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ABSTRACT

Despite the extensive research and the advent of several new information technologies in the last three decades, machine
labeling of ground categories using remotely sensed data has not become a routine process. Considerable amount of human
intervention is needed to achieve a level of acceptable labeling accuracy. A number of fundamental reasons may explain why

machine labeling has not become automatic. In addition, there may be shortcomings in the methodology for labeling ground
categories. The spatial information of a pixel, whether textural or contextual, relates a pixel to its surroundings. This
information should be utilized to improve the performance of machine labeling of ground categories. Landsat-4 Thematic

Mapper (TM) data taken in July 1982 over an area in the vicinity of Washington, D.C. are used in this study. On-line
texture extraction by neural networks may not be the most efficient way to incorporate textural information into the labeling

process. Texture features are pre-computed from cooccurrence matrices and then combined with a pixel's spectral and
contextual information as the input to a neural network. The improvement in labeling accuracy with spatial information

included is significant. The prospect of automatic generation of metadata consisting of ground categories, textural and
contextual information is discussed.
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1. INTRODUCTION

The first earth resource satellite was launched in 1972 with a 4-channel Multispectral Scanner System on board. With this

first instrument, the vast potential of monitoring the condition of the earth's environment from space was discovered. Since

then, the remote sensing technology has grown significantly. The first Earth Observing System platform with five
instruments will be launched in 1999. As smaller missions with less expensive sensors may become the trend for spacebome

remote sensing, measurements from a fleet of advanced sensors will be used collectively to derive the physical parameters for
the land, the oceans, and the atmosphere, for monitoring climate changes and understanding the underlying mechanisms. To
process, analyze, archive, and distribute this large amount of data in a timely manner not only presents a tremendous
challenge to the data systems for these sensors, but also demands innovative analytical methods and advanced computing and
data communication technologies.

Despite the extensive research and the advent of several new information technologies in the last three decades, machine
labeling of ground categories using remotely sensed data has not become a routine process. Considerable amount of human
intervention is needed to achieve a level of acceptable labeling accuracy. There are a number of fundamental reasons why
machine labeling has not become automatic: (1) The spectral response of a ground category as viewed by the sensor is not
constant. It depends on the viewing geometry, conditions of the atmosphere and the sensor, and geophysical properties of the
target pixel and the surrounding pixels. Since each ground category has variable and sometimes unpredictable spectral
response, the inversion process to infer ground category from spectral response is understandably difficult. (2) Ground truth
is needed in training and testing any labeling algorithms. Since ground truth information must be collected manually and a
ground truth map must be constructed with human efforts, it is tedious and expensive to produce such maps, and it is not
uncommon to find labeling errors in a ground truth. Shortage of good, reliable ground truth hampers the development of
machine labeling algorithms. (3) The sensor's spectral or spatial characteristics may not be suitable for identifying certain

ground categories. The development of hyperspectral instruments with one or two magnitudes more channels than the early
Landsat would indeed provide the appropriate spectral channels to detect certain geophysical events. However, machine
labeling using hyperspectral data has other complications] _
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Inaddition,theremaybeshortcomingsin themethodologyforlabelinggroundcategories.Photointerpretationbyhuman
analystsin generalhassuperiorperformancethancomputers.Thereforemachinelabelingalgorithmsmaybenefitfrom
emulatinghowphotointerpretationis performed.Photoanalystsuseat leastasmuchspatialinformationasthespectral
informationforsegmentation,detection,identificationandinterpretation.Themajorityoftheresearchin machinelabeling,
however,doesnottakespatialinformationintoconsideration.In manyalgorithmsonlyonepixelis consideredatatime;
pixellocationdoesnotmatterbecausepixelcoordinatesneverenterthecomputation.Thespatialinformationof a pixel,
whethertexturalorcontextual,relatestherelationshipapixelbearswithitsneighbors.Theinformationmustbeutilizedto
improvetheperformanceofmachinelabelingofgroundcategories.

Metadataisthedataaccompanyingthedatasetto providetheessentialinformationofthedataset.It maydescribehowthe
datasetisgeneratedorprovideinformationoftheimportantfeaturesoreventsinthedataset.Asthedatavolumeavailableto
theusersgrowsexponentiallyin thefuture,queryonmetadatais anessentialmeansof screeningdatasetswithoutactually
examiningthecontentofthedataset.Metadatamayindicatetheavailabilityofcertainfeatures(e.g.deciduousforest,water
bodies)andpresenceof certainevents(e.g.fires,storms).In general,automatedtechniquesshouldbeusedto extractthe
neededinformationfromthedatasetandusedasthemetadata.Groundcategoriesandspatialinformationareuseful
informationthatcanbepartofthemetadata.

Inthefollowing,Section2reviewscertaintexturalandcontextualfeaturesin imageprocessing,andexplainsthefeaturesused
in theanalysis;Section3describesthedataandthegroundtruthusedin thestudy;Section4 presentsthetrainingprocess
andtheclassificationresults;Section5suggestshowmetadatacanbeextractedin thisprocess;andSection6 discussesthe
resultsandsuggestsfuturedirections.

2. TEXTURAL AND CONTEXTUAL FEATURES

There is no consensus on the precise definition of texture, in spite of the extensive research conducted in the last three
decades. Conceptually, texture can be considered as an macroscopic attribute generated by repetitive primitives according to

a placement rule.

Various methods have been used for textural analysis, modeling and synthesis in the past. For example, Haralick et al. 9 used

features extracted from gray-tone spatial-dependence matrices to classify a photomicrograph, an aerial photograph, and a
satellite image Weszka et al._7 used features from Fourier power spectrum, second-order gray level statistics, and first-order
statistics of gray level differences to classify Landsat imagery samples. Tamura et al. " proposed to use six features --
coarseness, contrast, directionality, line-likeness, regularity, and roughness -- obtained from second-order statistics for
texture analysis. Haralick s reviewed the approaches and models investigators have used for texture analysis. He concluded
that the statistical approaches work better for microtextures; and for macrotextures, histograms of primitive properties and
cooccurrence of primitive properties may be used. Conners et al. 5 concluded that the spatial gray level dependence method
(also called concurrence matrix) performed better than the gray level run length method, the gray level difference method, or
measures derived from Fourier spectrum using generated textures. Pentland used fractal functions to represent natural shapes
such as mountains, trees, and clouds. Texture was modeled by an isotropic fractal Brownian function with constant fractal
dimension. Chellappa et al: used Markov random field models to generate textures. Derin et al. 7 used Gibbs distribution

for modeling and segmentation of noisy textured images, and presented a dynamic programming segmentation algorithm.
Bischof et al. appended TM Band 5 measurements from 5x5 or 7x7 neighborhoods to each pixel and relied on a neural
network to extract textural information. A two-layer network was also used in smoothing postprocessing for each 5x5

neighborhood. Rao et al. TM discovered that three high-level features, namely repetition, orientation and complexity, are
important to attentive texture perception. Augusteijn et al. 2 used five categories of texture measures to classify segments of
TM data. These five categories are: cooccurrence matrices, gray-level differences, texture-tone analysis, feature derived from
the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were considered to be good choices
especially when only one band was used for classification. Ojala et al._2 evaluates the performance of such texture measures as
gra,,-level difference methods Laws' textm'e measures, center-symmetric covariance measures, and local binary patterns. Zhu

.7 , .... •
2Oet al. used features from wavelet transform to classify relief images from aerial photographs dlgtt_zed at various resolutmns.

The advantages of multiresolution analysis over other traditional approaches for this type of applications were discussed. For
spacebome remote sensing, this implies that texture features for sensors of different spatial resolutions can be used across
sensor platforms. From these previous investigations, it appears that there is no single method that is suitable for all

applications. The most appropriate approach is driven by the application itself.



In this study,texturemeasurescomputedfromthecooccurrencematrixareused,alongwith other textural-contextual
indicators such as the mean values and the standard deviations of the 3x3 and the 5x5 neighborhoods. It could be argued that
the texture measures could be extracted automatically from a neural network and hence they do not need to be precomputed.
However, testings indicate that this may not be the optimum approach as many texture features may be used. Therefore the
textural measures are computed off-line.

A cooccurrence matrix {Pij(d,0)} consists of relative frequencies Pc with which two neighboring pixels separated by distance
d in direction 0 occur on the image, one with level i and the other with level j. Energy, uniformity, or homogeneity is

defined as _Pij 2. Entropy is defined as - _PijlogPij. And contrast is defined as _(i-j)2pij 2. For this study, d=l, and 0 =

0 °,45 ° , 90 ° , 135 °.

In a contextual classification, one can use information derived from the context of the data or ancillary information associated
with the data to aid the classification. For example, in machine reading postal addresses on envelopes, the street name and
the number, the city name, the state name and the zip code must all be consistent. This constraint can greatly improve the
recognition rate. For remote sensing applications, contextual classification is less developed and used infrequently comparing
with textural classification. A common contextual rule in classifying natural scenes is that a pixel is more likely to have the
same ground category as the majority of its neighboring pixels have. This is based on the fact that the scales of ground
categories in natural scenes are much larger than a pixel's spatial resolution. Post-processing majority filters can be
constructed to rectify pixels that appear to be misclassified. A different approach proposed by Wharton TM to improve

classification accuracy is a two-pass contextual classification based on ground category distribution in a local area. In reality,
any reasonable rules, such as "nearly all the agricultural fields in this county are rectangular" may be used to improve
classification accuracy. In this paper, contextual information is provided by the local statistics (mean and standard deviation)
in the 3x3 and the 5x5 neighborhoods. Pixel counts for the individual pixels in the 3x3 or the 5x5 neighborhoods in one or
more bands may be concatenated to the center pixel also for the neural network to extract textural and contextual information.
However, as will be discussed in Section 4, the exact nature of textural and contextual information extracted by a neural
network may not be easily understood. In summary, the spatial features that could be included in training and classification
are four sets of the parameters computed from the cooccurrence matrices -- energy, entropy and contrast for the four
orientations, and two sets of mean and standard deviation for the 3x3 and the 5x5 neighborhoods. In addition, pixel counts
from any of the TM bands in the 3x3 or the 5x5 neighborhood may also be included.

3. CHARACTERISTICS OF THE DATA USED IN THE STUDY

Landsat-4 Thematic Mapper (TM) data taken in July 1982 over an area in the vicinity of Washington, D.C. were used in this
study. Only the first four TM bands were available, as the instruments for the three remaining IR bands had not stabilized.
The ground truth consists of 17 categories, and were obtained through photointerpretation of color infrared aerial photographs
and subsequent field visitsJ 9

In general, ground truth contains information categories instead of spectral categories. Since the neural networks in this
study perform classifications based on spectral data, whether the information categories correspond to distinct spectral

categories should be examined to estimate the intrinsic discriminability among the categories. To achieve this objective, the
spectral signatures for all categories are computed. The signatures consist of means vectors and covariance matrices. A
number of measures, such as divergence and Mahalanobis distance, could be used to estimate the separability among multi-
dimensional clusters. In this study, we compute the ratio of between-class variance to within-class variance along the Fisher
optimal discriminant vector. 6 From these ratios, it is concluded that some information categories are heavily overlapped with

others, and that the 17 information categories should be combined into six categories, following the land use and land cover
classification system of Anderson et al. These six categories are: (1) urban or built-up land, (2) agricultural land, (3)
rangeland, (4) forest land, (5) water, and (7) bare soil/cleared land. Notice that there is no Category 6 -- wetland -- in this
data. In Anderson's system, Category 7 is barren land, such as salt flats, beaches, bare rock, etc. Since bare soil/cleared land
(Category 17 in the ground truth data) does not exactly fit the definition, the original description in the ground truth is used
instead.

It has been noticed by Teller et al., 16 however, that the ground truth data had certain errors in it. Since a ground truth is
normally constructed with manual processes, it is not uncommon that the ground truth is inherited with some human errors.
It should be kept in mind also that because of the pixel's finite spatial resolution a ground truth is never perfect even when
there is no human error.



4. TRAINING AND CLASSIFICATION

A 3-layer, feed-forward neural network is used in this study. The input layer has four or more units. The four units
corresponding to the four TM bands. Additional units are used for the textual or contextual input features. The hidden layer
has ten units, and the output layer has six units, corresponding to the six ground categories. The area has 21,952 pixels
with defined ground truth. Excluding the edge pixels because they do not have a complete 5x5 neighborhood, there are
20,441 usable pixels, among which half of the pixels are used for training, and the other half for testing. Using altemate
pixels for training and testing is not a normal classification strategy. The purpose of using it here is to explore the optimum
classification accuracy for testing samples, especially there could be complications with the increased dimensionality (see
Section 6). Because the two sample pools have virtually indistinguishable distributions, the testing accuracy can sometimes

be slightly higher than the training accuracy.

Small leaming rate and momentum factor are used in the training to minimize fluctuation. Convergence is usually reached
within several thousand iterations. The classification accuracies (percent correctly identified) for the training and the testing
samples are tabulated as follows.

1 78.5 80.4
2 63.5 65.5
3 14.1 13.8
4 84.7 84.4
5 80.0 69.2
7 62.2 60.4

Overall 71.5 71.6

ff samples classified with lower activation values are rejected to enhance the confidence level of the classification, then the
classification accuracies can be improved. Previously it was shown that by rejecting 9.7% of the samples with lower
activation the overall classification can be improved to 75.4%. On the average, for each percent increase of accuracy,
approximately 2.3% of the samples with lower activation values are rejected._°

Classification accuracies with spatial features included as shown in the following table, mean3 and sd3 are the mean and the
standard deviation for the 3x3 neighborhood, mean5 and sd5 are those for the 5x5 neighborhood. It is apparent that TM3

contains more spatial information for discrimination than TM1.

Overall Classification Accuracy (%)

TM1-4 pixel's spectral data only 71.5 71.6

Plus TM1M mean3 71.2 69.9
Plus TM1-4 sd3 63.2 62.7
Plus TM1-4 mean3 and sd3 77.0 76.6

Plus TM1-4 mean3, sd3, mean5 and sd5 68.8 68.3
Plus TM 14-4 energy 68.4 67.5
Plus TM1-4 entropy 74.0 73.0
Plus TM1--4 contrast 75.8 75.4

Plus TM1 energy, entropy, contrast 73.9 74.0
Plus TM 1 3x3 neighborhood 68.6 68.1
Plus TMI 5x5 neighborhood 62.5 63.0
Plus TM1 energy, entropy, contrast, and 5x5 neighborhood 69.4 69.0

Plus TM3 energy, entropy, contrast 73.6 73.5
Plus TM3 3x3 neighborhood 72.9 72.1
Plus TM3 5x5 neighborhood 75.5 75.6
Plus TM3 energy, entropy, contrast, and 5x5 neighborhood 76.4 76.4



PlusTM1andTM3 energy, entropy, contrast, and 5x5

neighborhood 76.9 76.5

5. METADATA GENERATION

Metadata is loosely defined as "the data about data", or "the additional information that is necessary for data to be useful."
Most elements in computer-based applications, such as datasets, databases, data warehouses, software, and computer systems,
have metadata as components. It provides the information concerning data's structure, context and meaning. Metadata
management issues, such as enterprise-wide maintenance and integration, and interoperability among intemal and external

elements, are important aspects in modem computer systems.

For datasets in remote sensing applications, metadata may describe how a dataset is generated or provide information of the
important features or events in the dataset. Metadata may indicate the availability of certain features (e.g. deciduous forest,
water bodies) and presence of certain events (e.g. fires, storms). Ground categories and spatial characteristics are useful
infomaation that can be included as metadata also.

As the amount of remotely sensed data will increase exponentially in the future, a challenge facing the users and the data

providers alike is to determine which datasets a user will really need for a specific application. It will be impractical for a
user to request a large number of datasets, download them to the user's computing platform, process the datasets, then
determine which datasets should be used. From a user's point of view, it is desirable to have a screening capability to reduce
the number of datasets that have to be examined. Browsing a low-resolution image can be a part of the screening process.
But more detailed information, such as the presence of certain ground categories and textures, or the approximate ratios of the

categories, may also be useful indices for searching. A solution is to extract features and events in a dataset automatically as
a normal step along the generation of the standard Level-1 datasets. The features and events can then be included in the
metadata. Queries including more specific information would greatly limit the amount of datasets for examination.

6. DISCUSSIONS

With spatial features included, the labeling accuracies could improve by up to approximately 6%. This is a significant
increase considering the accuracy is approximately 71% without spatial features. In the study, a fixed network architecture
with fixed number of hidden units is used in all trainings in order to reveal the impact of inclusion of spatial features. Since

in some cases the number of input features increases by several folds after the spatial features are included, conceivably the

training and the testing accuracies may increase further if more hidden units are used.

It hs not efficient to rely on the network to compute a whole set of statistical texture measures and then perform labeling

process. This is the rationale to compute energy, entropy, contrast, and neighborhood statistics separately. By appending
the neighboring pixel to the center pixel spatial features are nevertheless extracted. It would be interesting to explore the
nature of the textural or contextual features so extracted.

As spatial features are included, the dimensionality of the labeling problem could increase rapidly. Since the number of
training samples remains unchanged, the feature space with the enhanced dimensionality will be largely empty. Since there
are very large gaps among pixels in the feature space, the decision boundary being determined by the neural network may
have very large leeway. This implies that during the training process RMS error may decrease without realizing any increase
in labeling accuracy. The large leeway may lead to poor generalization and performance if the training and testing samples do
not belong to the same population. Increasing the size of the training sample is the only way to reduce the gaps in the feature

space. However, as pointed out in Section 1, this is an expensive proposition because ground truth is difficult to obtain.
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