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Abstract

Real-time Seebeck voltage variations in a Sn-Bi melt during directional solidification in

the MEPHISTO spaceflight experiment flown on the USMP-3 mission, have been correlated

with well-characterized thruster firings and an Orbiter Main System (OMS) bum. The Seebeck

voltage measurement is related to the response of the instantaneous average melt composition at

the melt-crystal interface. This allowed us to make a direct comparison of numerical simulations

with the experimentally obtained Seebeck signals. Based on the results of preflight and real-time

computations, several well-defined thruster firing events were programmed to occur at specific

times during the experiment. In particular, we simulated the effects of the thruster firings on

melt and crystal composition in a directionally solidifying Sn-Bi alloy. The relative

accelerations produced by the firings were simulated by impulsive accelerations of the same

magnitude, duration and orientation as the requested firings. A comparison of the simulation

results with the Seebeck signal indicates that there is a good agreement between the two. This

unique opportunity allows us to make the first quantitative characterization of actual g-jitter

effects on an actual crystal growth experiment and to calibrate our models of g-jitter effects on

crystal growth.

Introduction

The MEPHISTO program is the result of a cooperative effort that involves the French

nuclear and space agencies Comissariat ?a l'Energie Atomique, CEA - Centre National d'Etudes

Spatiales, CNES) and the National Aeronautics and Space Administration (NASA). Six space

flights on the USMP carrier were initially planned, with odd-numbered missions being the

responsibility of the French scientific teams and the even-numbered missions being the

responsibility of the US. During the first flight of MEPHISTO in October 1992, bismuth-doped

tin samples (Sn:0.5 at.% Bi) were used and experiments were carried out both below and above

the morphological stability threshold. Exciting results were obtained [1] that opened new

perspectives for research.

The first objective of the USMP-3 flight was to investigate the g-jitter induced solutal

segregation in planar front solidification. We requested well-controlled gravity perturbations,

mainly in the form of Primary Reaction Control System (PRCS) bums. The other main scientific

objective was to track the morphological stability threshold (i.e. the instability where the growth

front goes from planar to cellular) with the highest possible accuracy. In comparison with the

first flight, the USMP-3 alloys were slightly more concentrated (1.5% at. Bi), in order to check a

possible soluto-convective effect.

MEPHISTO is a directional solidification furnace, in which three samples are

simultaneously processed. A unique property of the apparatus is that there are two
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heating/cooling subsystems [2,3]. One of these is held at a fixed position and provides a

reference interface. The other is programmed to translate along the furnace axis to facilitate

solidification and melting of the alloy samples. One of the samples is dedicated to a

measurement of the Seebeck voltage between the two ends. In other words, the sample acts as its

own thermocouple, with a "cold" and a "hot" reference junction (respectively the moving and

fixed interfaces). The Seebeck voltage is then a measure of the undercooling at the growth front,

and most importantly, the signal is obtained in real time. It is thus possible to run many

experimental cycles on the same sample. This, in turn, allows for a test of the reproducibility of

the process and to ensure a better accuracy of the results. The second sample is used to record

the position and the velocity of the moving interface. These are obtained from a resistance

measurement. At the end of each experimental cycle, a quench freezes the structure of the solid-

liquid front. Peltier pulse marking performed on the third sample allows the determination of the

shape of the interface at given time intervals. Moreover, in the second and third samples,

thermocouples present in the liquid phase are used to determine the temperature gradient and

possible thermal fluctuations. The MEPHISTO facility ran for 312 hours, including 216 hours

dedicated to scientific operation. During that time period, 24 solidification/fusion cycles were

carried out. Five growth rates were preprogrammed (1.7, 3.7, 5.7, 12 and 24 mm/h) before the

flight, but, thanks to telescience operations, we were able to different growth rates to track the

morphological stability threshold. Controlled gravity perturbations were realized through

planned thruster firings and maneuvers. In all 9 PRCS burns, ranging in duration from 10 to 25

seconds were carried out. In addition, an OMS burn and a 360 ° X-axis roll were also performed

(see Table I). (See table 1)

Table 1 MEPHISTO PRCS and OMS burns and rolls

MET

V3 5/21:45

V3 6/00:00

V2 6/22:00

V2 7/00:25

VI 10/12:30

I/3 12/12:25

V3 12/14:25

V3 12/14/28

12/16:28

V3

V3

13/12:50

13/14:03
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Type

PRCS

PRCS

PRCS

PRCS

PRCS

PRCS

PRCS

PRCS

360 ° X-axis roll

PRCS

OMS bum

During the first flight of the MEPHISTO directional solidification experiment on

NASA's USMP-1 mission in 1992, the impact of sudden effective gravity perturbations were

clearly evidenced [1 ]. Real-time Seebeck voltage variations across a Sn-Bi melt showed a

distinct variation that can be correlated with thruster firings [1]. The Seebeck voltage

measurement is related to the response of the instantaneous average melt composition at the

melt-solid interface [4]. This permitted a direct comparison of numerical simulations (and

acceleration data) with the Seebeck signals obtained on USMP-1. Motivated by the results of the

comparison, we used numerical simulations to predict the response of the Seebeck signal to

8



thruster firings of various magnitudes and durations. The behavior of the signal is directly

related to changes in interracial composition caused by thruster-induced convective disturbances.

Motivated by the observations made on USMP-1, one of the objectives of the USMP-3

MEPHISTO experiments was to quantitatively characterize g-jitter effects on an actual crystal

growth experiment. To plan the USMP-3 MEPHISTO experiments, simulations were carried out

for different solidification rates and g-jitter scenarios.

There were several differences between the USMP-3 and USMP-1 experiments. First, a

more concentrated alloy was solidified on USMP-3, and, second, Primary Reaction Control

System (PRCS) thruster burns were requested at particular times during four separate growth

runs. The Seebeck signal was recorded continuously and down-linked in real-time to the

MEPHISTO experiment team at NASA's Marshall Space Flight Center. This allowed for

quantification of the effects of "g-jitter" on convective-diffusive transport in the melt through the

changes in average interracial composition obtained from the Seebeck measurement. In addition,

guided by SAMS acceleration data, we carried out simulations for comparison with the recorded

Seebeck signals. The effects of thruster firings on the average composition was monitored in six

separate experiments and for eleven separate acceleration disturbance events. Selected results

from our ongoing post-flight analysis are described below.
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Fig. 1 The MEPHISTO set-up (bottom-left), temperature profile (top left) and computational

model (right). T m denotes the melting temperature.

Approach

A sketch of the experiment set-up is shown in Fig. 1 There are two furnaces. One is

fixed. The other is translated. The applied temperature profile shown in Fig. 1 leads to a

central cylindrical melt volume bounded by a moving and a stationary (or reference) solid-liquid

interface. The melt composition at the moving and the stationary reference interfaces is not the

same. For Sn-Bi there is a dependence of melting temperature on concentration. Thus, it follows

that the melting temperature at the two interfaces will also be different. The Seebeck effect gives

rise to a small but measurable voltage difference between these two interfaces. Measurement of

this voltage difference allows us to determine the average temperature and, thus, the average



composition of at the growing interface. The MEPHISTO set-up and the Seebeck measurements
are discussed in more detail in [4].

The numerical model used to simulate the response of the tin-bismuth melt to particular

types of g-jitter has been described elsewhere [5-7]. The essential features are outlined below.

Solidification takes place as the furnace is translated along the ampoule (see Fig. 1 ).

Directional solidification due to the furnace translation is simulated by supplying a two-

component melt of bulk composition c° at a constant velocity Vg at the top of the computational

space (inlet), and withdrawing a solid of composition cs = Cs(X,t ) from the bottom (See Fig. 1 ).

The crystal-melt interface is located at a distance L from the inlet; the width of the ampoule is W.

The temperature at the interface is taken to be T m, the melting temperature of the crystal, while

the upper boundary is held at a higher temperature T h. In the actual experiment, the temperature

gradient along the ampoule wall ahead of the growing interface was essentially linear (195 K cm-

1). Thus, we set a linear temperature gradient along the wall in the simulations. Furthermore,

since we wish to confine our attention to compositional nonuniformities caused by buoyancy-

driven convection, rather than variations resulting from non-planar crystal-melt interfaces, the

interface is held flat. We expect that, given the large temperature gradient, changes in melting

temperature due to compositional non-uniformity will not lead to significant changes in interface

shape due to interfacial compositional inhomogeneity. Furthermore, because of the melt's low

Prandtl number and the low magnitude accelerations, convection does not lead to significant

deviations of the temperature from the conductive state, Thus, changes in the interface shape due

to changes in the thermal field will be negligible. In an actual experiment, owing to the finite

length of the ampoule, there is a gradual decrease in length of the melt zone during growth. In

this model, transient effects related to the change in melt length are ignored. Since the

MEPHISTO experiments involve melt lengths that far exceed the ampoule diameter, this does

not preclude us from calculating the compositional transient. That is, we can start the

calculations by solidifying from an initially uniform composition melt.

The dimensionless governing equations governing coupled convective-diffusive heat

mass and species transfer in the melt were assumed to be those for a Boussinesq fluid with a

linear dependence of density on temperature and composition. The boundary conditions imposed

were those corresponding to plane front directional solidification at a translation rate Vg with a

linear temperature gradient applied to the ampoule walls. Solute was preferentially rejected at

the crystal-melt interface (k = 0.27 for this Sn-Bi alloy). The equations were solved using a
Chebyshev spectral method.

Results

The PRCS firings produced an impulse acceleration with the largest component parallel

to the solid liquid interface. Figure 2 shows the actual (uncorrected for drift) and predicted

Seebeck signal for an experiment subject to two thruster burns ( 25 seconds and 10 seconds in

duration) that produced an acceleration oriented parallel to the crystal-melt interface (i.e.

perpendicular to the ampoule axis. Before the first burn, the Seebeck signal decreases

monotonically. Immediately following the burn, the signal increases rapidly and reaches a

maximum about 100 seconds after the termination of the burn. The signal then decreases slowly

and eventually takes on almost the same slope that it had before the burn. The same behavior

occurs following the second burn. After translation of the furnace was stopped. Solidification

then ceases and the Seebeck signal increases as the average interfacial concentration decreases.
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Note that the actual Seebeck measurement shown has not been corrected for drift and, thus, the

voltage does not return to its original value. For the response of the Seebeck signal predicted by

computer simulation, there is an immediate rapid response to each of the firings. In addition, we

see that the time taken for the Seebeck signal to reach a maximum value is approximately the

same for the computed and measured signals.
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Fig. 2 (a) Actual and (b) predicted Seebeck signal for a 25 second and 15 second burn

oriented parallel to the crystal-melt interface.

Summary

The USMP-3 MEPHISTO experiments permitted a quantitative correlation between well-

characterized g-jitter recorded by spacecraft accelerometers and the response of a directionally

solidifying alloy. Furthermore, the comparison of the results of the experiment with the

predictions of numerical simulations carried out on the Alabama Research and Education

Network's C-90 Supercomputer, will allow us to verify the degree to which such simulations can

accurately predict experiment sensitivity to g-jitter accelerations. Without quantitative

experimental verification, such predictions are of limited use and could lead to unnecessary
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designrestrictions,anundesirablelow gravityenvironment,orunsuitableexperimentoperating
conditions

Ongoingwork involvescorrectionsof therawSeebeckdata,analysisof residual
accelerationdatameasuredby NASA's SpaceAccelerationMeasurementSystem,estimationof
thedegreeof melt homogeneityfollowing remeltingcyclesandrefinementof thecomputational
simulations.This uniqueexperimentshoweduseof simulationsto assistin changesin
experimentstrategygreatlyenhancesthescientificreturnfrom limited opportunityspaceflight
experiments.It is expectedthatongoingwork will yield benchmarkcomparisonsbetween
measuredandpredictedresidualaccelerationeffects.
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