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1. Introduction

Vegetational changes are primary indicators of the present and future ecological status of
the globe. These are changes which not only impact upon the primary productivity, but the total of
the biogeochemical processes occurring on the planet. The impacts of global climatic and other
environmental changes on vegetation must be monitored by some means in order to develop models
which will allow us to predict long term effects. Large scale monitoring is now possible only with
remote sensing systems, primarily passive reflectance, obtained by the use of satellite and aircraft
platforms. However, passive reflectance techniques at this time are limited in their ability to detect
subtle changes in the concentration and oxidation states of the many compounds involved in the light
reactions of photosynthesis. Knowledge of these changes we consider to be fundamental in the
remote assessment of both the rate and efficiency of photosynthesis and also the early detection of
stress damage. The above factors pointed to the desirability of a sensing technique with the
sensitivity and specificity necessary for detecting and quantifying those biological entities involved
in photosynthesis. Another optical technique for vegetation monitoring is fluorescence. Previously,
the lack of adequate excitation light sources and detector technologies have limited the use of
fluorescence on intact plant leaves in the field. Itis only recently with the advent of lasers with short
pulse duration and advanced detector technologies that fluorescence measurements in the remote



mode have become possible in the presence of ambient light. The use of steady state fluorescence
techniques have been demonstrated to be feasible from in situ ground-based and airborne platforms
(Kim, 1973; Hoge et al., 1983; Chappelle et al., 1984a, 1984b, 1985: Cecchi et al., 1998; Albers et
al., 1995). Note that, since lasers are used as the excitation light sources to induced fluorescence,
this active remote sensing method has become known as the laser induced fluorescence (LIF)
techniques. The LIF spectra were found to be sensitive to changes in environmental parameters that
are expected to change at the global-level. Our group has been conducting investigations into the
use of LIF of vegetation for the assessment of certain vegetation parameters including primarily the
integrity of photosynthesis and the effects of environmental stresses.

2. Background

Fluorescence is the phenomenon in which light absorption at a given wavelength by
chromophore is followed by the emission of light, in general, at longer wavelengths (Stoke’s shift).
It has advantages over other spectroscopic methods mainly due to its high sensitivity. The
distribution of wavelength-dependent intensity that causes fluorescence is known as the excitation
spectrum, and the distribution of wavelength-dependent emission intensity caused by a given
wavelength excitation is known as the emission spectrum. The steady-state fluorescence
measurements have proven to be a versatile tool for a number of applications including cell biology,
photochemistry, and environmental science.

Briefly, when molecules absorb photons in their ground state, they are elevated to the lowest
excited state (or to one of the higher excited states). Energy in excess of its lowest excited state is
rapidly dissipated into heat (internal conversion: IC). Upon returning to the ground state, part of
energy is dissipated in the form of fluorescence by emission of a quantum of light at wavelengths
corresponding to those of the lowest energy state (Chappelle and Williams, 1987).

Initially, the use of fluorescence measurements on higher plants (and algae) was confined to
elucidate the fundamental mechanisms of photosynthesis. Kautsky and a co-worker in the early 1930s
were the first to begin extensive investigations into transient characteristics of Chl fluorescence from
dark-adapted photosynthetic materials, thus it is known as “Kautsky effect”. Since then, chlorophyll
(Chl) fluorescence as an analytical tool, studies have progressed to further enhance elucidation of the
fundamental photochemistry of the photosynthetic apparatus in higher plants (and photosynthetic
bacteria) using either in vivo leaves, or tissue homogenate or isolated chloroplast (Kok, 1965; Lavorel,
1977; Lictenthaler and Rinderle, 1988).

In the mid 1980s, Chappelle and his colleagues (1984a, 1984b, 1985) observed an additional
broad fluorescence emission in the blue (F440) and green (F525) regions of the spectrum on intact
plant leaves under UV-A (337 nm) excitation with maxima centered at 440 nm and an emission
shoulder at 525 nm, respectively. They were the first to extensively use these additional fluorescence
emission bands along with Chl fluorescence at the red (F685) and far-red (F730) regions of the
spectrum with emission maxima at 685 and 730 nm as a remote means; for the assessment of plant
vigor; and to differentiate major plant types (e.g., monocot, dicot, coniferous, deciduous). Since then,
further studies have followed to illustrate the versatility of multispectral steady-state fluorescence
emission characteristics from intact leaves in these regions of the spectrum (Chappelle and Williams,
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Figure 1 Fluorescence emission spectrum of a soybean leaf excited with UV radiation at 340
nm

1987; Lang et al., 1992, 1996; Lictenthaler et al., 1990, 1996; Kim et al., 1998; Cecchi et al., 1998).

An example of the multispectral fluorescence emission spectrum of a normal soybean leaf
with UV excitation (340 nm) at room temperature is illustrated in figure 1. It should be noted that
the convoluted emission maximum at 525 nm region is not always distinctly seen under certain
conditions and with certain plant species. This is not to say the compound responsible for F525 is
absent, but its chemical state is such that fluorescence is not seen. The unit of the fluorescence
intensity is an arbitrary unit and is expressed as relative fluorescence intensity (RFI). The appropriate
excitation wavelengths for the blue-green fluorescence emission from intact leaves have been
determined to be in the wavelength range from 310 to 400 nm (Chappelle et al., 1984, 1987;
Schweiger et al., 1996). In addition, these excitation wavelengths yielded a significant Chl
fluorescence emission at F685 and F730; however, the fluorescence yield increased toward the longer
UV wavelength excitation. The magnitudes of the fluorescence bands have been found to change
under several stress conditions and/or under growth environmental changes including both natural
and those of anthropogenic origins; thus, these variations in spectral attributes may be utilized as a
remote means to assess physiological state of plants (e.g., Chappelle and Williams, 1987).



2.1 Red (F685) and Far-Red (F735) Fluorescence

Because of the wide use of fluorescence techniques for fundamental photosynthesis studies,
a wealth of information on the characteristics of Chl fluorescence bands is available. In a multi-
pigment system such as photosynthetic apparatus, energy transfer is the first process that occurs after
light absorption. Resonance energy transfer is the mechanism by which light energy absorbed by Chl
a and the accessory pigments over the visible region of the spectrum are transferred to PS II Chl @ in
photosynthetic process. This is due to fluorescence of pigment species in close proximity to other
pigment species which absorb light at wavelengths within the fluorescence emission band.
Consequently, the energy transferred to photosystem (PS) II, but not utilized in photosyntheis, is
dissipated as fluorescence at 685 and 735 nm regions of the spectrum, and as heat (Lictenthaler and
Rinderle, 1988; Horton et al., 1993). Therefore, in general, an inverse relationship exists between Chl
fluorescence and photosynthesis provided that the Chl concentration remains constant.

Although steady-state Chl fluorescence are usually measured with LIF, the transient
fluorescence characteristics of Chl should be mentioned. Chlorophyll fluorescence at F685, when a
dark-adapted leaf is suddenly exposed to a constant light, passes through a series of maxima and
minima (Kautsky effect) before reaching a light adapted steady-state (F,) level (Lictenthaler and
Renderle, 1988). These transient fluorescence changes referred to as induction kinetics reflect the
competition for the excited energy in PS Il between fluorescence, photochemical quenching (qP), and
nonphotochemical quenching (qN) where excited energy is dissipated as heat (Horton et al., 1994;
Mohammad et al., 1995). The changes in qP reflects the photochemical redox potential in between
PS Il and PS 1. Therefore, the magnitudes of induction kinetics may be subjective to the length and
the history of the dark adaptation as well as light intensity.

Several studies have demonstrated that the ratio of the two steady-state Chl fluorescence
peaks, namely F685/F735 can be used to assess relative Chl concentrations and photosynthetic
efficiency (Hak et al., 1990; Lichtenthaler et al., 1993, 1996; Rosema et al., 1992; Stober et al., 1992,
1993a; Szabo et al., 1992; Agati et al., 1995). These observations were based on two key premises.
First, F685 undergoes partial reabsorption by itself because of a strong absorbance of Chl a in the red
region of the spectrum (Hak et al., 1990; D’ Ambrosio et al., 1992; Hagg et al., 1992; Lictenthaler and
Rinderle, 1988; Stober et al., 1992). Therefore, the F685/F735 ratio strongly depends on the Chl a
concentration and decreases for plants with higher Chl a concentrations as reabsorption by Chl a at
685 nm become greater in comparison to that of 735 nm.

Second, the F685/F735 ratio was also shown to be sensitive to the photosynthetic activity of
plant leaves. In plants treated with DCMU, a higher F685/F735 ratio was observed with respect to
that of control leaves (Lictenthaler and Rinderle, 1988). These observations indicated the dependency
of the ratio to photosynthetic electron transfer efficiency from PS II to PS I. Environmental
perturbations that affect the photosynthetic activity of plants may be detected by this ratio. However,
Chl fluorescence changes occur when stress conditions damage the photosynthetic apparatus as well
as during temporary photoinhibition serving as a protective or adaptive mechanism.

Studies by Hak et al. (1990) and Stober and Lictenthaler (1992) showed decreased F685/F730
during the greening of etiolated leaves. D’Ambrosio et al. (1992) studied the F685/F730 ratio and
Chl contents on nine tree species during the autumnal breakdown of Chl and showed increasing
F685/F730 as leaves become senescent. They stated, thus the F685/F735 ratio may be used as a
remote indicator of Chl content. The data presented by these investigations showed that the ratio and



Chl contents had an inverse-exponential (curvilinear) relationship which reached a plateau when the
total leaf Chl contents reached approximately 15 to 20 pg/cm®. These observations imply that the
ratio may be a valid indicator of Chl contents up to only a certain concentration range. For instance,
those conditions that resulted in significant variations in photosynthetic pigment contents on plants
include nutrient deficiencies such as N (Heisel et al., 1996; McMurtrey et al., 1994).

In general, the Chl fluorescence ratio, F685/F730, increases synergistically in responses to
both plant stresses that exacerbate the photosynthetic mechanisms and/or result in decreased Chl
concentrations (e.g., either breakdown or less synthesis). The occurrence of F685/F730 characteristics
suggested the potential exploitation of fluorescence techniques in the detection of physiological
changes in plants induced by a number of abiotic and biotic factors which affect plant physiology.
However, it was recognized that Chl fluorescence measurement alone may limit the use in relating
such measurements to specific stress factors responsible for physiological changes in plants
(Chappelle and Williams, 1987; Banninger et al., 1990). This may be more evident with such stress
conditions accompanied by insignificant effects on the photosynthetic activities and/or those stresses
causing insignificant changes (i.e., pre-visual) in photosynthetic pigments contents. There are
additional fluorescence emissions in the blue-green region of the spectrum from intact plants when
excited with UV radiation.

2.2 Blue (F440) and Green (F525) Fluorescence

Plant responses to environmental changes are complex interactions of biochemical as well as
biophysical mechanisms which may result in subtle changes in concentrations and redox state of
constituents other than Chl molecules. These may be compounds found in plants that may also
fluoresce in the blue-green region of the spectrum under proper wavelength excitation (Chappelle et
al., 1991). This also suggest that the compounds responsible for the blue-green fluorescence bands
may be present in concentrations and oxidation states specific to a particular plant type due to genetic
differences. Chappelle and Williams (1987) indicated that blue-green fluorescence may provide the
additional information along with red and far-red fluorescence for the development of unique
algorithms needed for the remote correlation of fluorescence measurements with plant stress
conditions as well as species type differentiation.

The use of the blue-green fluorescence in vegetative monitoring is relative new with respect
to Chl fluorescence. Uncertainties exist in terms of the identify of major constituents along with the
precise location within the leaf, as well as other contributing factors/mechanisms governing the blue-
green fluorescence emission characteristics from intact leaves (e.g., Goulas et al., 1990; Chappelle
etal.,, 1987, 1991; Lang et al., 1991; Stober et al., 1993b; Lictenthaler et al., 1996). It is difficult to
characterize factors responsible for blue-green fluorescence of in vivo plant leaves when considering
the heterogeneity due to complex morphology and a web of biochemical/biophysical processes
involved.  Several investigations have been attempted to characterize the compounds and
contributing factors responsible for the blue-green fluorescence from intact leaves.

It has been known that a number of compounds present in plants, such as polyphenolics, are
fluorescent under UV excitation. Harris and Hartley (1976), based ona UV fluorescence microscopy
study, illustrated that cell walls were highly fluorescent and suggested cell wall bound phenolics such
ferulic acids as blue flourescent compound. Goulas et al. (1990) also suggested that free and
esterified ferulic acids and p-coumaric acid as sources for blue fluorescence. Chappelle and Williams



(1987) speculated that in vivo fluorescence in the blue band of the spectrum may emanate from
NADPH, tannic acid, lignin, vitamin K, and plastoquinone. Moreover, flavins and B-carotene were
suggested to be responsible for green fluorescence emission. Morales et al. (1994) also showed that
flavins such as FAD and FMN were responsible for in vivo green band emission.

In order to further assist in the identification of the compounds responsible for blue-green
fluorescence emissions, fluorescence spectra of pure plant constituents as well as solvent extract were
acquired (e.g., Chappelle and Williams 1987; Chappelle et al., 1991; Lang et al., 1991). Lang et al.
(1991) suggested cell wall bound phenolics and compounds in vacuole such as chlorogenic acid,
caffeic acid, sinapic acid, coumarins (aesculetin, scopoletin), and catechin, and stilbenes (¢-stilbene,
rhaponticin) as possible candidates for blue fluorescence. They also suggested alkaloid berberine and
quercetin as compounds responsible for in vivo green fluorescence. Lang et al. (1991) believe that
riboflavin may contribute little to green fluorescence.

Plant cell structural compounds such as lignin and phenolics are relatively inert chemically
(Chappelle et al., 1991). The changes in the magnitude of blue-green fluorescence in responses to
certain environmental stress conditions (e.g., Chappelle et al., 1984b, 1987) indicated that the
fluorescence changes may be due to chemically dynamic (e.g., redox changes due to stress condition)
molecules that may be involved in photosynthesis. Chappelle et al. (1991) showed that the blue
fluorescent nature of water soluble extract from clover leaves in which was identified as due to
NADPH that plays a vital role in P, as one of the primary intermediates during the photosynthetic
process, accepting electrons from PS I. They further showed that fluorescence ratio F440/F600 of
greenhouse grown soybean leaves showed a strong positive linear relationship with the rate of
photosynthesis.

Cerovic et al. (1993) showed that approximately 20% of the mesophyll blue fluorescence
emanated from components located in the chloroplast of spinach (Spinacia oleracea L., var. Wobli).
In addition, a light-induced change in blue fluorescence in the chloroplast and mesophyll cells were
observed. This fluorescence change was suggested to be due to the reduction of NADP in PS I
(Cerovic 1993). Above observations suggested that blue fluorescence emission changes may be more
closely related to P, than was previously thought. However, Stober and Lictenthaler (1993a) reported
that no light-induced changes in blue-green fluorescence were observed during the induction kinetics
of dark adapted soybean and wheat leaves.

Although the above compounds are considered to be responsible for the blue-green
fluorescence emission from intact leaves, many investigations have suggested that photosynthetic
pigments in the mesophyll layer which absorb strongly in these regions of the spectrum may
selectively reabsorb the blue-green fluorescence emitted by other compounds (Lang et al., 1992;
Stober and Lictenthaler, 1992; Stober et al., 1993b, 1994). This was based on observing a decrease
in the blue-green fluorescence emissions during the greening of etiolated wheat leaves. Stober etal.
(1992) reported an increasing blue to green ratio (F440/F530) as etiolated leaves turned green. They
stated that blue fluorescence was reabsorbed by all the photosynthetic pigments and the green band
was only partially reabsorbed by the accessory pigments. Morales et al. (1994) observed an increased
blue-green fluorescence intensity in mesophylls of iron deficient sugar beet (Beta vulgaris L.) leaves.
The iron deficiency treatments decreased photosynthetic pigments per unit area and they suggested
that the most of the blue-green fluorescence increase was due to a reduction of the screening of UV
light by photosynthetic pigments. In addition, selective reabsorption of blue fluorescence by Chl



molecules lead to changes in the form of the emission spectra. They suggested that the ratio decrease
was due to accumulations of flavins in mesophyll as the result of iron deficiency.

Lang et al. (1991) observed significantly higher fluorescence intensities from the upper sides
in comparison to the lower sides of bifacial C3 soybean leaves throughout the blue, green, red, and
far-red regions of the spectrum. The contrast was speculated to be due to anatomical differences
which resulted in a differential reabsorption by photosynthetic pigments. In a subsequent study by
Lang etal. (1992) showed significantly higher green fluorescence intensities from the epidermal layer
removed tobacco leaves than those of intact leaves, and thus they postulated that green fluorescence
emanated solely from the mesophyll layers. On the contrary, since no significant blue fluorescence
changes were observed between the intact leaves and the leaves stripped of the epidermal layers, blue
fluorescence was suggested to emanate from cell wall in both the epidermal and the mesophyll layers.
Moreover, because of the strong absorption and reabsorption by photosynthetic pigments in the blue
region of the spectrum in the mesophyll layer, the majority of the blue fluorescence has been thought
to emanated from the epidermal layers of intact green leaves. For instance, Stober et al. (1994)
showed four fold higher blue fluorescence from wheat leaves treated with a bleaching herbicide
norfluorazone (removal of photosynthetic pigments) compared to normal green wheat leaves. On the
basis of this observation, they suggested that the major part of the blue fluorescence emanated from
the cell walls of the epidermal layer of intact plants.

Several studies also indicated that UV screening and non-blue fluorescent compounds such
as flavonols in the epidermis may attenuate the fraction of excitation beam reaching the mesophyll
layer of the intact plants (Stober and Lictenthaler, 1993b; Stober et al., 1994; Lang et al., 1996).
Stober et al. (1994) attempted to show this by removing photosynthetic pigments as well as UV light
absorbing cell wall compounds, and the cuticle (e.g., cutin, lipids, and waxes) from wheat leaves with
acetone. A ten-fold intensity increase at F440 were observed with respect to control leaves. Thus,
they concluded that the absence of UV screening substances in the epidermis in conjunction with
enhanced scattering characteristics due to the pigment free environment caused the increase in the
blue fluorescence intensity. Cerovic et al. (1993) indicated that the epidermis in the intact leaves may
absorb up to 75% of the UV exciting light before reaching mesophyll layer based on a comparison
of F680 intensities between intact leaves and leave with the epidermal layers removed. However,
their method to determine the UV attenuation may raise a concern since ruptured chloroplast cells
may yield higher F680 due to physical damages to the photosynthetic apparatus than those of intact
cells. .

Fluorescence changes due to physiological perturbations in a complex matrix such as a plant
leaf may depend on several diverse biochemical and biophysical mechanisms. In general, the
fluorescence magnitude changes in the blue-green regions of the spectrum on intact leaves followed
by exposures to stress conditions have been mainly associated with changes in concentrations of
fluorophores and/or photosynthetic pigment contents. These may also depend on a number of
additional factors such as viscosity of the cytosolic solution, hydration state of membrane, membrane
integrity, pH, temperature, oxidation and reduction states of the fluorophores, and membrane topology
(Chappelle etal., 1991; Kim et al., 1997; Morales et al., 1998). Improved elucidation of mechanisms
and factors governing the blue-green fluorescence changes should enhance the utilities of fluorescence
techniques for the remote detection of the physiological state of plants.



3. Fluorescence Studies

Higher plants, in general, have similar multispectral fluorescence emission maxima (e.g.,
F440,F525, F685, F730) under UV excitation; however, the magnitudes of fluorescence at a given
wavelength among many plant types and species are significantly different (1985). For instance,
studies by Chappelle et al. (1985, 1987) showed that monocots can be differentiated by having a much
higher F440 and F440/F68S ratio than that found in dicots. It was suggested that the differences in
the fluorescence intensities between monocots (i.e., soybean) and dicots (i.e., wheat) especially in the
blue-green region may be attributed to leaf anatomy and leaf-vein arrangements (Stober and
Lictenthlaer, 1992). Further, the F440 difference between dicot and monocot species was thought to
be due concentration difference in phenolics (Stober and Lictenthaler 1993a). Deciduous and
coniferous trees also showed inherent differences throughout the spectrum (Chappelle et al., 1987).

While a number of different plant types exhibited unique fluorescence characteristics,
fluorescence responses within a plant species are sensitive to changes in environmental conditions
and are usually pre-visual (e.g., Stober and Lictenthaler, 1993b; Lictenthaler et al., 1991, 1996; Kim
etal., 1998). Changes in fluorescence intensities as results of environmental perturbations are usually
accompanied by alterations of physiological status and are wavelength and species dependent .
Hence, multiple fluorescence ratios have been used as indicators of plant vigor. For instance, a
combination of either blue or green to red or far-red, such as F440/F685, F440/F740, F525/F685, and
F525/F740, have shown to be sensitive indicators of changes in physiological states of plants as
results of environment perturbations (e.g., Chappelle et al., 1987; Lictenthaler, 1991, 1993, 1996;
Lang et al., 1996). In addition, when laser is used as the excitation source, fluorescence ratios assist
in normalizing out pulse to pulse variations in laser power (Chappelle et al., 1984a).

Photosynthesis is affected when the physiological and biochemical processes of plants are
disturbed. Thus, when plants are subjected to those stress conditions that directly exacerbate the
photosynthetic processes, these are manifested as increases in the Chl fluorescence emissions at F685
and F730 (e.g., Lictenthaler and Rinderle, 1988). However, some conditions affecting only certain
biochemical/biophysical reactions and do not initially impact the integrity of photosynthesis, may be
observed as changes in the blue-green region of the spectrum. Usually, increased blue-green
fluorescence emissions have been observed as results of negative effects on physiological status of
plants. Ultimately, the accumulative effects of this second type of condition will result in decreased
photosynthetic efficiency or breakdown (or less synthesis) of photosynthetic pigments. Several
investigations suggested that the use of a combination of either blue or green to red or far-red
fluorescence ratio may be better indicators for the detection of pre-visual early stress symptoms than
Chl fluorescence alone (Chappelle et al., 1987; Banninger et al., 1990; Lang et al., 1996; Lictenthaler
et al.,, 1991, 1996, Stober and Lictenthaler, 1993b).

Water stress negatively affect many physiological processes in plants including photosyntheis,
and thus Chl fluorescence can be highly responsive (Rosema et al., 1992). Furthermore, it has been
shown that blue-green bands were highly responsive to water stress. For instance, potted soybean
plant leaves withheld water for four days in the greenhouse showed higher fluorescence spectra
throughout the spectrum (Chappelle et al., 1984b). In addition, F440/F530 ratio was significantly
lower for water stress soybean plants. Chappelle and Williams (1987) also reported significantly
increased F440, F525, F685, and F740 for potted cotton plants subjected to short term (2 days) mild



water stress with respect to well-watered plants. An increase in F440 on drying maple leaves, which
the symptoms were not visually apparent, was observed (Theisen, 1988). Goulas et al. (1990)
observed decreases in F440/F530 and F440/F685 ratios as spinach leaves become water stressed.
They stated that the use of blue-green fluorescence improved the capabilities of stress detection in
relation to plant water stress.

Significant increases in fluorescence intensities at F440, F525, F685, and F730 for tobacco
plant leaves grown under a chronic-mild water stress were shown with the use of LIF imaging system
(Lang et al., 1996). They noticed that the rate increases at F685 and F730 were much lower than
those observed at F440 and F530. Fluorescence ratios F440/F685 and F440/F730 remained constant
until leaf water content fell below 84 and 88% for green and aurea leaves, respectively; however, the
ratios linearly increased as the water content decreased further. They observed rapid increases at
F685 and F730 when the water stress was accompanied by a short-term (6 hours at 40°C) heat stress.

A relationship was found between fluorescence emissions at F440, F525, and F440/F730 ratio
and the extent of red spruce (Picea rubens Sarg.) damage by acid deposition as the result of an
increase in air pollutants generated by the high industrial density of the Northeastern United States
(Chappelle and Williams, 1987). They reported that the magnitude of F440 related positively to the
acid rain stress-index rankings, followed by F525, and F440/F730. In general, fluorescence emission
peak at F685 were not clearly defined on coniferous species, however, samples from high acid-
damage sites frequently showed high intensities at F685 band. Banninger et al. (1990) reported
significant fluorescence differences for Norway spruce needles obtained from control and sites
damaged by heavy metals in May, July, September, and November. They showed significant changes
in the blue-green fluorescence emissions as functions of growth months and heavy metal damage.
No significant differences were observed in the Chl fluorescence bands and the F685/F730 ratio
between samples from heavy metal damage sites and undamaged sites; however they suggested that
F440/F730 was a good indicator of heavy metal effects. Significant fluorescence differences were
observed between heavy metal (i.e, Hg, Cd) treated and control sea grass leaves in the blue-green
region of the spectrum (Cecchi et al.,, 1998). Fluorescence responses of sea grass showed a
significant variations within the leaf as a function location from the base. Consequently, high doses
of heavy metal treatments resulted lower F440 and F530 responses.

Differences in fluorescence emission intensities due to growth-light conditions can be seen
in all four fluorescence emission bands. A study conducted by Kim et al., (1998) observed that
fluorescence intensities at F440, F525, F685, and F730 for alder leaves grown in shaded regions were
significantly higher than those grown in sunlit regions. The rates of P, for the sunlit leaves were
significantly higher than leaves grown under shaded regions. They speculated that the significant
fluorescence differences between sunlit and shaded leaves may be due to differential concentrations
of UV screening flavonol compounds. Stober and Lictenthaler (1993b) studied fluorescence
responses of soybean and wheat plants grown for two weeks under different irradiance regimes
ranging from 10 to 675 umol m? S and 10 to 870 pmol m™ S, respectively. They observed
nominal F440 decreases and significant F685 and F730 decreases as a function of increasing
irradiance levels for both species. The results showed that F440/F685 ratio exhibited a strong
correlation with the irradiance applied to both plant species; however, no significant changes in
F685/F730 as a function of Chl concentrations from this experiment. Controlled environment growth
chamber studies were conducted to determine the effects of UV-B irradiation on cucumber plants



(Sandhu et al., 1997). Elevated UV-B irradiation induced typical symptoms of plant physiological
stress. Inaddition to physiological and morphological indicators of UV damage, UV-B exposed and
non-UV exposed plants were clearly separated with fluorescence measurements. The blue-green
fluorescence emissions showed increasing trends and the F525/F685 ratio increased significantly as
the result of enhanced UV-B exposure. Subhash et al. (1995) reported that fluorescence ratios,
F440/F525, F440/F730, and F525/F730 from Salvia splendens L. grown in elevated UV-B showed
up to 40% decreases with respect to control plants.

Several studies have been conducted to demonstrate that sensitive fluorescence responses in
relationship to nutrient status on corn. For instance, Chappelle et al. (1984a) showed that lack of K
increased the fluorescence at 685 and 740 nm more than three fold along with a small decrease at 440
nm. They suggested that F685 and F740 responses were indicative of the role of K in maintaining
g, A study conducted with LIF imaging system by Heisel et al. (1996) indicated that mineral
deficiencies can be monitored by fluorescence ratios, and in some cases directly on single band
images based on the spatial distribution of fluorescence emission. Nitrogen is the plant nutrient most
essential for plant growth. As an essential constituent for amino acids, protein, nucleotide, and the
tetrapyrolle ring of chlorophyll, deficiencies decrease the photosynthetic pigments concentrations and
severe cases can be seen visually as yellowing of the leaves. Decreasing trends in fluorescence at
F440, F525, F685, and F730 were observed on field grown corn leaves as the N fertilization levels
increased from 0% to 150% of optimal fertilization level (McMurtrey et al., 1994). They observed
increases in F440/F685, F440/F740, F525/F685, and F740/F685 ratios as a function of increasing N
fertilization levels. Statistical analysis showed that F440/F685 had the most significant mean
separation in terms of N fertilization levels. A subsequent study by Heisel et al. (1996) indicated that
the F440/F685 and F440/F730 ratios were found to be more sensitive to N fertilization levels on field
grown corn plants than F685/F740. A recent study conducted by Kim et al. (1997) demonstrated the
sensitivity of fluorescence measurements to the effects of chronic exposure to combinations of
moderately elevated levels of tropospheric CO, and O; on crop species. With the use of fluorescence
imaging system capable of capturing images at F450, F550, F680, and F740 bands, they demonstrated
that although visible stress symptoms such as chlorosis, discoloration, or necrosis were not evident
in plant leaves, the fluorescence responses were statistically significant to the effects of moderately
elevated O,, elevated CO,, and concomitant elevated O, and CO, environments. The most significant
difference among the treatments were observed in the leaves grown under elevated O, in the absence
of elevated CO, at F450 and F550. Fluorescence responses also demonstrated the partial negation of
elevated O, effects by the CO, enriched environment.

4. Instrumentation

Several different types of instrumentation have been used for the steady-state fluorescence
measurements involving intact plant materials. Principle components required for a fluorescence
detection system include an excitation source consisting of a relatively high intensity monochromatic
light and a photon detecting device. In general, two types of systems have been used in terms of the
excitation light sources based on either a continuous wavelength (CW) light source or ahigh intensity
pulsed light such as lasers to induce fluorescence from intact plant materials. Fluorescence emission
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is then passed through either a monochrometer or a series of interference filters to remove reflected
and scattered excitation radiation before reaching a photon detecting device.

A number of laboratory based fluorescence studies have been conducted with the use of
commercially available spectro-fluorometers (e.g., Lang et al., 1996; McMurtrey et al., 1996) that
utilize a CW light, e.g., xenon arc, quartz-halogen. These CW light sources provide stable
fluorescence excitation. In general, a spectro-fluorometer is equipped with two double
monochrometers which allow to obtain fluorescence excitation and emission spectra. A sensitive
photon detecting device such as a photomultiplier tube (PMT) is used to detect high spectral
resolution fluorescence emission. spectrum. However, these types of instrumentation have a very
small instantaneous field of view (IFOV) with target leaf areas ranging from 0.35 cm’ to .8 cm®(e.g.,
Lang et al., 1992; McMurtrey et al., 1996).

- The lack of adequate excitation light sources with sufficient power previously limited the
remote fluorescence studies on intact plant material. However, the advent of the lasers has provided
an ideal excitation source for in situ fluorescence studies (e.g., Chappelle et al., 1984a, 1984b).
Lasers emit coherent light with a very high degree of monochromaticity and intensity. This is
necessary to induce measurable fluorescence from intact vegetation in the remote mode. Pulsed
lasers, such as nitrogen and Nd: YAG, have the advantage of having high light energy emission with
a short pulse duration time (e.g., <= 10 ns). This results in a time-dependent fluorescence emission.
A high speed gated detector system (e.g., gate width of 5 to 100 ns) synchronized to laser pulses is
capable of resolving fluorescence emission in the presence of ambient solar radiation before it decays.
Fluorescence yield from intact leaves within 100 ns time scale with 10 mJ pulse excitation is
approximately four to five orders of magnitude higher than scattered background solar radiation.
Thus, a fast gated detector system which improves signal to noise ratio has been essential in the use
of LIF techniques in the remote mode.

The LIF systems with the in situ remote sensing capabilities have been fabricated in
laboratories with commercially available components. The very earlier airborne systems which were
designed to measure only Chl fluorescence (i.e., detection of marine organisms) will not be included
in this discussion (e.g., Kim, 1973; Hoge et al., 1983). A systems described by Chappelle et al.
(1984a) utilized a nitrogen laser emitting at 337 nm operating at 30 Hz with an output power of 9 mJ
per pulse with 10 ns pulse width. Fluorescence emission was collected by an £ 2.8, 180 mm telescope
and focused on the entrance slit of a scanning monochrometer where fluorescence emission from 400
to 800 nm were scanned and detected with a gated PMT. Stober and Lichtenthaler (1992) used a
nitrogen laser emitting at 337 nm with a pulse energy of 2.5 mJ which operated at 10 Hz with 10 ns
pulse width. In addition, a gated intensified linear-array detectors (i.e., 150 channels) coupled with
polychromators (spectrographs) were used to capture a fluorescence emission spectrum from 400 to
800 nm. These types of detection systems that are capable of capturing a full fluorescence spectrum
induced by a single laser pulse in the presence of ambient radiation are referred to as optical
multichannel analyser (OMA). Instead of linear-array diode detectors, the use of charge couple device
(CCD) detector lines to acquire spectra have been reported (e.g., Szabo et al., 1992; Saito et al,,
1998).

In conjunction with the use of OMA systems, other types of lasers with various pulse energies
and repetition rates have been used. For instance, a van mounted fluorescence system by Cecchi et
al. (1996, 1998) used a pulsed xenon-chloride excimer laser (308 nm) for blue-green emission in
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which delivered approximately 80 mJ per pulse with 15 ns width at 10 Hz. In addition, a second
excitation wavelength at 480 nm for Chl fluorescence was achieved by the use of a dye laser which
was optically pumped by the excimer laser. Other investigations have used frequency-tripled
Nd:YAG lasers which emit at 355 nm as the fluorescence excitation source (Johansson et al., 1996;
Alder et al., 1995; Saito et al., 1998). Johansson et al. (1996) shifted their Nd: YAG laser output in
a high pressure deuterium cell to generate radiation at 397 nm (Raman-shift) with 30 mJ pulse energy
at 20 Hz. This excitation wavelength provided a higher Chl fluorescence yield and was less
dangerous to eyes. Their system can acquired multispectral coarser resolution images of a large target
(i.e., whole tree canopy) by “push-broom” method. A system described by Saito et al. (1998) also
used aNd:YAG with 0.2 mJ pulse energy (10 ns pulse width) at 7 Hz. They also used bifurcated fiber
optics capable of transmitting the laser beam as well as the fluorescence emission. Morales et al.
(1994) used a system using a nitrogen laser (337 nm) operating at .33Hz. The power output of the
laser was only 30 uJ per pulse with 3 ns duration which in comparisons to other systems was
considerably lower.

The majority of the LIF studies to date have used point-source measurements usually acquiring
fluorescence spectra on small leaf areas. It was recognized that fluorescence emission across leaves
are highly variable due to localized anatomical and physiological variations. This variability can be
a function of numerous environmental factors. Advances in imaging technology provide a means to
capture fluorescence images on a larger portion of plant leaves where variability across the leaf can
be better characterized. One of the earlier use of fluorescence imaging was reported by Omasa and
colleagues in 1987. However, they only measured Chl fluorescence induction kinetics at 685 nm
induced by a filtered CW light. A system developed by Daughtry et al. (1997) also utilized a single
broad-blue band to determine the fraction of crop residue cover where prior studies by McMurtrey
et al. (1993) showed that senescent leaves or crop residues emit blue-green fluorescence under UV
excitation. As the excitation source, they used CW UV-A fluorescent lamps filtered with a Schott
glass band pass filter which provided a stable and homogeneous illumination on the target area. Kim
et al. (1997) reported a multispectral imaging system using CW UV-A fluorescent lamps as the
excitation source where images at the blue, green, red, and far-red region of the spectrum were
captured.

Most recently, a LIF imaging system with multispectral capabilities have been reported (e.g.,
Lichtenthaler et al., 1996; Heisel et al., 1996; Sowinska et al., 1996; Lang et al., 1996). This imaging
system was equipped with a frequency tripled Nd: YAG laser (355 nm) with adjustable repetition rate
from .8 to 1 kHz emitting 10 pJ pulse energy with 100 ps pulse width. The laser beam was expanded
to illuminate a 20 cm diameter leaf target area. A gated intensifier coupled to a CCD array with 288
X 384 elements provided up to 16 bit images. A filter wheel containing four band pass interference
filters at the blue, green, red, and far-red bands with 10 nm full width at half maximum (FWHM) was
used to sequentially capture fluorescence images. To produce a single band image which took 8
seconds, a composite of over 200 to 400 laser pulse were required (Heisel et al., 1996). The current
state of technology lasers may have pulse to pulse peak power variations. In addition, a
heterogeneous spatial intensity distribution of a laser pulse may also affect the quality of fluorescence
especially when the beam is expanded to illuminate larger areas for imaging applications. The use
of multiple fluorescence band ratios may circumvent these problems (Chappelle et al., 1984a) and
thus, LIF ratios have been frequently used.
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5. Summary

A number of significant findings have been made over the past few years using the laser
induced fluorescence (LIF) active remote sensing technique. Laser induced fluorescence has
successfully used for the early pre-visual detection of physiological changes in vegetation due to
natural and anthropogenic factors. Several studies have demonstrated that fluorescence emissions
of plant leaves are sensitive both in magnitude and wavelength, to the changes in nutrient and soil
moisture availabilities, and to the effects of elevated levels of environmental pollutants such as heavy
metals, acid deposition, tropospheric ozone, and UV-B radiation. Major species types were also
differentiated on the basis of their unique fluorescence spectra. Algorithms have been developed
using ratios of certain fluorescence bands which allowed the remote estimation of the relative rate and
efficiency of photosynthesis. Further, studies conducted with fluorescence imaging enabled spatial
characterizations to be made over areas which cannot be obtained with line spectrum point sampling
techniques. It has also been demonstrated that experimental errors and variances associated with line
spectrum measurements can be significantly reduced with imaging techniques.

The success of previous fluorescence research leads us to recommend further rigorous
investigations into the use of LIF as a viable canopy level remote sensing technique. Passive
reflectance techniques at this time are limited in their ability to detect subtle changes in the
concentration and oxidation states of the many compounds involved in the light reactions of
photosynthesis. Knowledge of these changes we consider to be fundamental in the remote assessment
of both the rate and efficiency of photosynthesis and also the early detection of stress damage.
Fluorescence sensing has potential for detecting electron transfer efficiency during photosynthesis.
The use of the canopy level LIF measurements in conjunction with current passive reflectance
measurements will greatly enhance the overall value of remote sensing in the study of vegetative
ecosystems.
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