 (or one time step) is used for computation

of the components of the second-order kernel.

The first component of the second-order kernel

corresponds to T=0.0 with both impulses at same

point in time; the second component corresponds

to T=0.01 (one time step apart); the third
component corresponds to T=0.02 (two time
steps apart); and so on.

Two cases wil be investigated. In the first,

a= 1.0 and e = 0.0001 ; in the second,
a = 0.1 and e = 0.001. The effect of these

variations on the nonlinearity of the system and
the resultant first- and second-order kernels is

investigated. For this system, the constant term
in Eq. (2) (h,) is zero.

Case 1: a = 1.0, E:= 0.0001
The fast-order kernel for this case is

presented in Figure 2 for 1000 time steps.

Selected components for the corresponding

second-order kernel are presented in Figure 3.
Shown in Figure 3 are the first component, the

one-hundred-and-first component, and so on. As

can be seen, the largest component of the second-
order kernel (the first) is very much (seven orders

of magnitude) smaller than the first-order kernel
(Fig. 2) and goes to zero in about half the time.

As might be expected with e = 0.0001, Figure 3
indicates that nonlinear effects for this case are

quite small. Verification of this is presented in
Figure 4, a comparison of various step responses

obtained directly from the numerical solution of

the Riccati equation (actual) and those obtained

from the convolution of the step inputs with the
first-order kernel of Figure 2. These

indistinguishable results indicate that the first-

order kernel is sufficient to capture the response

of this system for the range of amplitudes

investigated.

Case 2: o_ = 0.1, e = 0.001

The first-order kernel for this case is presented

in Figure 5, along with the fast-order kernel
from Case I (Fig. 2) for comparison purposes.

The net effect of the change in the two

parameters results in an increased effect of the

nonlinearity of the Riccati equation. This is
evidenced by the increased memory of the first-

order kernel (slower approach to zero) as

compared with the fast-order kernel of Case 1.

Selected components from the second-order kernel

for this case are presented in Figure 6, revealing a
kernel two orders of magnitude larger than the

second-orderkernel of Case 1 (Fig. 3). Figure 7

is a comparison of step responses obtained

directly from numerical solution of the Riccati

equation (actual) and those obtained via
convolution of the step inputs with the fast-order

kernel of Figure 5 for this system. A noticeable

difference between step responses, as step

amplitude is increased, indicates the effect of
increased nonlinearity in the system and the need
for the second-order kernel.

The sign of the second-order kernel is

important since it is an indication of the effect of
the second-order nonlinearity on the total

response of the system. That is, since the

second-order kernel of Figure 6 is negative, then
the effect of the second-order convolution, which

provides the effect of the second-order kernel, is

to decrease the magnitude of the total response of

the system from that obtained from the fast-order

convolution alone. This is clear in Figure 7,
which shows that the response due to the first-

order term "'overshoots" the actual response.

Addition of the negative second-order response to
the first-order response would cause the sum

(both terms in Eq. (2)) to approach the actual

response. The second-order kernel can therefore
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providean indication of the additive effect of the

second-order nonlinearity with respect to the first-

order term. The additional accuracy achieved, due
to the inclusion of the second-order convolution,

for the viscous Burger's equation has been

demonstrated t t.t: but is not presented here.

This example demonstrates the identification

of first- and second-order kernels of a simple

nonlinear system. Inspection of the kernels can
provide very usefu! information regarding the

level of nonlinearity as well as the net effect of

the nonlinearity of a particular system. These

techniques will now be applied to a CFL3D
model.

RESULTS USING THE CFL3D CODE

The CFL3D code 36"37 (version 5.0) solves the

time-dependent, Reynolds-averaged Navier-Stokes

equations in conservation law form. Upwind-
biasing is used for the pressure and convective

terms, central differencing is used for the shear

stress and heat transfer terms, and the spatial
discretization is based on a semi-discrete finite-

volume concept. Accelerated convergence can be
achieved using multigrid and mesh sequencing

capabilities and implicit time-stepping is used.

The code provides several turbulence models,
including the Spalart-Allmaras turbulence model

used in the subsequent analyses.

Results for RAE Airfoil

Navier-Stokes results for a dense-grid RAE
2822 airfoil _ with the Spalart-Allmaras

turbulence model undergoing plunge at a Mach

number of 0.75, Reynold's number of 6.2

million, and a zero de_ee angle of attack were

computed using a time step of 0.001. At this

condition, this non-symmetric supercritical
airfoil induces a net normal force coefficient of

0.2953. This corresponds to the ho term in Eq.

(2). When generating the first- and second-order
kernels for this system, ho has to be subtracted

from the kernel computations. The response to a

particular input is computed using the

convolution procedures and then the h,, (=
0.2953) term is added back to obtain the total

response.
The CFL3D code has severat computational

options, depending on the type of analysis

desired. Accelerated convergence can be obtained

using the sub-iteration and multigrid
capabilities 37. In addition, a method is available

that diagonalizes the governing matrices

(diagonally dominant) based on the spectral

radius. Limited experimentation with these
techniques, including the effects of first-order-in-
time versus second-order-in-time numerical

accuracies are presented and discussed in Ref. 12.

An optimal procedure for using multigrid and
diagonalization to identify kernels has not yet

been developed. As a result, the remainder of the

results presented in this section are limited to

solutions corresponding to second-order-in-time

accuracy with no multigrid and no
diagonalization.
These first- and second-order-in-time solutions

refer to the numerical algorithm within CFL3D
and should not be confused with first- and second-

order kernel functions.
Recall that the first-order kernel is identified

using a response due to a unit plunge amplitude
and a second response due to double that

amplitude. An important question is "What is

the effect of varying these amplitudes on the
identification of the kernels and on their

predictive capability?" Figure 8 is a comparison
of non-diagonalized, no-multigrid, second-order
accurate-in-time first-order kernels for two

different identification input plunge amplitudes.
The small-amplitude kernel of Figure 8 was

identified using the primary amplitude of 0.01

and a secondary (doubled) amplitude of 0.02. The

large-amplitude kernel was identified using the
primary amplitude of 0.I and a secondary

amplitude of 0.2. The correlation between these

two first-order kernels (Fig. 8) is not linear, as

expected. That is, one kernel is not exactly ten
times the other, indicating a deviation from

linearity or some measure of nonlinearity.

Therefore, for small amplitudes (linear regime),
the first-order kernel is identical to a linearized

(small perturbation) impulse response. At larger
amplitudes, however, the first-order kernel can

capture a certain level of nonlinearity. It is

important to note how quickly these fast-order

kernels reach equilibrium (go back to zero). This
quick return to zero provides significant

computational efficiency when extracting these
functions from a CFD model, as will be seen.

The first five components of the second-order

kernel for this airtbil in plunge are presented in
Figure 9. The input anaplitude used to identity

these components of the second-order kernel was

0.10, consistent with the large-amplitude first-
order kernel of Figure 8. Even so, the first

component of the second-order kernel is an order
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of magnitude smaller than the large-amplitude

first-order kernel. The remaining components
approach zero rather quickly, an indication that,

for this condition and for this motion (plunge),
the first-order kernel may be sufficient for

predicting nonlinear plunge responses.
Figure 10 is a comparison of two nonlinear

sinusoidal plunge responses from CFL3D and the

convoived responses using the large-amplitude
first-order kernel and including the addition of the

• ho term to the total response. The smaller,

CFL3D response corresponds to a plunge
amplitude of 0.01 (based on chord length). The

larger CFL3D response corresponds to a plunge

amplitude of 0.05. The reduced frequency of the
plunging motions is 0.67. These results indicate

that the first-order kernel can be used to

accurately predict the nonlinear plunge responses

of this CFL3D model over a wide range of
amplitudes. Of great importance is the fact that

the fast-order kernel, which has a temporal
duration of less than 20 time steps, can be used

to predict the response of an input of arbitrary
length (5000 time steps, in this case). This is

due to the mathematical efficiency of
convolution.

It is important to properly choose the

amplitude used for identifying the first- and

second-order kernels. One possible approach for

determining this identification amplitude is to
base it on 1) physical considerations and 2) code
execution limitations. If the CFD code executes

properly for the largest input amplitude of

interest (a sinusoidal input, for example) and the
input amplitude is physically realistic, then the
accuracy and effectiveness of the first- and second-

order kernels, identified within this amplitude

range, will be nearly optimal assuming
convergence issues are satisfied.

Computational Efficiency

The cost of each sinusoidal plunge response
using CFL3D was about 2,000 CPU seconds

a turnaround time of about a day. These

responses were for a particular fi'equency of
motion that required a particular length of time

for a certain number of cycles. A change in the
input (frequency, for example) requires another
execution of the CFL3D code. This translates

into large (and expensive) turnaround times due

to: 1) the time spent waiting for job execution in

the queue of a supercomputer, for example, and
2) the time spent in actual execution of the code.

The latter becomes even more expensive if

several cycles of a low-frequency response are
desired.

On the other hand, the results presented in

this paper show that the application of the

Volterra theory to CFD codes reduces

computational turnaround time significantly.

This computational efficiency is achieved by
virtue of the following: 1) the short duration of

the first- and second-order kernels (see Figs. 8 and

9) and 2) the mathematical efficiency of
convolution. The short duration of the kernels

leads to very small turnaround times. In fact, the

kernels presented here were generated using the

debug queue of a Cray supercomputer. The
debug queue is limited to no more than 300 time

steps for the purpose of code debugging. The
average turnaround time for the responses needed
for computing the kernels was about five

minutes. The computation of the first-order

kernel, for the RAE airfoil using the CFL3D
code, cost 400 CPU seconds; 200 for each of the

two required responses (Eq. (3)). Once the
kernels were identified, costly re-execution of the

CFD code was side-stepped by applying
convolution for every new input of interest. The

cost of each convolution, for the plunge motions

investigated, was 30 seconds per motion on a
workstation.

CONCLUSIONS

Reduced-order aerodynamic models based on

linear and nonlinear aerodynamic impulse
responses have been discussed. The autonomous
(time-invariant) nature of the Navier-Stokes

equations was described in detail and the

applicability of the Volterra theory of nonlinear

systems to the Navier-Stokes equations was

formally presented. The nature and

computational efficiency of linear and nonlinear
discrete-time convolution was described as well.

The method was applied first to a nonlinear

circuit described by the Riccati equation and then,

to a plunging airfoil using the CFL3D (Navier-

Stokes) flow solver with the Spalart-Allmaras
turbulence model. Results presented include the

linear and nonlinear impulse responses for these

systems as a function of several parameters.
These parameters range from equation coefficients

(Riccatti circuit)to varying the amplitude of
identification of the first-order kernels (CFL3D

model).
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The nonlinear impulse responses capture the
nonlinear nature of the system under

investigation. Computational cost comparisons
were presentedfor the CFL3D/RAE 2822 model.
It was shown that Volterra kernels provide

significant computational efficiency over the full

(and repetitive) solution of the complete system
(CFL3D).
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Fig 1 Simple nonlinear circuit defined by the Riccati
equation with x(t) (voltage) as input and y(t) (current)
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Fig 2 First-order kernel for the Riccati nonlinear circuit,
Case I.
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for the Riccati nonlinear circuit.Case I.
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Fig 4 Comparison of actual and first-order step
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Fig 5 First-order kernels for Riccati nonlinear
circuit, Case 1 and Case 2.
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Fig 6 Selected components of the second-order
kernel for the Riccati nonlinear circuit, Case 2.
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Fig 7 Comparison of actual and first-order step .... , .... j .... , .... , ....
responses for the Riccati nonlinear circuit, Case 2. "10 1000 2000 3000 4000 5000

Time Steps

Normal Force/Plunge
0.4

0.2

0

-0.2

-0.4

-0.6 I

-0,8

w--0.1,0.2

5 10 15 20
Time Steps

Fig 8 First-order kernels for RAE airfoil in plunge,
effect of identification amplitudes.
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Fig 9 First five components of the second-order
kernel for the RAE airfoil in plunge, largest ID
amplitude.

Fig 10 Comparison of CFL3D and first-order responses
for two plunge amplitudes (0.01, 0.05).
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