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Abstract. A linear algebraic solution is provided for the problem of retrieving the

location and time of occurrence of lightning ground strikes from an Advanced

Lightning Direction Finder (ALDF) network. The ALDF network measures field

strength, magnetic bearing, and arrival time of lightning radio emissions and

solutions for the plane (i.e., no Earth curvature) are provided that implement all of

these measurements. The accuracy of the retrieval method is tested using computer-

simulated data sets and the relative influence of bearing and arrival time data on the

outcome of the final solution is formally demonstrated. The algorithm is sufficiently

accurate to validate NASA's Optical Transient Detector (OTD) and Lightning

Imaging System (LIS). We also introduce a quadratic planar solution that is useful

when only three arrival time measurements arc available. The algebra of the

quadratic root results are examined in detail to clarify what portions of the analysis

region lead to fundamental ambiguities in source location. Complex root results are

shown to be associated with the presence of measurement errors when the lightning

source lies near an outer sensor baseline of the ALDF network. For arbitrary

noncollinear network geometries and in the absence of measurement errors, it is

shown that the two quadratic roots are equivalent (no source location ambiguity) on

the outer sensor baselines. The accuracy of the quadratic planar method is tested
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with computer-generateddatasetsandtheresultsaregenerallybetterthanthose

obtainedfromthethree-stationlinearplanarmethodwhenbearingerrorsareabout

") 0



1. Introduction

Advanced Lightning Direction Finder (ALDF) sensors, developed by Global Atmospherics

Inc. (GAI), have the ability to detect the field strength, magnetic bearing, and arrival time of

lightning radio emissions. In 1992, Lightning Location and Protection, Inc. (a division of GAI)

completed development of an IMproved PerlbrmAnce frorn Combined Technology (IMPACT)

method tbr determining the location and time of occurrence of lightning return strokes from these

data (Cummins et al., 1993). The IMPACT algorithm is based on miMmizing a Z 2 function similar

to that provided in (1) of Hiscox et al. (1984) but generalized to accommodate arrival time data.

The lightning time of occurrence, t, and the longitude, _, and the latitude, to, of the lightning

source on :m ellipsoidal Earth is estimated.

Since ttle IMPACT algorithm uses a numerical approach to determine the absolute

minimum of the nonlinear X 2 hypersurface, it does not represent an analytic solution to the

problem, i.e., the source location and time of occurrence are not directly determined in terms of the

measurements and measuring network geornetry. Instead, the algorithm uses the computer to

search for the optimum values of (Z, (p, ,') that minimize Z2; each new set of measurements implies

starting an entirely new search for an answer. In effect, the actual solution is estimated using the

constraints of the data and the power of the computer.

Relative multiple minima in the )(2(k..cp.t) hypersurface can lead to a premature termination

in the computer search and an erroneous solution. The presence of data errors can generate

additional relative minima and additional solution errors. Since it is computationally expensive to

check for erroneous solutions during real-time processing of ALDF data, lightning source

solutions depend, in general, on where in the solution space (;4.. to, t) the computer search begins.

Although the IMPACT algorithm has had successful practical application (Cummings

et al., 1998), the specific algorithm software is proprietary and is not widely distributed free of

charge to the scientific community. In this study, our interest was to develop an economical, yet

useful (four-station) ALDF ground-truth site at the Melville Island/Darwin, Australia region, and

elsewhere in the world, that could be used to validate NASA's space-based lighting detectors (the
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Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) described in Christian

et al. (1992) and Goodman et al. (1995), respectively). We desired a computationally quick

algo,ithm that easily ingests all types of ALDF measurements, and that produces ground strike

locations with accuracies better than 4 kin (the nadir resolution of LIS) for sources that are within a

few hundred kilometers of the ALDF network. This has been the primary motivation behind our

algorithm development. As such, we did not require an algorithm that accounts for Earth curvature.

A secondary, motivation behind this work was realized during our algorithm development.

We learned that a serious pedagogical effort to examine the mathematical foundations of lightning

ground-strike retrievals does not appear in the literature. Perhaps the wide use and practicality of

powerful numerical computer algorithms have offset the desire to obtain more exact analytic

solutions. In retrospect, the proper nlathematical approach is to first solve the least difficult form of

the retrieval problem in a thorough way, and then methodically upgrade the formalism to account

for additional physical complexities such as associated with the addition of new data sets, Earth

curvature, and wave propagation effects. An effort must also be made to clearly explain

fundamental ambiguities that arise in the retrieval process when an experimenter has limited

measurements available due to sensor failure or other causes. Although there have been some

analytic efforts to account for Earth sphericity for magnetic bearing data inversions (e.g., see

Orville, 1987) a complete pedagog}' that ultimately leads to rigorous retrievals of ground-strikes on

an ellipsoidai Earth surface (and that uses all ALDF data constraints in a coherent/simultaneous

and optimum fashion) is notably absent in the literature.

To the best of the authors' knowledge, no one has yet explicitly provided an analytic

solution to the problem of determining lightning source location and time of occurrence using

collective measurements of field, magnetic bearing, and arrival time measurements when Earth

curvature and propagation effects are neglected. This is a fundamental starting point. For multiple

data set inversions, the relative importance of bearing and arrival time data on the outcome of the

final solution has not been formally demonstrated. Furthermore, no thorough investigation of

solution ambiguities have been provided when one is limited to just three arrival time



measurements.This writing introducestheoreticalderivationsthataddresseachof theseproblems.

In sodoing,wearriveattherequiredOTD/LISgroundtruth algorithms.

We specificallydeterminethe sourcelocation (x,y) as a mathematicalfunction of the

measurementsunderof varietyof conditions(i.e.,differencesin thenumber,location,andtypeof

measurements).Sincealgebraicsolutionsareobtained,we do not need to invoke a computer

searchalgorithmto determineoptimumsolutionparameters.We provideuniquephysical insight

into the nature of the retrieval problem because we determine exactly how the measurements are

specifically related to the lightning source location (and time of occurrence).

A Linear Planar (LP) method is first introduced that allows one to simultaneously analyze

field, bearing, and arrival time measurements. To the best of our knowledc, e_, , this has not

previously been shown in the literature. The rnethod involves one large system of linear equations

that offers a high degree of flexibility from the point of view of the user's applicational needs. For

example, if only a certain number and type of measurements are available in an experiment, the

linear system of equations degenerates into a smaller set of equations, and a straighttbrward

solution process is retained.

Wc also introduce a Quadratic Planar (QP) method that can be used when only three aiTival

time measurements are available. Such a situation arises if there are sensor hardware failures and/or

when field amplitude and bearing measurement data quality is unacceptable. Although this method

is mathematically nonlinear, full analytic solutions are derived. Physical insight about the nonlinear

solution space, not discernible from conventional Z "_analyses, is fully described by examining in

detail all quadratic root solutions derived from the QP method. For example, we show explicitly

that a certain mathematical discriminant vanishes for certain lightning locations, and that these

source locations produce complex roots (negative discriminants) in the presence of measurement

errors,

Extensive tests of the LP and QP retrieval methods are provided using computer-simulated

data sets and these methods _u'e applied in a study of ALDF data that were obtained from the

Maritime Continent Thunderstorm EXperiment (MC_EX) analysis region in Darwin, Australia



(Kennenetal., 1994;1996).Datafrom thisnetworkcompriseoneof severalground-truthsitesfor

thevalidationof OTD andLIS.

2. Linear Planar (LP) Method

We begin by considering n > 3 sensors situated at locations ri, i = I, 2 ..... n relative to

some origin. Each sensor has the capability to measure the amval time, ti, magnetic bearing, 0,,

and field strength, F,, of the radio emissions from a lightning source with location, r, time of

occurrence, t, and radiation source strength, s. Hence, from the 3n measurements

{(t_,(q,F_),...,(t,,O,,,F,) } we wish to determine the five unknowns (r, t, s). In so doing, we

neglect Earth curvature.

Figure 1 summarizes the geometry of the LP model. Because ALDF sensors might not be

deploycd on a fiat topography, the ith sensor located at r, need not lie in the xy plane, i.e., zi a 0 in

general. The relative position vector follows standard physics convention, that is, it points from the

source at r to the observation point, r,, so that R, = r, - r. Neglecting refractive effects in the

atmosphere, the excitation time of the ith sensor is

I
t i =t+-R. (1)

C t

where c is the speed of light. Solving for Ri. squaring, and rearranging terms leads to

] _ ] _ C2t2
_(ri- -c2t_) = xix +YiY +ziz-c2ti t- _(r- - ) (2)

It is desirable to remove the last term on the right-hand side of (2) since it is nonlinear in the space

and time variables. To do this, we define the measurement

o_i = _(r i- -c2t_ )--_(r," -cet_ ) (3)



A comparisonof (2) and (3) shows that a, is linearly

r = (x,y,z),andlightning time of occurrence,t, that is,

related to the lightning location,

ai =(x i-.vl)x+(y i-yt)y+(zi-zl)z-c2(ti-q)t" i=2,3 ..... n (4)

A detailed investigation of this linear form has been provided in Koshak and Solakiewicz (1996).

Next, we consider the information content of ALDF bearing data. From Figure 1 we see

that the lightning location (x, y) is given by

x = .v + p, cos0,

v=y, +p sin_,

(5)

where p, is the horizontal distance from tile/th site to the lightning ground strike location.

It is useful to define the measurement

,13,- x, sint)/- y, cost), (6)

Now from (5) we note that (x- xi)/O'- 39 = cost),/sin¢i, so that using (6) gives

fl, = sin t),x - cosCy (7)



Finally, we consider measurements of the radiated field strength. Assuming a I/R,

attenuation in the radiation field gives

1

Ri

Once again, we solve for Ri, square, rearrange terms, and define the measurement

Yi = _(r- - r( ) 19)

This leads to the following relation

}'i = (xi - Xl )x + ( v i - Yl )Y + (zi - 2"1)2. +
• Fi_

i = 2,3 ..... n (10)

If we consider only n = 3 sensors, (4), (7), and (I0) can be combined to give

r_2 "

]a3

,S&

,S/_,

72

_)/3 _

(x: - xt)

(x3 - x, )

,5s#_Ct

= asin 02

6 sin ¢3

(x2 - x_)

(x 3 - x t)

(Y:-YL) (z2-z,) c(t 1-t 2) 0

(3'3-Yl) (z_-zt) c(q-t 3) 0

-6cosrp, 0 0 0

-6cos¢2 0 0 0

-6cos¢3 0 0 0

(Y2 - Y, ) (z2 - zt ) 0 _2 (x: - x I

(73 - Y, ) (z3 - z, ) 0 !g3(xz - x,

xq

l"1,

!,

(11)

where 6 is a weighting factor chosen as 10' m, _ = ½[(FI/F,.):-I]/2is a dimensionless

parameter, d, = ct, d, = {:'s 2, and { = [Fj (x 2 - xj)ml -_ is a scaling factor to be described below.
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Defining the column vector on the left-hand side of ( 1 I ) as g, the matrix by K, and the remaining

vector by f, we may rewrite ( I 1) as

g = Kf . (12)

All elements of K and fare in units of meters, and all elements of g are in squared meters.

This was accomplished by retaining a factor of c in front of the time difference measurements in the

first two rows (fourth column) of K, by multiplying (7) by the weighting factor & and by scaling

the field, F i , and source strength, s, each by the factor _, i.e., by making the substitutions: F_ ---4

_F z , and s --_ { s in (8). (Note that the sites must be numbered in such a way that x, >.v_ so {is

not complex; this can always be accomplished since the numbering of sites is arbitrary and because

the translation and rotation of the xv coordinate system used in the LP method is arbitrary.)

In general, the K matrix has 3n-2 rows and 5 columns, where n = 1, 2, 3 ..... If there is

only n = 1 sensors in the network, K degenerates into a row vector and (12) is underdetermined. If

there are n = 2 sensors, K will have 4 rows and (12) will still be underdetcrmined. Forn > 3 sites,

K will have > 7 rows and (12) will be overdetermined. For overdetermined systems, f can be

retrieved using the least-squares inversion provided in Twomey (1977)

f = (I_K)-' l_g , (13)

where the tilde represents matrix transposition. The source time of occurrence and source strength

are determined as: t = d, / c, s =dl': / { , respectively.

From the foregoing generalities, we now note that ALDF sensors are intended to trigger

only on the ground wave of a cloud-to-ground discharge. Hence, the source can be regarded as

being located at z = 0. In this case, we can remove the third component of f, that is, we consider

the column vector f- col(x, y, d,, d), and we remove the third column of K. We then regard the
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expression in (12) as a (3n-2) by 4 system of linem" equations. In this case, n -- 2 sensors

generates a (4×4) K matrix so that (12) is a determined system with direct solution f = K-_o9"

Hence, the LP method can be used by an experinaenter that has only two sensors, each measuring

bearing, arrival time, and field amplitude. In this case, source location (x,y), time of occurrence, t,

and source s_reng_h, s, can be retrieved. If the two sensors do not provide field amplitude

information, the experimenter can still retrieve the flash location and time of occurrence, i.e., 12)

becomes a (3x3) system of linear equations, and f = col(x,y,d,).

If a is unity, the row vectors of K involving sin0_, and cos_)i appear numerically small _.e..

like a zero vector, relative to the other row vectors of K, and the matrix is ill-conditioned for many

source locations when only three ALDF sensors are available.

To avoid unstable inversions associated with an ill-conditioned K-matrix, we have made

the assignment a= 103 m. This increases the magnitude of the small trigonometric components of

K and effectively filters small eigenvalues; see section 3.4 below and Appendix A for additional

details regarding the value of S. Othcr, more sophisticated means of filtering small eigenvalues bv

adding external physical constraints to the solution process are discussed in Twomey (1977h

Chapter 6.

3. Simulated Tests of the LP Method

3.1 Overview

In this and all tests to follow, we do not consider the field amplitude data, F_ . We also

assume that all sources arid sensors are located on the surface of a spherical Earth. By selecting a

known source latitude/longitude location, we generate the true arrival times and bearings to each

sensor. Simulated measurements are generated by adding errors to the computed arrival times and

bearings. The errors are chosen from a uniform random distribution.

Next, the simulated measurements are analyzed with the LP method. Since the LP method

is a planar model, we must establish a convention for mapping source and sensor locations

(expressed in degrees of latitude and longitude) to locations in the xy-plane of a standard Cartesian
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coordinate system. We then apply the LP method to solve the problem in the Cartesian system.

Next, an inverse mapping is used to convert the (x, y) solution back into latitude and longitude

coordinates on the surface of the Earth. At this point, the latitude/longitude solution can be

compared with the known source to assess true location error.

If one assumes a fiat Earth and performs the entire simulation within a Cartesian coordinate

system, the resulting retrieval errors are smaller. This is because one avoids errors due to Earth

curvature and the numerical errors associated with spherical/Cartesian system mappings. Because

in any real field experiment the source retrievals are ultimately referenced to the spherical Earth. we

include the net effects of Earth sphericity in this and all other simulations provided below.

3.2 Spherical Arrival Time and Bearing

Figure 2 indicates how to compute the arrival time, ti, and bearing, Oi, for the im sensor on

a sphere. The unit vectors pointing from the origin O: to the ith sensor (M), to the lightning source

(L), and to the North Pole (N) are. respectively,

i"i = cos q)i cos _i fi + cos q)i sin )t,i¢z+ sin q)i ,iv

f = cos q9cos 2ti + cos q_sin 2t¢¢+ sin qKv (14_

Using the law of cosines from spherical trigonometry gives the spherical angle, Ai :

=,8Ocos_,lco+ -cos i+ciIAi lr -s'_ b i sin c i '

where a=cos-'(f u f) b.=cos-'(fu._/), c i=cos-'(_'_)= 1• , , -_ct i , R = radius of Earth, and

by convention the lightning source activates at t = 0. The angle, A,. varies between 0 ° (North) and
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180" (South). We correct A, to construct tile bearing function, _0,, that varies in the manner:

0 ° (East), 90 ° (North), 180 ° (West), 270 ° (South), that is,

¢i = 90 - A i (North East sources)

4)i = 90 + A i (North West & South West sources) (I 6)

q_i = 450- A i (South East sources) .

3.3 Mappings

In general, different mappings produce different retrieval errors. We consider two possible

approaches: Mapping #1 (chosen for its mathematical simplicity), and Mapping #2 (chosen for its

orthogonality). In Mapping #1. we have

x = ()L - )t I )Rco,s'(pl

v = (q_ - _t )R ,

(17)

where (/l, q_) is an arbitrau' longitude and latitude, respectively. The origin of the Cartesian

coordinate system has been arbitrarily selected as site i = 1, i.e., the ordered pair (,7t,_ , _o_) is the

location of site I and x(/l = 2.l, q_= q_l) = 0, y (/1. = Aq, q_= q_l ) = 0. Note that y is measured

along a great circle, i.e., a longitude belt, but that x is measured along a latitude belt (which is only

a great circle if q_l = 0 (the Equator)).

In the second approach, or Mapping #2, we insist that both x and y ate measured along

great circles. To do this, we consider an orthogonal system (fi, ¢', _') where fi is a unit vector

directed from the center of the Earth to the intersection of the Prime Meridian and Equator, _v is a

unit vector directed from the center of the Earth to the North Pole, and ¢' completes the ordered

triple in accordance with the right-hand rule, i.e., ¢' = _' × ft. We then rotate this coordinate
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systemthrough two Euler angles(_.l , (P_)anddefine the new resultant("starred") systemas

(d*, ¢*, 4'*). In thestarredsystem,fi * isdirectedfrom thecenterof theEarthto site I. Mapping

#2 is then

where

x = R)c*()_, 9)

v = R_p*(2, _p)

(18)

cos q)sin 2 cos 2tj - cos _ocos)_ sin ).j2"(2c,(p) = tan -I cos(pcos,_cos_ l c°s(Pl +cos(psin2.sin2t I c°sq)l + sin(psincp t

_o" (2c, q)) = sin- t (sin (p cos _oI - cos q) cos _. cos _'t sin (Pl - cos qosin )1.sin 2. I sin q01

(19)

Again, one can verify from (18) and (19) that x(_.=)_l,q)=q)_)=O, y(X=X_ q_=(pl)=0.

The arctangent expression in (19) must be appropriately corrected depending on what quadrant

(North East, North West, South East, South West) the point (2, (p) is relative to site 1.

3.4 Simulation

We first consider three ALDF sites in the Darwin, Australia region that were used as part of

the MCTEX described in Keenan et al. (1994; 1996). Computer-generated lightning sources were

spaced 0.02 ° (- 2 km) apart across the analysis region. Figure 3(a) shows the spatial distribution

of the retrieved horizontal source location error, contoured in units of kilometers, when no

experimental errors are considered and when Mapping #1 is used. The retrieved location errors are

within 1 km for regions inside the ALDF network.

Since no experimental errors have been added to the simulated values of the arrival times

and bearings, the retrieval errors shown in Figure 3(a) are due solely to Earth curvature and

numerical truncation error. We originally performed these simulations, and all simulations to
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follow, assuming a flat Earth. When this was done, all of our methods gave retrieval errors well

below 2.5 m across the entire analysis region when no measurement errors were involved. This is

to be expected since our methods are exact solutions for the plane (the 2.5-m crror maximum

occurred only in the LP method over a limited portion of the analysis region and was an artifact of

what accuracy level we required of our iterative matrix inversion routine). Hence, compared to the

negligible errors obtained from the fiat Earth simulations, the errors shown in Figure 3(a) are

effectively due to Earth curvature alone. However, the amount of retrieval error due to Earth

curvature depends on what cartesian-to-spherical coordinate system mapping is used (e.g.,

Mapping #1, or Mapping #2). Because one will always be interested in how much retrieval error

the planar models acquire due to Earth curvature, all simulations below show retrievals first

without added measurement errors, as in Figure 3(a).

When experimental errors are included in the simulation, we obtain the retrieved location

errors given in Figure 3(b). The retrieved errors are mean values obtained from performing I00

individual retrievals at each trial location. For each of the 100 trials, an arrival time error selected

from a uniform random distribution (ranging from -300 ns to 300 ns) is added to the arrival time

value, and a bearing error (ranging from -2 ° to 2°) is added to the bearing value. In addition, we

have simulated sensor location errors by purposely entering into the LP method false site locations

(with an error as great as I/2 m); the sensor location errors have remained fixed for all source

analyses. As expected, the addition of experimental errors increases location retrieval errors, but

the retrieved errors are still within 10 km for a large portion of the analysis region. Roughly

speaking, i.e., not accounting for Earth cu,'vature errors, truncation errors, or other errors due to

matrix inversion, a 300-ns timing error multiplied by the speed of light gives only a 90 m error,

and a 2°error at a range of 300 km is about 10 km.

When Mapping #2 is used instead of Mapping #1, we obtain the results shown in Figure

4(a) and (b). As before, no experimental errors have been added to the sensor positions, arrival

times, and bearings in the results of Figure 4(a), but the results in Figure 4(b) include these errors.

The results in Figure 4(a) appear somewhat better than those in Figure 3(a), but the re._ults in
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Figures3(b)and4(b) aresimilarsincethesimulatedexpcrirnentalerrors tendto maskdifferences

betweenMapping#I andMapping#2.

Figures5(a)-(b) and6(a)-(b) showall of thesametypeof analyscsjust described,but for

thecaseof four ALDF sensors.The additionalsensorclearly helps reduceretrievalerror. In

addition,Mapping#2producessmallerretrievalerrorsthanMapping#1.

When four sensorsareavailable,bearingdataarenot neededto obtain lightning location

retrievals(see (11)). By removing the bearing data from the four-station MCTEX region

simulations,that isassigning6 = 0, and by applying Mapping #2 we obtained virtually the same

results as those presented in Figure 6(a) and (b). This is because the weighting factor _ introduced

into (11) to generate Figure 6(a) and 6(b) is relatively small (i.e., 10_) so that bearing data has little

influence on the final solution. We also lind little change in the solutions for intermediate values, c5

= 10, 10:. However, as we increase c5 from 10 _ to 10"*, 105, and 106 the retrieval errors increase

(see Appendix A for more details).

For a three-sensor ALDF network, bearing data plays a more profound role in helping to

constrain the solution space. If cS= 0 (no bearing data used), there would be fewer constraint

equations than unknowns, and one would not be able to obtain a solution using the LP formalism.

(Note: a different formalism to be described in section 4 below can be used to find solutions over a

substantial portion of the analysis region using just three arrival time sensors.) As noted above,

when S = I the K matrix is ill-conditioned for many source locations, and the computer time

required to invert K is excessive. When S= 10, 10", 103, or 10a there is no problem inverting K

and there is no appreciable change in retrieval error. When a = i0 s the retrieval errors begin to

increase slightly. Three-station LP simulations for different values of S are also provided in

Appendix A.

For comparison, we also provide error results (Fig. 7(a) and (b)) for the three sites used in

the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA

COARE) described in Orville et al. (1997) and Peterson et al. (1986). This experiment employed a

larger sensor baseline than that used in MCTEX, and our simulated tests cover an analysis region
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18°×18° in latitude and longitude. The sources in this simulation where placed 0.05 ° apart and

Mapping #2 was used; as with the three-sensor MCTEX study, the retrieval errors for Mapping #2

differ little from those errors obtained using Mapping #1. Overall, the 2 ° bearing error and the

effects of Earth curvature make it difficult to obtain errors below 10 km for distant sources.

4. Quadratic Planar (QP) Method

In this section we assume that only three arrival time measurements are available from the

ALDF network. Hence, the methods of section 2 cannot be applied, but some insight about the

source location can still be obtained. Once again, considering only the radio emission from the

lowest part of the return stroke, we take z = 0. We assume that sensor i = 1 is at the origin of a

rectangular Cartesian coordinate system, i.e.,xt = y_ = :._ = 0, and we specify the convention

t_ - 0. This leads to one nonlinear equation and two linear equations all in the three unknowns

(X, y, r)

X 2 + V 2 = /.2

, I _ _t _
qi = -_(ri" - c- _-) = xix + YiY + ctir ;

i=2,3

(20)

The equations in (20) were derived from the transit equation in (!) by means similar to that

discussed prior to (2) of section 2. We have removed the source activation time, t, with the

relation t = -r/c. Since t I = 0, it is consistent that t < 0 given that r > O. Each sensor is a distance

ri = (xZi + yZi )l,'z from the origin.

Fundamentally, these equations define three circles each with radius c(t i - t) and centers at

(x,,y_), where i = 1, 2, 3. We will see below that the source is located where the three circles

intersect. We will also find that certain source locations produce arrival time data that can be

described geometrically by two possible sets of three circles. Each set of three circles define a
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uniqueintersectionpoint in the.D'-plane,therebyleadingto a fundamentalambiguityin source

locationretrieval.

Geometricintersectionsof thecircularcurvesdescribedaboveareobtainedby solving the

systemof equationsin (20).To solvethesystem,we first subtractthe termsctir from each side of

the linear equation set

qi-I -qi-ctir=xix+v:v. ,. " i=2,3 . (21)

Identifying the vectors, q = col(qz , q.,), r = col(x, 3'), we may write

q =Qr , (22)

where the Q-matrix and it's inverse are given by

Q=
.l"3 X' .l",., V3 -- V-,.V-_ _A. 3 X-,• 3 -" " " - " -

(23)

From (22) and (23) and our discussion preceding (21 ) we have the relations

x(r) = (Y3ql - Y2q2)/(x2Y3 - Y2x3 )

y(r) = (x2q 2 - x3q I ) ll(x2y 3 - Y2X3 ) (24)

Kr) =
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The x and y variables are written as functions of r in (24) since the components of q depend on r as

given in (21). Substituting the first two equations of (24) into the first (nonlinear) equation of (20)

and carrying out the algebra leads to an equation quadratic in r alone

Ar 2 + Br + C = O , (25)

where

9A:cZ[r_t_-2(x2x3+.v,v_)t,'3_-. _. +ritz_ 3 -(r'va-v_x3)-_-.-_ .

,, _c[-#,,:,,+(x,x,+;::,)(,,:,,+q,,:)-_,-,,,,,]

_,, ( )" ,,,C = rqq 2- - 2 x2x 3 + 3':3'3 qzq3 + rzq3-

(26)

Hence, the lightning source range, r, is the nonnegative real root obtained from the formal (two

root) solution

t -B+_/B 2 -4AC

r+ = 2A
r = (27)

-B- _B 2 -4AC

r_ 2A

Values of r = 0 correspond to a direct lightning strike of sensor i = 1, which we ignore. Note from

(26) that the numerical value of the coefficients (A, B, C) are obtained from the sensor locations

{ } 'and excitation times, that is, on the six variables: x2,Yz,t2, x3,Y3,t3 ; the variables, qi, are

obtained from the expressions ½(r z -cZt 2 ) as given in the last two equations of (20). After these
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data are used to compute r, (24) is used to find the lightning location (x(r), yCr)), and time of

occurrence, ¢(r).

5. Simulated Tests of the QP Method

By placing computer=generated lJghtnh:g sources 0.02 ° apart in latitude and longitude

across the analysis area (see section 3), we have determined the horizontal location error resulting

from each root in (27). To facilitate comparisons with simulated tests of the LP method, sensor

position and arrival time errors used here are as described in section 3.4 and 100 trials at each

source location are once again used to generate mean retriewfl location errors. Mapping #1 given in

(17) is employed.

Figure 8 clarifies what root provides a smaller retrieval error. The shaded regions are where

r. provides a better retrieval than r_ (the unshaded region is where r_ provides a better retrieval than

r,.). Interestingly, the dividing lines of these regions are defined by the sensor baselines.

When we pick only the root that provides the best retrieval and plot the associated error

result over the analysis region, we obtain the result given in Figure 9(a). When a 300-ns uniform

random error is added to the computer-generated arrival times, we obtain the mean horizontal

distance errors given in Figure 9(b). Considering that only three sensors are involved, retrieval

errors are quite good; a large region of errors below I km is evident. Distant sources, or sources

located near the outer sensor baselines are more difficult to accurately retrieve. By otaer ._ensor

baseline we mean: any position along a great circle passing through two sensor.,, except those

points on the great circle located between the two sensors. A comparison between the three-station

LP results in Figure 3(b) shows that the QP method provides better results over most of the

analysis region. This is due in part to the large 2 ° bearing errors implemented in the LP simulation

and the fact that the three-station LP method depends on bearing data to obtain a solution. The

four-station LP method (Fig. 5(b)) outperforms the QP method.

Since bearing data can aid in determining which root, r÷ or r_, is correct (see section 6. l

below on solution ambiguity) and since the QP method gives generally better results than the three-
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sensor LP method, it is evidently better to use tile QP method than the three-station LP method

even when bearing data are available. This conclusion is based, of course, on an assumed bearing

error of 2".

6. Examination of QP Method Roots

When applying the QP method to actual anival time data, one picks the solution associated

with a nonnegative real root. i.e., the source range, r, must be nonnegative and real. A detailed

discussion of root results is provided below.

6.1 Unequal Nonnegative Real Roots (Ambiguities)

In the discussion of three sensor networks by ttolle and Lopez (1993), pp. 8 and 11. the

lightning source location (.r, y) is described in terms of the intersection of two hyperbola branches;

each branch is defined by two sensors. For some lighming source locations, the hyperbola

branches intersect at two locations (see for instance, Fig. 6, p. 11 of Holle and Lopez, 1993). This

amounts to a fundamental ambiguity in location retrieval and the authors correctly assert that the

ambiguity can be removed by adding a fourth (properly positioned) sensor. Arnbiguities :ire

described in our formalism by the intersection of circles as indicated above following _20). To fully

appreciate the hyperbolic and circular geometrical viewpoints, it is important to recognize that the

two intersection points defined by two sets of three circles are identical to the double intersections

obtained from the two hyperbola branches mentioned above. In other words, these two widely,

different geolnetricai viewpoints produce identical results, as they must.

Without reference to the geometry of hyperbolic or circular intersections, our algebraic

formalism immediately defines all ambiguous cases. An ambiguity will exist whenever two

unequal nonnegative real roots result from (27). In order to determine what lighming source

locations produce these "ambiguity regions", we have kept a record of the root results in the

numerical experiments described in section 5 above. For the case of no simulated experimental

errors, the source locations that resulted in two unequal nonnegative real roots are indicated by the



21

shadedregionsin Figure10;seesection6.2belowfor minorcorrectionsto tile arnbiguityregions.

In general,adifferentnetworkgeometrywouldproducedifferentresults.

Strictly speaking,sincetwo distinctsourcescanproduceidenticalarrival time difference

information, thereis no meansof discriminatingwhich sourcelocationis correctunless some

additionalinformationis suppliedto the retrievalprocess.In effect, thesolutionis fundamentally

nonunique.(Similarcommentsabouttheretrievalof chargefromground-basedfield measurements

havebeenmadein KoshakandKrider(1994).In thatproblem,apointchargeQ,,, and a sphere of

radius a with total charge Q,, produce identical electrostatic fields outside the radius a.) Hence,

additional measurements (e ,, arrival time. bearin,.z, signal amplitude, radar, acoustical.

interferometric) must be used to pick the correct root. Bearing data would be the most common

data to use in root discrimination since it is part of the ALDF data stream.

Nonetheless, an experimenter might be tempted to compare the shaded regions in Figures 8

anti 10 in order to determine which of the tv, o unequal nonnegative real roots produce the true

source location. However, one must remember that Figure 8 does not pose arcal physical

constraint to an unknown source since it only provides information (f the source Iocati(m is

already known; obviously in a real field experiment the source location is not yet known.

Additional rigor clarifies the immutability of the ambiguous case. Note that there are three

ambiguity regions in Figure 10, and call the regions {R I, R2, &}. Similarly, there are three regions

{Pi, Pz, P3} in Figure 8 that are wholly contained within each of the respective ambiguity regions.

If one subtracts the respective regions {Pi, P2, P_} from the respective regions {R,, R e, R_}, one

obtains the three regions {N,,N 2'u:_}- {R,-PI,R_-P_,R 3-P_,}. When two unequal

nonnegative real roots are obtained, we find that r+ occurs in P, and r occurs in N,, that is, the pair

of roots produce solutions in (PI,NI), (&,N2), or (p_,N._). From Figure 8, region Pi is the

region where r,. is correct, N_ is the region where r is correct, and both Pi and N, are subregions of

R_. In other words, each solution is possibly correct so that comparisons between Figure 8 and

Figure I0 serve no help in determining the correct root.



Nonetheless,r,. is correct for most of the ambiguity region shown in Figure 10. Hence, an

experimenter who obtains two nonnegative real roots, but who does not have ancillary data sets

such as radar, magnetic bearing, etc., has a better chances of getting the con'ect solution if he/she

selects the root r÷.

6.2 Equal Nonnegative Real Roots

In this section we are interested in identifying what source locations produce two equal

nonnegative real roots. Note that this condition is satisfied when the discriminant,

B 2 -4AC, in (27) is zero, that is, the two equivalent roots correspond to a unique (unambiguous)

solution Ix(r), y(r), t(r)l where r+ = r_ = r. In Appendix B, we show for arbitraw noncollinear

network geometries that the discriminant function is zero opzlv along the outer sensor haseli_w,_.

Therefore, the ambiguity regions shown in Figure 10 are technically not ambiguous along these

linear domains.

6.3 Complex Roots

Complex roots occur whenever the discrirninant in (27) becomes negative. Figure 11

shows how the discriminant varies for different source locations across the analysis region. As we

have already shown in section 6.2 and Appendix B, the discriminant is zero for sources located

along the outer sensor baselines. Figure I I shows additionally that the discriminant is a relative

minimum at the outer sensor baselines.

From the simulation in section 5 (with 300-ns arrival time errors, and I00 trials per test

location) we have tallied the fraction of trials at each location that produce complex roots. Figure 12

shows that there are no complex roots over most of the analysis region except when the sources are

near the outer sensor baselines. These regions (or "spokes") appear to diverge with range from the

sensors and as many as 40-60% of the sources are complex within the spokes. Clearly, for

sources located sufficiently close to the outer sensor baselines, measurement errors are

occasionally large enough to drive thc discriminant negative. Whenever the discriminant is
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negative,both roots in (27) are complexand no physical solution is obtained.Conversely,

whenevercomplexrootsareobtainedtrom a setor"actualmeasurementsthe sourceis likely to be

located in one of the spoked regions.

6.4 Overview of Root Results

From our discussion so far, we can conclude that any retrieval will produce one of the

following cases: (a) r+ > 0, r > 0, r÷ ¢: r_ ; (b) r+ > 0, r_ >_0, r+ = r_ ; (c) r+ < 0, r_ > 0: or (d) r÷

and I"_ complex. Case (a) corresponds to a source that is located inside one of the ambiguity

regions, case (b) corresponds to a source located on an outer sensor baseline, case (c) corresponds

to a source that is not located in any of the ambiguity regions or along any outer sensor baseline.

and case (d) corresponds to a source located on or near any outer sensor baseline when

measurement errors are sufficient to drive the discrirninant negative.

Note that we do not include the case r+ > 0, r_ < 0 since if r+ > 0, the source must lie in one

of the ambiguity regions implying that r_ would be nonnegative (i.e., a contradiction). We also

disregard the case that both roots are negative since a physical source must lie a nonnegative

distance from sensor i = I.

7. Sample Storm Analyses

We have applied the LP lind QP algorithms (with Mapping #2) to retrieve several thousand

cloud-to-ground flashes that occurred over the MCTEX analysis region during November 28 (Day

332) and November 29 (Day 333), 1995. To demonstrate the internal consistency between various

forms of the algorithms and to clarify to what degree the algorithms differ, we have analyzed only

those flashes that produced a valid excitation at all four of the ALDF sites. In this way, each flash

can be analyzed by each selected algorithm.

The LP two-station algorithm, or "LP2" algorithm ingests the arrival time and bearing data

from sites ! and 2, and ignores the data from sites 3 and 4. The LP3 algorithm ingests the arrival

time and bearing data from sites 1, 2, and 3, and ignores site 4. The QP algorithm ingests only
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arrival time data from sites I, 2, and 3, and ignores site 4. Finally, the LP4 algorithm ingests

arrival time and bearing data from all four sensors. Hence, the results derived from LP4 are

considered to be the best retrieval results against which the three remaining algorithms are

compared. For example, the discrepancy between LP2 and LP4 results indicates how appropriate it

might be (in future storm analyses) to use LP2 when only two sites are available.

Figure 13 shows the ground flashes derived from Day 332 for each algorithm, and Figure

14 shows the results derived fi'om Day 333. Note from tile LP2 results provided in Figures 13(a)

and 14(a) that there are obviously location errors along the baseline between site 1 and 2, in

agreement with the general error results provided in section 3. The cluster of flashes to the south

on Day 332 shown in Figure 13(d) are reasonably ',veil retrieved by LP2 (Figure 13(a)), but are

somewhat smeared out and biased closer to the network. Similarly, the myriad of flash clusters to

the south on Day 333 shown in Figure 14(d) are reasonably well retrieved by LP2 (Figure 14(a)),

but again there is positional smearing.

The results of LP3 (Figures 13(b)and 14(b)) dramatically reduce the baseline errors and

smearing that was associated with the LP2 results. However. there are still _,ome positional

adjustments between the LP3 and LP4 results.

Finally, the results of the QP algorithm are shown in Figures 13(c) and 14(c). In all of the

QP results shown here, root ambiguities were resolved using the LP3 source solutions. Generally,

these results agree favorably with the LP4 results and are perhaps even better correlated to the LP4

results than are the LP3 results, for some source locations. Of course, sorne hyperbolic-shaped

artifacts are evident in the QP results in agreement with the error results provided in section 5, and

several complex root solutions had to be removed. Because the LP4 and QP methods are

significantly different mathematical approaches, it is particularly encouraging to see such good

agreement between them.
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8. Summary

In this writing we havederived,tested,andappliedtwo basicmethodsfor retrieving the

locationandtimeof occurrenceof lightninggroundstrikesfrom a networkof ALDF sensors.We

developedthemethodsso that they could be used in future validation studies of NASA space-

borne lightning sensors: the OTD and the LIS. The validation requirements of OTD and LIS have

allowed us to avoid the expenditures associated with using the proprietary nonlinear )-"

minimization algorithm mentioned in Cummins et al. (1993, 1995, 1998). The development of our

algorithms has also expanded upon and clarified the theoretical aspects of ALDF data inversions.

The first approach introduced in this writing, or LP method, assumes that arrival time,

bearing, and field amplitude measurements are all available from the network. As provided in (12),

these measurements are collected into one coherent linear system of equations that is solved by

straightforward inversion. Because of the general form of (12), we have clarified what solution

options one has if only a subset of the measurements are available and/or if one or more sensors

could not trigger on an event. In the extreme case of having only three arrival time measurements

from the ALDF network (as might be the case due to sensor subsystem failure), we have

introduced the QP method.

The planar methods express the source locations directly in terms of the measurements. The

solutions are concise, require little computer time, and afford the user with specific physical

insights about the retrieval problem (e.g., relative importance/effects of timing/bearing data on final

solution, regions of ambiguity, source locations producing complex roots). This starkly contrasts

the approach of nonlinear Z: minimization wherein solutions are found by a _¥)mt)t_ler search of

the optimum lightning source parameters (latitude, longitude, and time of occurrence).

Moreover, the LP and QP methods introduced here offer the authors and other researchers

a means to intensively analyze and compare, first hand, lightning radio source locations with

OTDFLIS low-Earth orbit lightning detections. In the future, we intend to apply these methods to

analyze a wide range of thunderstorms, to continue intercomparing the methods, and to relate the

results to OTD and LIS and other independent data sets such as: radar, Lightning Detection and
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Ranging (LDAR), and the NLDN. The first author will also improve some of the matrix methods

presented here to directly account for Earth sphericity; more elegant oblate spheroidal models are

also under consideration.
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Appendix AmWeighting of Bearing Data

It is of interest to determine to what extent bearing data is actually being used to constrain

the lightning source location in the LP method as a function of the weighting factor 6 introduced

into the linear system of equations provided in (1 I). Insight is gained by considering the case of

three sensors and ignoring field measurements, F. Then ( 11 ) reduces to

- a, ] It.v2 - xl) (Y=- Yl) c(t_ - t2):

/
t

m /(x 3-.v I) (v_-yl) • -t_)
cSfil = 6since, -6cost) I e(qO

5fl2 6 sin c_2 -6 cos O: 0
_,5_,J a.,i,, _,., -,.s co._0_ 0

i!l (A-l)

This system, which can be written in the standard notation: g = Kf, has the least squares solution

f = (K.K)-'I_.g. We are interested in the explicit functional dependence of x and v on the anixal

time, ta , and bearing. 0,, data, and on the weighting factor, 6. Because this is a very involved

hand calculation, we utilize a computer-aided symbolic manipulator to arrive at the following form

X m

6

+ h._a._ + Z(h)6 2 + hj+3)_1_.1
j=4

(A-2)

The ten functions, t_ (j = 0 ..... 9) depend, in general, on the arrival time and bearing data. The

variables (_, o_) depend only on arrival time data and network geometry, and the variables (/3_ ,

/32, /33) depend only on bearing data and network geometry as given in (3) and (6), respectively.

A similar form holds for y. The coefficient in front of the square brackets in (A-2) does not

preferentially weight the _z's or /3's so it is of no concern in this discussion. However, the
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coefficients(hi +6-'hj÷3)doweight the /3's but not the a's (i.e., these coefficients weight the

bearing data, but not the arrival time data). This leads to the final results

6 = 0 _ no solution

I
lira x= (h4/31 + t15/32 + t,6/33)

S_oo
-A(¢i); i= 1,2,3.

(A-3)

The first result is true since when 6 = 0 there are two equations in three unknowns in (A- I). The

second result is true because the only arrival time dependence associated with each function

(ho,t14,hs,h_) is a factor (t_ + t3). When the ratios hj/hoare taken this factor cancels out and we

are left with a function, A, that depends only on bearing data.

In summary, for a positive finite value of 6, both arrival time and bearing data are utilized.

However, as 6 is increased from zero, bearing data eventually becomes rnore heavily weighted

over arrival time data until, for a sufficiently large value of 6, only bearing data is being used to

determine the source location. For 6= i, we have difficulty inverting K for many source locations.

We have also performed retrievals, in the presence of measurement errors, for the values: S = I 0,

10 2, 10 3, 10 4, 10 5, and ]0 6. Figure A.! shows the result for 6 = 10, 10 _, and 105. There is not

much change in the solution from 10 to 103, but the dominance of bearing data constraints at 105

begins to reduce the quality of the solution (i.e., a 2 ° random bearing error can create a substantial

location error if the source range is sufficiently large).

We have performed the same type of computer-aided symbolic manipulation to determine

explicite forms when a four-sensor network is used (i.e., one more arrival time equation and one
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morebearingequationis addedto thesystemin A- 1sothatK becomesa7x3 matrix).In this case,

theformofx (as well as y) is

Most of the 17 functions, k, j = 0 ..... 16 depend on both arrival time and bearing data.

However, (k,.,k6,kT, ks) depend on arrival time data, but do not depend on bearing data. We

obtain the final limiting conditions

lira x= .i (kLa,_ +kvCt 3+k8c_ 4)=l-(t i)
_--_0 R2 _ " "

I

timx--W(k9 ,
_5---_¢,o

i= 1,2,3 .

(A-5)

Hence, we swing from a solution governed only by timing data (6 = 0) to one governed only by

bearing data (6 = co). The solutions for _ = 10, 103, and 105 are shown in Figure A.2. The

bearing data significantly worsens the solution when weighted heavily (6 -- 10_).
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Appendix B--Locations Where QP IVlethod Discriminant Function Vanishes

We investigate more rigorously the zcroes of the discriminant function A - (B 2-4AC) of

(27) in the QP method. The computer plots of this function gave some interesting results near the

outer baselines of the sensors, i.e., there appears to be minima there (see Fig. 11 ).

In the following formal approach, we algebraically reduce the discriminant into the product

of three factors. Each factor is then shown to vanish along a specific outer sensor baseline. Our

results apply to arbitrary network geometries. Because a zero discriminant implies that two

nonnegative, real, and equal roots are obtained, a unique (unambiguous) solution (x(r), y(r), t(r))

is obtained on the outer sensor baselines where r = -B/(2A) = r+ = r_.

Using the forms in (26) for .4, B, and C, the discriminant can be written as

[( "_ " "_z "_'_ 7 ' ' '" ") ]A=4c 2 p--r51[f)[q2"ts-_q2q3t2t3+q3-t5 +62o , (B-l)

where

p = r 2 • r 3 : x2x 3 + 3:23'3

F. : ldetQ = l(x2y 3 - y2x3) (B-2)
c c

G = r_q 2- -Pq2q3 + r2"q3-

To simplify some of the algebra without losing generality, we rotate the x and y axes so that

Y2 = 0. Further reduction of (B- I ) leads to

22 2 '_ "_ "_ "_ _ "_ .A=[x2Y 3 (x 2 -c't_ )][r s- -c2t 2 ][(x 2 -c't.; )+ 2(c'Gts -- X2Xs)+(rd --cet_ )] • (B-3)
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FigureB.I considersthesecondfactor,(4 -c'-t_ ), in (B-3). Forasourcelocatedon thesolid line

with r >_r_ site three is excited at

r- q -r r- r_ r_ ir_ | \

t 3=t4 - - + .... to--,)
C C C C

The factor becomes

r; -c-t2 rf - = r_ -(_ = 0 (B-5)

Proceeding in a similar fashion, the factor for a source on the dashed line with 0 < r < q is the

nonzero result, 4r(r_ - r), and the factor for a source on the dotted line (with 0 <_r < r_) or a

source on the thick line (with r>_r_) is zero. Hence, the factor is zero along the line running

through the sensors (including the sensor locations themselves, but excluding the line segment

between the sensors). This is what we refer to as the "outer scnsor baselines". Similar comments

can be made regarding sites 1 and 2 when the factor (.r__ -c2t__) is considered.

Evidently the third factor in (B-3) corresponds to the line running through sites 2 and 3. To

prove this, we consider the geometry provided in Figure B.2. For a source on the solid line with d

> 0 we have

D+d-r
t_ --

C

d-r

t 3 -
C

(B-6)



Substitutingtheseexpressionsinto thethird factor,andnotingthat D 2 = (x 2 - x 3 )2 + Y3 =

,,p -_

x; - 2x2x 3 + r_, we obtain

x__-(D+d-r) 2 +r_ -(d- r) 2 +2(D+d-r)(d-r)-2x2x 3

=(4- 2. 2x, (B-7)

., _ ")_D 2= x 2-- -' x, x 3 + ff = 0

For a source located on the dashed line (but not at site 2 or site 3) the factor reduces to the nonzero

[t ;result: 4wew 3 .r 2 -.r 3 -+y , where the constant factors (co,, 0 3) obey the constraints:

w 2 + o) 3 = 1, w2 > O, o.)3 > O. Finally, for a source on the dotted line and a distance I > 0 from site

2, we have

__ j,-

t,. I -_- --

- C

D+l-r

t3-- C

(B-,gl

These expressions have the same form as those in (B-6) but are interchanged. When substituted

into the third factor of (B-3), the factor reduces to zero as in (B-7). This completes the proof

showing that the discriminant function vanishes along the outer sensor baselines.
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Figure 1. Geometry associated with the LP method.

Figure 2. Spherical trigonometry used for determining arrival time and bearing.

Figure 3. Lightning location retrieval errors for a three-station network using the LP method: (a)

no measurement errors, and (b) with the following random measurement errors: 0.5-m sensor

location error, 300-ns timing error, 2 ° bearing error. Mapping #1 is used. Contours are in units of

kilometers. The analysis region shown is 6 L' in latitude (667 km) by 6 ° in longitude (about 651

km), and this is where the Maritime Continent Thunderstorm EXperiment (MCTEX) was

conducted.

Figure 4. Same as in Figure 3 except that Mapping #2 is used.

Figure 5. Same as in Figure 3 except that four sensors are used.

Figure 6. Same as in Figure 3 except that four sensors and Mapping #2 are used.

Figure 7. Same as in Figure 3 except that this is for the Tropical Ocean Global Atmosphere

Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) analysis region, and mapping

#2 is used. The analysis region is 18° in latitude (2002 kin) by 18° in longitude (about 1996 kin),

Shading, rather than contouring, is used to clarify the nonmonotonic distribution of retrieval

e rrors.

Figure 8. Comparison of roots in the QP method. The shaded regions indicate where root r.

produces better retrieval results than root r_. The unshaded regions indicate where root r produces

better retrieval results than root r÷. No measurement errors have been added to the simulated data.
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Figure 9. Retrieval errors from the optimum root in the QP method: (a) no measurement errors.

and (b) with the following random nleasurernent errors: O.5-rn sensor location error, 300-ns timing

error. Mapping #1 is used. Contours are in units of kilometers.

Figure 10. Shaded regions are the QP method "ambiguity regions" that indicate what lightning

source locations result in two unequal nonnegative real roots. No errors were added to the

simulated arrival times.

Figure 11. Plot of the (scaled) discriminant of the QP method. Expressions for A, B, and C in the

discriminant, B2-4AC, are given in (26) of the manuscript.

Figure 12. Fraction of I00 simulated sources at each location that produce complex roots using

the QP method. A 0.5-m sensor location error, a 300-ns timing error, and Mapping #1 was used.

Figure 13. Day 332 ground flash retrievals using the following algorithms (see algorithm

descriptions in text): (a) LP2. (b) LP3, (c) QP, and (d) LP4. Only those source retrievals falling

inside the above MCTEX region are shown. Of the four algorithms, the results of LP4 are

considered the best estimate of the true lightning locations.

Figure 14. Day 333 ground flash retrievals using the following algorithms (see algorithm

descriptions in text): (a) LP2, (b) LP3, (c) QP, and (d) LP4. Only those source retrievals falling

inside the above MCTEX region are shown. Of the four algorithms, the results of LP4 are

considered the best estimate of the true lightning locations.

Figure A.1 Location retrieval errors for a three-station network using the LP method when (a) 6 =

10 (b) 6 = 103 and (c) 6= 105. The same simulated measurement errors discussed in section 3 am
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used:0.5-msensorlocationerror,300-nstiming error,2"bearingerror. Mapping#2 is used.The

contoursarein unitsof kilometers.

Figure A.2 Sameasin FigureA.1,but for a four-stationnetwork.

Figure B.I. Geometryfor analyzingthesecondfactorin thediscriminantfunction.

Figure B.2. Geometry for analyzing the third factor in the discriminant function.
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