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ABSTRACT

The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum

cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell

analysis code that accurately accounts for global and local structural response phenomena. Results are pre-

sented for internal pressure and for axial compression loads. The effect of initial crack length on the initi-
ation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads

is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening

angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pres-

sure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pres-

sure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling,
buckling and postbuckling responses of typical shells subjected to axial compression loads are also de-

scribed. For this loading condition, the crack length was not allowed to increase as the load was increased.

The results of the analyses and of the experiments indicate that the initial buckling load and collapse load
for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buck-

ling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a

stable local response mode for longer initial crack lengths. This stable local buckling response is followed

by a stable postbuckling response, which is followed by general or overall instability of the shell.

1. INTRODUCTION

Transport fuselage shell structures are designed to support combinations of internal pressure and mechani-

cal loads which can cause the structure to have a geometrically nonlinear structural response. These shell

structures are required to have adequate structural integrity so that they do not fail if cracks develop during

the service life of the aircraft. The structural response of a transport fuselage shell structure with a crack is
influenced by the local stress and displacement gradients near the crack and by the internal load distribution

in the shell. Local fuselage out-of-plane skin displacements near a crack can be large compared to the fu-

selage skin thickness, and these displacements can couple with the internal stress resultants in the shell to

amplify the magnitudes of the local stresses and displacements near the crack. In addition, the stiffness and

internal load distributions in a shell with a crack will change as the crack grows and when the skin buckles.

This nonlinear response must be understood and accurately predicted in order to determine the structural

integrity and residual strength of a fuselage structure with damage.

Fuselage shells are usually designed to allow the fuselage skin to buckle above a specified design load that

can be less than the design limit load for the shell. During the design of the fuselage, it is assumed that the

design limit load can occur anytime during the service life of the aircraft. As a result, a long crack could
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existin thefuselageshellafteraconsiderableamountof flight service,andloadingconditionscouldoccur
thatcausetheshellwiththelongcracktobuckle.TheresultsofapreliminaryanalyticalstudyIof theeffects
of longcracksonthenonlinearresponseofunstiffenedaluminumshellsindicatesthatthebehaviorof ashell
canbeinfluencedsignificantlybytheinitiallengthof thecrack.

Thepresentpaperdescribestheresultsofananalyticalandexperimentalstudyof the effects of internal pres-

sure and axial compression loads on the responses of thin, unstiffened, laboratory scale, aluminum cylindri-
cal shells with a long longitudinal crack. Two wall thicknesses are considered in the analytical study to

determine the effect of wall thickness on the shell response. The predicted effect of the initial crack length

on the initiation of stable crack growth and on unstable crack growth is discussed for shells subjected to

internal pressure loads. Stable crack growth is simulated using a geometrically nonlinear elastic-plastic fi-
nite element analysis and the crack-tip-opening angle (CTOA) fracture criterion. In addition, predicted pre-

buckling, buckling, and initial postbuckling results are presented and compared for cylindrical shells

subjected to axial compression loads. The results presented illustrate the influence of the loading condition

and initial crack length on shell crack-growth instabilities, and on shell buckling instabilities.

2. E_ERIMENTS

2.1 TEST SPECIMENS

The cylindrical shells tested in this investigation were fabricated from 0.040-inch-thick 2024-T3 bare alu-
minum alloy sheet, with the roll direction oriented circumferentially. All specimens were 39 inches long

and 18 inches in diameter. Each specimen was fabricated with a 1.5-inch-wide double lap splice with 0.040-

inch-thick splice plates and a single row of 0.1875-inch-diameter aluminum rivets on each side of the splice.

The rivets were spaced 1.5 inches apart along the length of the specimens and were located five rivet diam-
eters from the edges of the splice plates. A single longitudinal crack (0.010-inch-wide sawcut) was ma-

chined in each specimen at the specimen midlength, diametrically opposite to the lap splice. The initial

cracks were either 2.0, 3.0 or 4.0 inches long. Specimens that were subjected to internal pressure loads had

the crack tips sharpened with a razor blade to approximate a fatigue crack, and to insure some stable crack

growth before the shells failed. To assure proper load introduction, and to assure that the ends of the cylin-
ders remained circular during the tests, both ends of each specimen were potted in an aluminum-filled epoxy

resin. The potting material extended 1.5 inches along the length from each end of the specimen, resulting

in a test section length of 36 inches. The ends of the specimens subjected to compression loads were ma-

chined flat and parallel.

2.2 APPARATUS, INSTRUMENTATION AND TEST PROCEDURE

The specimens subjected to axial compression were loaded with a controlled end-shortening displacement

using a 300-kip hydraulic test machine. Before each test a load balancing procedure was employed to assure

that the load was applied to the specimens as uniformly as possible. All compression specimens were load-

ed to the point of global collapse. Specimens subjected to internal pressure loads were attached to end fit-

tings, and slowly pressurized to failure with nitrogen gas. Details of the shell specimen and the end fittings

are shown in Fig. 1. Two end plates with O-ring seals maintained internal pressure in the shell. A pressure
line was attached to one end of the specimen and an instrumentation terminal block was attached to the oth-

er. One end ring of the specimens was clamped to rigid beams on the ground, and the other end was uncon-
strained in the axial direction to allow free expansion of the specimen.
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All specimenswereinstrumentedwithback-to-backelectricalresistancestraingagesmountedontheinter-
nalandexternalsurfacesof thecylinder. Crackwiregageswereappliedatacracktip of thespecimens
subjectedto internal pressure loads to record the stable crack growth response of the crack. A moir6 inter-

ferometry procedure was used with the compression-loaded specimens to observe the deformation patterns
before and after buckling had occurred. Three non-collinear direct current differential transducers were

used to measure the displacements of the loading platen for the compression loaded specimens. All data

were recorded with a data acquisition system, and the response of all specimens was recorded on video tape.

3. SHELL MODELS AND ANALYSIS PROCEDURES

3.1 SHELL MODELS

The geometry of the shells analyzed in this study is defined in Fig. 2a. The shells have a 9.0-inch radius,

R, a 0.040- or 0.020-inch-thick wall, t, and a 36.0-inch unsupported length, L. A longitudinal crack is

located at 0 = 0 ° and at shell mid length. The initial crack length, a, ranges from 1.0 to 4.0 inches. The

shells are typical laboratory-scale cylindrical shells and are made of 2024-T3 bare aluminum alloy, with the
sheet rolling direction oriented in the circumferential direction.

The finite element models used to simulate the response of the cracked shells subjected to internal pressure

and axial compression loads are shown in Fig. 2b and Fig. 2c, respectively. For the internal pressure load
case, advantage was taken of the symmetry of the problem, and only a quarter of the shell was modeled.
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Figure 2. Shell geometry and finite element models.

Symmetry conditions were applied along the edges 0 = 0 ° and 0 = -180 ° and along the edge x = 19.5

inches. Self-similar crack growth was assumed; therefore, straight cracks with initial half-lengths of 0.5 to

2.0 inches were defined in the model along 0 = 0 ° and extended from the symmetry boundary at the edge,

x = 19.5 inches. Mesh refinement was used to provide elements with side lengths equal to 0.04 inches

along the line of crack extension. This mesh density was required to predict accurately the crack extension

using the CTOA criterion. 2 The shells were modeled using STAGS standard quadrilateral shell elements

and mesh-transition elements, to transition from the very refined mesh around the crack to a course mesh

remote from the crack. Each of the shell element nodes has six degrees of freedom, including three trans-

lational degrees of freedom, u, v, and w, and three rotational degrees of freedom, about the axes x, 0, and z.

Internal pressure was simulated by applying a uniform lateral pressure to the shell wall and an axial tensile

force to the end of the shell at x = 0.0 inches. Multi-point constraints were used to enforce a uniform end

displacement. The circumferential and radial degrees of freedom, v and w, respectively, were constrained

in regions of the cylinder 0.0 in. < x < 1.5 in. to approximate the experimental end conditions.

The entire cylindrical shell was modeled for the axial compression load case. The finite element model for

this load case is shown in Fig. 2c. Straight cracks with initial lengths of 1.0 to 4.0 inches were defined in

the model along 0 = 0° and at the shell midlength. The primary objective of the study for the axial com-

pression load case was to continue the analysis beyond the critical buckling state, and to focus on the post-

buckling response of the shell with a crack. Thus, the interaction between local buckling and crack

extension was not specifically addressed; that is, the crack lengths were held constant throughout the anal-

yses. Therefore, the mesh was not as refined in the vicinity of the crack for this load case as it was for the

internal pressure load case. The compression load was applied to the ends of the shell by specifying a uni-

form end displacement. As in the pressure load case, the circumferential and radial degrees of freedom, v

and w, respectively, were constrained in regions of the cylinder 0.0 in. < x < 1.5 in. to approximate the ex-

perimental end conditions.
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3.2 NONLINEARANALYSISPROCEDURE

TheshellresponseswerepredictednumericallyusingtheSTAGS(STructuralAnalysisof GeneralShells)
nonlinearshellanalysiscode.3 STAGS is a finite element code for general-purpose analysis of shells of

arbitrary shape and complexity. STAGS analysis capabilities include stress, stability, vibration and tran-

sient response analyses, with both material and geometric nonlinearities represented. The code uses both

the modified and full Newton methods for its nonlinear solution algorithms, and accounts for large rotations

in a shell by using a co-rotational algorithm at the element level. The Riks pseudo arc-length path following
method 4'5 is used to continue a solution past the limit points of a nonlinear response.

STAGS can also perform crack-propagation analyses, and can represent the effects of crack growth on non-
linear shell response. A nodal release method and a load-relaxation technique are used to extend a crack

while the shell is in a nonlinear equilibrium state. 6 The condition for crack extension is based upon a frac-

ture criterion. When a crack is to be extended, the forces necessary to hold the current crack tip nodes to-

gether are calculated. The crack is extended by releasing the nodal compatibility condition at the crack tip,

applying the equivalent crack-tip forces, and then releasing these forces to establish a new equilibrium state,
which corresponds to the longer crack. The changes in the stiffness matrix and the internal load distribution

that occur during crack growth are accounted for in the analysis, and the nonlinear coupling between inter-

nal forces and in-plane and out-of-plane displacement gradients that occurs in a shell is properly represent-
ed. Output from STAGS, associated with a crack, includes the strain-energy-release rate in an elastic

analysis, and the crack-tip-opening angle (CTOA) in an elastic-plastic analysis. These quantities can then

be used as part of a fracture criterion in an elastic analysis or an elastic-plastic analysis to predict stable crack
growth and the residual strength of a damaged shell.

3.2.1 Internal Pressure Load

An elastic-plastic STAGS analysis, using the nodal release method and load relaxation technique described
above to extend the crack, was used to predict the residual strength of the cracked pressurized cylinders.

The material nonlinearity was represented by the White-Besseling mechanical sublayer distortional energy
plasticity theory used in STAGS. A piecewise linear representation was used for the uniaxial stress strain
curve for 2024-T3 aluminum (Fig. 3). 7
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Figure 3. Piecewise linear representation for the uniaxial stress-strain curve for 2024-T3
aluminum (L-T orientation).
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Thecriticalcrack-tip-openingangle(CTOA)fracturecriterion2'7'8wasusedto simulatestablecrack
growth.TheCTOA fracture criterion uses the crack opening angle, shown schematically in Fig. 4, as the

fracture parameter. The CTOA, evaluated at a fixed distance from the moving crack tip, is defined as the

angle made by the upper crack surface, the crack tip, and the lower crack surface. In the present study, the
CTOA was evaluated at a distance of 0.04 inches behind the crack tip. Newman 2 has shown this value to

be adequate for analyzing stable crack growth in a wide variety of materials. The criterion assumes that

crack growth will occur when the angle reaches a critical value, CTOAcr, and that the critical value will re-
main constant as the crack extends. These assumptions are supported by experimental studies and numer-

ical elastic-plastic finite element analyses that have shown that, in several metals, the CTOA is essentially

constant after some initial crack growth. 7 The value of the critical angle is dependent on the sheet material,
the sheet thickness and the crack orientation, and can be determined from three-dimensional, elastic-plastic,

finite element simulations of the fracture behavior of small laboratory specimens. The determined angle

can then be used to predict the fracture behavior of different structural configurations. In a two-dimension-

al, plane stress, elastic-plastic finite element analysis, the accuracy of residual strength predictions obtained

using the CTOAcr determined as described above, is affected by the panel width. This dependence on panel
width is postulated to be caused by three-dimensional constraint effects that develop near the crack tips. 9

To eliminate the dependence of the two-dimensional plane stress finite element analysis on the structural

configuration, the three-dimensional constraint effects are approximated in the two-dimensional model by

incorporating a "core" of plane strain elements on each side of the crack line (see Fig. 4). The dimension

of the plane strain core region on each side of the crack line is referred to as the plane strain core height, hc.

The value of h c can be determined by correlating two-dimensional, elastic-plastic finite element analysis

results, that use the CTOAcr determined from three-dimensional finite element analysis, with experimental
results for small laboratory specimens. The procedure used in the present study for determining the values

of CTOAcr and he is described in more detail in Section 3.3.

The prebuckling, buckling and postbuckling responses of the shells for the axial compression loading con-

dition were determined using the following analysis procedure. The prebuckling responses were deter-

mined using the geometrically nonlinear quasi-static analysis capability in STAGS. The initial, unstable,

postbuckling respOnse of the shell was predicted using the nonlinear transient analysis option of the code.

The transient analysis was initiated from an unstable equilibrium state just beyond the buckling point by

increasing the end-shortening displacement. The transient analysis was continued until the transient re-
sponse damped out or decayed. Once the transient analysis converged to a steady-state solution, the load

relaxation option of the code was used to establish a stable equilibrium state. The subsequent stable post-

buckling response of the shell was computed using the standard nonlinear, static analysis option. For the

parametric studies presented in Section 4.2, plasticity effects were not included in the analyses. However,
elastic-plastic analyses were conducted to provide a preliminary assessment of the effects of plasticity on

the shell buckling response, and for comparison with the experimental results.

Plane stress elements

hc-

hc °
CTOA

Plane strain elements

Figure 4. Schematic for fracture parameters, CTOAcr and h c.
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3.3 DETERMINATIONOFCTOAcrANDhc

Fracture tests of compact tension, C(T), and middle crack tension, M(T), specimens were conducted by the
Mechanics of Materials Branch at NASA Langley Research Center. The test specimens were made of the

same 0.040-inch-thick 2024-T3 aluminum sheet material that was used for the cylinders. The specimens

were fatigue cracked, or notched, with the crack perpendicular to the sheet rolling direction. The C(T) spec-

imens were 6 inches wide, with an initial crack length, a, equal to 2.4 inches. The M(T) specimens were 12

inches wide, with an initial crack length, a, equal to 4 inches. For the notched specimens, the tips were

sharpened with a razor blade to produce crack tips similar to the crack tips in the pressurized cylinder test

specimens. A residual strength test of each specimen was conducted under displacement control loading

conditions. Guide plates, to constrain out-of-plane deformations, were used during the residual strength

tests of all of the C(T) specimens and of one of the fatigue cracked M(T) specimens. Load, crack extension,
and surface crack opening displacement measurements were made during the tests. The fracture behavior

of the unconstrained M(T) panel with the razor blade sharpened notch was basically identical to the behavior

of the unconstrained M(T) panels with fatigue cracks.

The fracture parameters that were used in the residual strength analysis of the pressurized cylinders were

determined by simulating the fracture behavior of the C(T) and M(T) tests. Personnel from the Mechanics
of Materials Branch conducted three-dimensional, geometrically linear, finite element simulations, with the

ZIP3D code, 10'11 to determine the CTOAcr that best correlated the experimental results for the constrained

C(T) and M(T) tests. In the three-dimensional analyses, the three dimensional constraint effects at the crack

tip are directly modeled, and the core height parameter, hc, is eliminated. The angle determined from the

three-dimensional anal_(ses was then used in a geometrically linear, two-dimensional simulation performed
1,_13 he_ ht h that best correlated the ex nmental results forusing the ZIP2D code ' to determine the core "g , c, pe "

the constrained M(T) and C(T) tests. The fracture parameters determined in this manner for 0.040-inch-

thick 2024-T3 bare aluminum, for fracture in the L-T orientation, had a CTOAcr equal to 5.6 degrees and a
plane strain core height equal to 0.04 inches.

To verify application of these parameters in a STAGS analysis, elastic-plastic, geometrically nonlinear

STAGS analyses were conducted for the C(T) tests, and for the constrained and unconstrained M(T) tests.

The mesh used in the analysis was refined to provide elements along the line of crack extension with side

lengths equal to 0.04 inches. Predicted and measured load results for the C(T) and M(T) panels are shown
in Fig. 5 for increasing values of crack extension, Aa. These results indicate that the STAGS analysis accu-

rately predicted the stable tearing and residual strength for the C(T) and for the M(T) panels with buckling

constrained. The STAGS analysis for the unconstrained M(T) specimens predicted accurately the early por-
tion of the crack extension. However, some discrepancy was observed in the analysis predictions and ex-

perimental results for the latter portion of crack extension, and the residual strength of these tests was

overpredicted by approximately 9%. This discrepancy is consistent with the differences that have been ob-

served in test and analysis results of wider and thicker, unstiffened sheets. Additional studies are required
to resolve this issue.

4. RESULTS AND DISCUSSION

The nonlinear analysis and test results for thin unstiffened aluminum cylindrical shells with a longitudinal

crack are presented in this section. Results have been generated for two loading conditions: internal pressure

only, and axial compression only. Results for these loading conditions are presented for shells with a lon-
gitudinal crack at shell midlength and with initial crack lengths of 1.0, 2.0, 3.0 and 4.0 inches. The maxi-

mum value of the applied internal pressure considered is 143 psi. This pressure is the pressure required to

cause a shell with a 1.0-inch-long initial crack and a 0.040-inch wall thickness to fail due to an internal pres-

sure load. The axial compression loads are increased from zero to the maximum axial load that the shell can
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Figure 5. STAGS analysis predictions and test results for C(T) and M(T) panels.

support. Typical results are presented to illustrate the effects of crack length on the crack growth response

of a shell subjected to internal pressure loads, and on the prebuckling, buckling and postbuckling responses

of a shell subjected to axial compression loads. Shells with both 0.020- and 0.040-inch wall thicknesses are
considered for the analysis results, but only shells with a 0.040-inch wall thickness are considered for the

experimental results.

4.1 INTERNAL PRESSURE LOADS

The effect of increasing the internal pressure in a shell on the total crack growth or crack extension is shown

in Fig. 6a and Fig. 6b for shells with initial crack lengths of 1.0, 2.0, 3.0, and 4.0 inches, and with wall thick-

nesses of 0.040 and 0.020 inches, respectively. These results were generated using the mesh shown in Fig.

2b, and a STAGS plane stress analysis, prior to determining the fracture parameters CTOAcr and hc from

the C(T) and M(T) tests. Therefore, a preliminary critical crack-tip-opening angle was determined by cor-

relating the results of a STAGS plane stress analysis of a cylinder with an initial 4.0-inch-long longitudinal
crack with the experimentally observed behavior of an aluminum shell of the same geometry. The critical

crack-tip-opening angle determined in this manner, and used in all of the parametric studies, was 5.36 °. The

results in Fig. 6 indicate that the internal pressure in the shell can be increased, and the cracked shell will

remain in equilibrium, up to a pressure at which yielding occurs at the crack tips and the opening angle at

the crack tips reaches a critical value. At this pressure, the crack will start to grow. The initial growth of
the crack is stable and the crack will not extend unless the pressure is increased. Eventually, unstable crack

growth occurs. Unstable growth occurs when the slope of the curves in Figs. 6a and 6b becomes zero, which
means that a small increase in pressure causes a very large increment in crack extension.

The effect of increasing the initial crack length on the internal pressure required to initiate stable crack

growth and on the pressure at which stable growth changes to unstable crack growth is summarized in Fig.
6c for the two shell wall thicknesses. The solid curve for each shell wall thickness represents the pressure
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Figure 6. Effect of increasing internal pressure on initial stable crack growth and
unstable crack growth for different initial crack lengths.

required to initiate stable crack growth as a function of normalized initial crack length, and the dashed curve

for each shell wall thickness represents the pressure that causes the crack growth to become unstable. These

results indicate that the internal pressure required to initiate stable crack growth and to cause unstable crack

growth decreases as the initial crack length increases. The results shown in Fig. 6c also indicate that the

difference between the internal pressure required to initiate stable crack growth and the internal pressure

that causes unstable crack growth decreases as the initial crack length increases. For an initial crack length

of 1.0 inch, stable crack growth initiates in the 0.040-inch-thick shell when the internal pressure is approx-

imately 113 psi, and unstable crack growth occurs when the internal pressure is approximately 143 psi. The

difference between the internal pressure required to initiate stable crack growth and the internal pressure

that causes unstable crack growth is approximately 30 psi for the 1.0-inch initial crack length in the 0.040-

inch-thick shell. The results for an initial crack length of 2.0 inches in the 0.040-inch-thick shell indicate

that stable crack growth initiates when the internal pressure is approximately 51 psi, and unstable crack

growth occurs when the internal pressure is approximately 79 psi. The difference between the internal pres-

sure required to initiate stable crack growth and the internal pressure that causes unstable crack growth for
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this initial crack length is 28 psi. The difference between the internal pressure required to initiate stable

crack growth and the internal pressure that causes unstable crack growth for the 3.0- and 4.0-inch initial

crack lengths in the 0.040-inch-thick shell is approximately 24 psi and 21 psi, respectively. The results for

the 0.020-inch-thick shell are similar, but with lower values of internal pressure.

The results from the nonlinear analyses indicate that the internal pressure load induces large outward radial

displacements in the neighborhood of the crack. The response associated with these radial displacements is

often referred to as "crack bulging" in the literature and is the cause of the larger crack opening displace-

ments and crack-tip stress-intensity factors in a shell, compared to those for a flat sheet under otherwise

identical conditions. 14 Furthermore, the extent of crack bulging is a function of the nondimensional crack
curvattire parameter, a/_t. This observation is illustrated for the 0.040-inch-thick shell in Fig. 7, which

shows the radial displacement response along the shell length at the circumferential location 0 = 0 °, just
before the initiation of stable crack growth, for each of the initial crack lengths. The radial displacement at

the center of the crack normalized by the shell thickness, t, is Wo/t =1.00, 1.65, 2.38 and 3.23 for the 1.0-,
2.0-, 3.0- and 4.0-inch-long initial cracks, respectively. These displacements are greater than or equal to the

shell wall thickness for all of the crack lengths considered, and represent large displacements in the context

of nonlinear thin shell theory. The increase in crack bulging for the longer initial crack lengths is consistent

with the observation that the pressure required to initiate stable crack growth decreases with the increase in
initial crack length.

Experimental and analytical results for the 0.040-inch-thick shells are compared in Fig. 8 and Fig. 9. The
analytical results were generated using the fracture parameters determined as described in Section 3.3. The

experimental and predicted strains in the skin at three locations near the crack tip are compared in Fig. 8.

The correlation between the predicted and experimentally determined strains indicates that the finite ele-

ment model accurately simulates the stress state near the crack tip. The effect of internal pressure on the
analytical and experimental crack growth results is shown in Fig. 9 for shells with initial crack lengths equal

to 2.0, 3.0, and 4.0 inches. The analytical and experimental residual strength results correlate very well for

all crack lengths. However, in all cases, the analysis overpredicts the initial portion of the crack growth re-

sponse.
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Figure 7. Radial displacement response along the shell length at the circumferential location 0 =

0°, just before the initiation of stable crack growth for 0.040-inch-thick shells.
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Figure 8. Comparison of experimental and predicted strain response for a shell with a 4.0-
inch-long initial crack.

4.2 AXIAL COMPRESSION LOADS

The predicted load-shortening responses for a 0.040-inch-thick shell and a 0.020-inch-thick shell with initial

crack lengths of 1.0, 2.0, 3.0 and 4.0 inches and subjected to axial compression are shown in Figs. 10a and

10b, respectively. An initial outward geometric imperfection in the form of the lowest eigenmode was used

in the nonlinear analyses to generate local deformations in the vicinity of the crack. The applied compres-

sion and end-shortening values are normalized by the corresponding classical buckling values for a shell
without a crack. For the 0.040-inch-thick shell and the 0.020-inch-thick shell with a 1.0-inch-long crack,

the crack introduces an effective imperfection that causes general instability to occur at the loads indicated

by the X in Figs. 10a and 10b. These shells cannot support additional compression load after buckling. For

a shell with a longer crack, local buckling near the crack precedes shell collapse• The filled symbols in Figs.

10a and 10b identify the loads that correspond to initial local buckling near the crack for the 0.040-inch-
thick shell and the 0.020-inch-thick shell, respectively, with the 2.0-, 3.0-, and 4.0-inch-long initial cracks.

Prior to buckling the radial displacement, w o , at the center of the crack edges is nearly equal to zero. Once

the critical load is reached, w o increases rapidly as the load increases. Initial local buckling is followed by
a stable postbuckling response, and the load can be further increased after local buckling has occurred near

the crack edges.

As the load is increased after initial local buckling has occurred, the 0.040-inch-thick shells with the 3.0-

and 4.0-inch-long cracks, and the 0.020-inch-thick shells with the 2.0-, 3.0-, and 4.0-inch-long cracks ex-
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thick internally pressurized shells.

perience a change in the local buckling mode. The initial postbuckling response of the shells after the mode

change is unstable, and as a result, the axial load decreases after buckling occurs. The unstable transition

region in the response predictions is indicated by the broken lines in Figs. 10a and 10b. The unstable tran-

sition from the stable initial buckled configuration to the stable postbuckling configuration was determined
by using the transient analysis capability in STAGS. The transient analysis was continued until the kinetic

energy in the system was small. A time history of the kinetic energy during the transient analysis of the

0.0400inch-thick shell with a 3.0-inch-long crack is shown in Fig. 11. The deformed shapes labeled A, B,
C and D in Fig. 11 correspond to the points A, B, C and D on the load-end shortening and kinetic energy

history curves, and show the development of the shell's postbuckled response. Point A corresponds to the

initial buckling deformation, points B and C correspond to solutions obtained during the transient analysis,

and point D represents the stable postbuckled equilibrium state. Once a stable equilibrium state was deter-

mined from the transient analysis, the nonlinear static analysis was resumed to compute the stable postbuck-

ling equilibrium response results shown in Fig. 10a. The analysis was continued for the shells with the 3.00
and 4.0-inch-long cracks for the 0.040-inch-thick shells, and for the shells with the 2.0-, 3.0-, and 4.0-inch-

long cracks for the 0.020-inch-thick shells until computational convergence problems were encountered.

The load corresponding to the onset of these convergence difficulties is assumed to correspond to shell col-

lapse. Collapse of the 0.040-inch-thick and of the 0.020-inch-thick shells with 2.00, 3.0- and 4.0-inch-long

cracks is identified by the open symbols in Figs. 10a and 10b, respectively.

The initial local buckling load predictions and qualitative approximations for the shell collapse load for the

0.020- and 0.040-inch-thick shells are summarized in Fig. 10c. The predicted collapse loads for the shells

are only qualitative approximations because they were assumed to correspond to the point of onset of con-

vergence difficulties in the elastic analyses, and, as will be shown subsequently, the collapse loads for the

shells with the longer cracks may be affected by material nonlinear response. The values of the normalized

initial buckling loads for the 0.040-inch-thick shells are P/Pc, = 0.88, 0.54, 0.39, and 0.32, and the qual-

itative approximate values of the normalized collapse loads are P/Pcr = 0.88, 0.59, 0.49, and 0.47 for the

1.0-, 2.0-, 3.0- and 4.0-inch-long cracks, respectively. The values of the normalized initial buckling loads

for the 0.020-inch-thick shells are P/Pcr = 0.73, 0.41, 0.30, and 0.24, and the qualitative approximate val-

ues of the normalized collapse loads are P/Pcr = 0.73, 0.47, 0.43, and 0.41 for the 1.00, 2.00, 3.0- and 4.0-
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I

1.0

inch-long cracks, respectively. These results indicate that the magnitudes of the initial buckling loads and

collapse loads for the shells decrease as the initial crack length increases. In addition, the difference be-

tween the load at initial buckling and the load at collapse is smaller for the shorter crack lengths. The initial

local buckling load results for the 0.020- and 0.040-inch-thick shells are represented very well by a charac-

teristic curve that is based on the curvature parameter a/_t.

The effects of material nonlinearities on the predicted load-shortening response and deformation patterns

for a 0.040-inch-thick shell with a 3.0-inch-long crack are shown in Fig. 12. Initial plastic yielding occurs

for an applied load corresponding to P/Pcr = 0.43, which is approximately 90 percent of the buckling load

corresponding to the local mode change. The load-shortening predictions based upon an elastic analysis

and an elastic-plastic analysis, and the deformation pattern prediction just prior to the local mode change,

indicate that the shell response prior to the local mode change is adequately predicted by an elastic analysis
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(Figs. 12a and 12b). The initial postbuckled response predictions of the two analyses are, however, signif-

icantly different. The initial postbuckled deformation pattern prediction from the elastic-plastic analysis,

corresponding to Point B in Fig. 12a, is shown in Fig. 12c, and the initial postbuckled deformation pattern

prediction from the elastic analysis, corresponding to Point C in Fig. 12a, is shown in Fig. 12d. Computa-

tional convergence problems were encountered in the elastic-plastic analysis at Point B, which prevented
prediction of the response further into the postbuckling load range. The postbuckled deformation pattern

predicted by the elastic-plastic analysis is very similar to the deformation pattern labeled C in the elastic,

transient analysis shown in Fig. 11. These results suggest that for the cylinder studied, yielding of the alu-

minum will prevent the postbuckled deformation pattern predicted by the elastic analysis from developing.

This suggestion is consistent with the experimentally observed behavior. The initial postbuckled deforma-

tion pattern for the 0.040-inch-thick cylinder with a 3.0-inch-long crack observed in the experiment and

shown in Fig. 13a is very similar to the postbuckled deformation pattern predicted by the elastic-plastic

analysis, and shown in Fig. 13b.

The predicted prebuckling and buckling analysis results and the measured results for the 0.040-inch-thick

shells with crack lengths of 2.0, 3.0, and 4.0 inches are shown in Fig. 14. The analysis predictions were

obtained using a material nonlinear analysis. Shell wall imperfections were not measured. An initial geo-

metric imperfection in the form of the lowest eigenmode was used in the nonlinear analysis to generate local

deformations in the vicinity of the crack. The measured loading-platen displacements were used to deter-

mine the amount of end rotations of the shell, and these data were used as input loading parameters for the

nonlinear analysis. Buckling of each of the shells is identified by the symbols in Fig. 14. The filled symbols

correspond to the analytical buckling predictions, and the open symbols correspond to the experimentally
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measured buckling loads. For the shell with the 2.0-inch-long crack, the predicted and measured general

instability occurred at the loads indicated by the squares in Fig. 14. For the shells with the 3.0- and 4.0-

inch-long cracks, the symbols indicate the load at which there was a change in the local buckling mode. The

results shown in Fig. 14 indicate that the analytical results slightly overestimate the experimental results for

the buckling loads, but slightly underestimate the shell stiffness. The discrepancies in the presented analyt-

ical and experimental results could be a result of uncertainties in the loading platen end rotations, shell wall

imperfections, and other differences in the analytical model and the as-tested specimens.

• [] 2-in.-long crack

1.0 • O 3-in.-long crack

A ZX 4-in.-long crack
(Analytical prediction, solid symbols)

p _ 2.0-in.-long crack

CrO.5 S._... _ 3.0-in.-long crack

0.0 , 1 , I
0.0 0.5 1.0

u/u
cr

Figure 14. Summary of predicted and experimental load-shortening relations for 0.040-inch-thick
shells subjected to axial compression.

CONCLUDING REMARKS

The results of an analytical and experimental study of the effects of a longitudinal crack on the nonlinear

response of thin, unstiffened, aluminum cylindrical shells subjected to internal pressure and axial compres-

sion loads are presented. The results indicate that the nonlinear response of a shell depends on the loading

condition applied to the shell and the initial crack length. The magnitude of the internal pressure required

to initiate stable crack growth in a shell subjected to internal pressure decreases as the initial crack length

increases. The magnitude of the internal pressure required to cause unstable crack growth in a shell also

decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and

postbuckling responses of typical shells subjected to axial compression loads are also described. The initial

buckling load of a shell subjected to axial compression decreases as the initial crack length increases. Initial

buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is
a stable local response mode for longer initial crack lengths. This stable local buckling response is followed

by a stable postbuckling response, which is followed by general or overall instability of the shell.

625



REFERENCES

IStarnes, J., H., and Rose, C., A., "Nonlinear Response of Thin Cylindrical Shells with Longitudinal

Cracks and Subjected to Internal Pressure and Axial Compression Loads," AIAA Paper No. 97-1144, April
1997.

2Newman, J. C., Jr., "An Elastic-Plastic Finite Element Analysis of Crack Initiation, Stable Crack

Growth and Instability" ASTM STP 833, 1984, pp. 93-117.

3Brogan, E A., Rankin, C. C., and Cabiness, H. D., "STAGS User Manual, Version 3.0;' Lockheed Mar-

tin Missiles and Space Co., Inc., Advanced Technology Center, Report LMMS P032594, June, 1998.

4Riks, E., "Some Computational Aspects of the Stability Analysis of Nonlinear Structures," Computa-

tional Methods in Applied Mechanics and Engineering, Vol. 47, 1984, pp. 219-259.

5Riks, E., "Progress in Collapse Analysis," Journal of Pressure Vessel Technology, Vol. 109, 1987, pp.
27-41.

6Rankin, C. C., Brogan, E A., and Riks, E., "Some Computational Tools for the Analysis of Through

Cracks in Stiffened Fuselage Shells;' Computational Mechanics, Springer International, Vol. 13, No. 3,

December 1993, pp. 143-156.

7Dawicke, D. S., Sutton, M. A., Newman, J. C., Jr., and Bigelow, C. A., "Measurement and Analysis of

Critical CTOA for an Aluminum Alloy Sheet;' NASA TM-109024, September, 1993.

8Newman, J. C., Jr., Dawicke, D. S., Sutton, M. A. and Bigelow, C. A., "A Fracture Criterion for Wide-

spread Cracking in Thin-Sheet Aluminum Alloys" Proceedings of the ICAF 17th Symposium, 1993.

9Dawicke, D. S., Newman, J. C., Sutton, M. A., and Amstutz, B. E., "Stable Tearing Behavior of a Thin-

Sheet Material with Multiple Cracks," NASA TM-109131, July, 1994.

l°Shivakumar, K. N., and Newman, J. C., Jr., "ZIP3D - An Elastic-Plastic Finite-Element Analysis Pro-

gram for Cracked Bodies," NASA TM- 102753, 1990.

l lDawicke, D. S., and Newman, J. C., Jr., "Residual Strength Predictions for Multiple Site Damage

Cracking Using a Three-Dimensional Finite Element Analysis and a CTOA Criterion," Fatigue and Frac-

ture Mechanics: 29th Volume, ASTM, STP 1332, T. L. Panontin, and S. D. Sheppard, Eds., American

Society for Testing and Materials, 1998.

12Newman, J. C., Jr., "Finite Element Analyses of Fatigue Crack Propagation -- Including the Effects of

Crack Closure," Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, May
1974.

13Dawicke, D. S., "Residual Strength Predictions Using a Crack Tip Opening Angle Criterion," FAA-

NASA Symposium on the Continued Airworthiness of Aircraft Structures, DOT/FAAJAR-97/2, Vol. II,

July 1997, pp. 555-566.

14Riks, E., Brogan, F. A., and Rankin, C. C., "Bulging of Cracks in Pressurized Fuselages: A Procedure

for Computation" in Analytical and Computational Models of Shells, Noor, A. K., Belytschko, T., and

Simo, J. C., Eds., The American Society of Mechanical Engineers, ASME-CED Vol. 3, 1989.

626


