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1. The Problem

Step bunching results in striations even at relatively early stages of its development and in inclusions of

mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal

perfection. At least 5 major effects causing and influencing step bunching are known:

° Basic morphological instability of stepped interfaces. It is caused by concentration gradient

in the solution normal to the face and by the redistribution of solute tangentially to the

interface which redistribution enhances occasional perturbations in step density due to

various types of noise.

. Aggravation of the above basic instability by solution flowing tangentially to the face in the

same directions as the steps or stabilization of equidistant step train if these flows are

antiparallel [1-4].

. Enhanced bunching at supersaturation where step velocity v increases with relative

supersaturation s much faster than linear [5]. This v(s) dependence is believed to be

associated with impurities. The impurities of which adsorption time is comparable with the

time needed to deposit one lattice layer may also be responsible for bunching [6, 7].

4. Very intensive solution flow stabilizes growing interface even at parallel solution and step

flows [5].

. Macrosteps were observed to nucleate at crystal corners and edges [8, 9]. Numerical

simulation, assuming step-step interactions via surface diffusion also show that step

bunching may be induced by random step nucleation at the facet edge and by discontinuity in

the step density (a ridge) somewhere in the middle of a face. The corresponding bunching

patterns produce the ones observed in experiment [10-12].

The nature of step bunching generated at the corners and edges and by dislocation step sources, as well

as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from

experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of

existing step bunches have been suggested [13, 14], though unambiguous conclusions are still missing.

Addressing these issues is the major goal of the present Project.
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2. Theory [15|

Linear perturbation analysis was applied to a stepped interface on which step density is, respectively

linear and non-linear functions of supersaturation and also to the case when the step rate is a non-linear

function of supersaturation. The approach and codes developed earlier [ 1-4] were employed.

2.1 Linear increase of vicinal slope with supersaturation.

First vicinal slope, p, is kept constant. This is the case of, e.g., lysozyme faces or prismatic, KDP/ADP

faces on which steps are generated by strong dislocation sources at high supersaturation. If p = const =

5.10 .3 and the solution is stagnant, the interface is unstable within the area surrounded by solid line in

Fig. 1. This solid line presents the perturbation wavevector k_ as a function of the normal growth rate,

V = pv. As the solution flow velocity in the stabiliTing (counter, or up-step) direction rises, this area of

instability shrinks and disappears at a certain shear flow (~<ls -_ for the ADP growth parameters). The

instability area expands if the flow is destabilizing (down-step).

If the vicinal slope p linearly increases with relative supersaturation (p=0.117s), the interface is stable in

the area inside the dashed line in Fig. 1. In this case the instability region expands at higher growth rate

rather that shrink, contrary to the region surrounded by the solid line and corresponding to p = const.

Such dramatic change in behavior comes from much stronger sensitivity of the surface self stabilization

to the average step density than to step velocity inducing the self stabilization.

2.2 Non-linear increase of step velocity and hillock slope with supersaturation.

Step velocity was chosen to fit the experimental data for prismatic ADP face making use of the

following relationship

v = _ {bl+(b2-b,)/[1 + exp [b3(1-s/s*)]] }s (1)

with bl = 4.0 10%m/s, b2 = 3.102cm/s. b3 = 20, s* = 0.041. The square brackets present the stepwise

function of s with the change from 132= b_ at s<<s* to 112= at s>>s*.

The resulting stability areas at different shear flows are seen in Fig. 2. The slope varied with

supersaturation as p = 0.117.s. Besides the instability area in the upper right part of Fig. 2, similar to

the one shown in Fig. 1, the instability also occurs at supersaturations s : s* where the kinetic

coefficient changes most steeply with s. This confirms the experimentally observed and intuitively clear

weaker stability of the interface to perturbations at the supersaturations corresponding to the strongest

response of the interface to the local supersaturation changes i.e. impurity induced instability [5].

As it can be seen from Fig. 2 by comparing stability borders at various solution flow shear rates, S, the

stability strongly depends on solution flow: the instability region in the middle of Fig. 2 may shrink to

zero at high stabilizing shear flows, S > 0, and expands at S < 0. Experimentally, the impurity induced

instability actually remains at any flow rates while theory predicts its elimination at sufficiently intense

stirring. However, no systematic measurements at various flow rates have been performed so far.

If we assume that the hillock slope approaches constant value at rising supersaturations as it happens for

powerful dislocation step sources, then the region in the upper right corner of Fig. 2 naturally
disappears.
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Fig. 1. The spatial wave numbers at which the
system is neutrally stable as a function of
growth velocity for linear kinetics (b 0 = 0, b I =

b 2 = 4.0 x 10-3 cm/s) for p = 0.005 (solid curve)

and p = 0.117 s (dashed curve).
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Fig. 2. The spatial wave numbers at which the

system is neutrally stable as a function of

growth velocity and supersaturation (upper
axis) for nonlinear kinetics (b 0 = 0, b 1 = 4.0 x

10-3 cm/s, b 2 = 3.0 x 10-2 cm/s, b 3 = 20.0, s* =

0.041) for p = 0.117 s and shear rates S of 0.5

(dashed), 0 (solid), and -0.5 (chain dashed) s-1.
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Fig. 3. Schematic of the experiment (upper row) of lysozyme crystal growing under conditions of
natural convection (a), and forced flow at the average flow rates u = 105 #m/s (b) and 265 lam/s (c).

The face profiles shown at the interferograms were determined by interference pattern intensity
along the vertical and horizontal dashed lines.
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3. Experiment

3.1 The average surface profile.

So far, stability of lysozyme bipyramidial face was studied. The experimental setup was described

earlier [11]. The observation scheme and flows are shown in Fig. 3, upper row. The face profile was

determined from interferograms. The local face growth rate and local vicinal slope, i.e. the step density,

were measured in points #1, 2, 3 marked by crosses on each of the face interferograms (Fig. 3, lower

row). Point #1 is in the upper left corner, point #2 is the upper fight, and point #3 is the lover left. In

each point, the interface positions by two adjacent laser beams, ca. 3t.tm apart was simultaneously

measured. Each testing point includes such pair of laser beams with the pair oriented normal to the

average step direction (interference fringes). Techniques for measurement and evaluation of these

fluctuations were described in ref. [11]. As the interferograms demonstrate. The step source was

located in the upper left corner of the face. This source is probably of dislocation origin because there

was no growth cessation at supersaturation s _- 0.4. In the experiments under consideration, s : 1.

The surface profiles h(x) along the dashed lines in horizontal and vertical cross sections are attached to

the corresponding interferograms. The profiles in the direction normal to the flow (between the points

#1 and #3) shown at the left from each interferogram in Fig. 3. These profiles are about fiat, in Figs. 3b

and c, while in Fig. 3b this profile is concave.

The profiles along the flow behave differently. Under conditions of only natural convection, Fig. 3a, the

h(x) profile shows that the face is slightly concave in the region 30 < x < 80ktrn/s.

At the forced flow rate u=105 ktm/s (Fig. 3b) the face is convex. The profile convexity disappears if the

crystal is turned by some 20 ° or more around the axis normal to the face and solution flow. Such a turn

means changes in flow patterns and, also, that mutual azimutal orientation of the flow and step

directions changes significantly.

At flow rate, u=265 t_m/s the hillock slope is about constant. The face flatness may be attributed to a

deeper kinetic control of the growth and thus essentially more constant supersaturation along the face.

3.2 Fine Structure of the Surface: Fluctuations.

Figs. 4, 5 and 6 corresponding to the Fig. 3a, b, and c, present the temporal fluctuations of normal

growth rate and local slopes in testing points #1, #2 and #3.

These temporal fluctuations are the result of step bunches passing through the testing points, possessing

different slopes, p, and thus providing different local normal growth rates, V = pv.

No essential difference can be seen between fluctuations in a and c of Figs. 5, and 6. This might be

expected since the flow in all cases is essentially parallel to the steps in testing points #1(a) and #3(c)

and thus should not strongly influence step bunching. A larger amplitudes of normal growth rate

fluctuations can be noted in test point #2 as compared to #1 under conditions of natural convection

(Fig. 4). In this case, indeed, the flow is stabilizing in #2 and destabilizing in #1. This effect was

reported earlier in [ 1, 5, 12].
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Fig. 4. Fluctuations in time, t, of the normal growth rate, R(t), vicinal slope, p(t) and Fourier

Spectra of R(t), shown as A/A O. Here A is the Fourier amplitude of the frequency plotted on

abscissa, to the average growth rate A0=Rav(t). Data on a, b, c were measured at the points #1, #2,

#3 shown in the interferogram d by crosses. Natural convective flow. Average slopes, Pay and

effective step rates, ray, are shown.
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Fig. 5. Same as Fig. 4, forced solution flow rate u = 105 ktm/s.
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Fig. 6. Same as Fig. 4, forced solution flow rate u = 265 I.tm/s.
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Comparing the fluctuation amplitude, in a and b in Figs. 5 and 6, we note that fluctuations are stronger

in Figs. 5b, 6b as compared to Figs. 5a, 6a. This corresponds to an increase in average slope, p,v, from

a to b. Similarly, the fluctuation are stronger in Fib 4b at larger p,v=7.10 -3 as compared to Fig. 4b at

resulting p,v=5.10 -3. Corresponding decrease in average step rate, v,, with increase of p,v, may also be

noted since the average normal growth rate, R,v = (pv),v remains unchanged. The numbers for p,v and

v,,, are given in the figures.

Much stronger effect have the increase in the flow rate from 1051.trn/s to 265 ktrn/s: fluctuations in

normal growth rate in Fig. 5 are noticeably less intense than these in Fig. 6, i.e., the flow rate rise

essentially damps the fluctuations. This effect takes place in both the upstream and the downstream

testing points #1 and #2 in Figs. 6a and b. Simultaneously, an increase of the p(t) and R(t) fluctuations

measured in the downstream points #2(b), as compared to the upstream point #1(a) can be seen in Fig.
5.

4. Discussion and Conclusions

The role of bulk transport in formation of the overall face profile, i.e. the h(x) and p(x) dependencies

(Fig. 4), can be estimated making use of convectional boundary layer thickness above thin plate. With

R=2"10Tcrn/s, D=106cm2/s, v=102g/cm.s, crystal size - 100lam and the ratio of the protein

concentration in crystal to the one in solution : 30, this estimate suggest the diffusion boundary layer

thickness : 2.3.102cm and about 10% decrease in supersaturation along the face. This is insufficient to

provide the observed slope change of the order of 100%.

This large slope increase may be associated with step bunching resulting in effectively lower average

kinetic coefficient of the face. The corresponding modeling based on strong step-step interaction is

consistent with this large increase -- cf. Figs. 9 and 16 in reg. [10].

Existence of fluctuations corresponding to step bunches passing the test point #1, close to the step

source, along with the ones in #2 and #3, suggests that the experimentally observed bunching might

occur at the very beginning, during the step generation and is merely enhanced in course of propagation

along the face. Therefore, the theory analyzing only onset of instability is probably insufficient to treat

the data: evolution of bunches, along with their generation at the dislocation and/or nucleation sources
is needed.

The mechanism of step bunching in the close proximity to the step source is not clear. One may think of

step pairing noted on the KDP crystals by AFM [17], on bunching provided by irregular step generation

at the edge with essential contribution of surface diffusion [12], on the coupled impurity adsorption,

step nucleation and propagation [ 18] at supersaturations close to the transfer from the dislocation to the

2D nucleation driven growth and at the supersaturations close to the impurity assisted non-linear steep
increase of the step rate with s, like the one discussed in Sec. 2.

Suppression of fluctuations by the faster solution flow may be associated with weaker coupling of step

generation by either dislocations or 2D nucleation (both non-linearly dependent on supersaturation) with

diffusion and impurity adsorption in the very vicinity of the step generation area.
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Enhanced fluctuations in the downstream portion of the step train is qualitatively consistent with the

theory developed in Sec. 2. However, extension of the theory to the evolution of the already formed

surface corrugations to form the more pronounced dissipative step structure in needed. Equally

important are relevant future experiments.
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