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A Numerical Method for Solving the Equations
of Compressible Viscous Flow / ....

R. W. MacCormack*

NASA Ames Research Center, Moffett Fie�d, Ca�if.

Although much progress has already been made in solving problems in aerodynamic design, many new

developments are still needed before the equations for unsteady compressible viscous flow can be solved

routinely. This paper describes one such development. A new method for solving these equations has been

devised that I) is second-order accurate in space and time, 2) is unconditionally stable, 3) preserves conservation

form, 4) requires no block or scalar tridiagonal inversions, 5) is simple and straightforward to program

(estimated 10% modification for the update of many existing programs), 6) is more efficient than present

methods, and 7) should easily adapt to current and future computer architectures. Computational results for

laminar and turbulent flows at Reynolds numbers from 3 x i0 s to 3 x 10 "_and at CFL numbers as high as 10 3 are

compared with theory and experiment.

Introduction

HE compressible form of the Navier-Stokes equations
adequately describes aerodynamic flow at standard

temperatures and pressures. If we could efficiently solve these

equations, there would be no need for experimental tests to

design flight vehicles or other aerodynamic devices. Although

much progress has been made toward their numerical

solution, the calculation of flowfields past complete aircraft

configurations at flight Reynolds numbers is presently far

beyond our reach. Such calculations await substantial

progress in devising more powerful and reliable computer

hardware, in further understanding and modeling the physics

of turbulence, and in developing more accurate and efficient

numerical methods. One development is described in this

paper.

Several important developments have been made in

numerical methods in recent years. Chief among them has

been the development of noniterative implicit methods for

solving the compressible Navier-Stokes equations. These

methods, not subject 1o conventional explicit stability con-

ditions, have significantly improved computational efficiency

over the earlier explicit methods. However, their time step

sizes are still frequently limited by severe accuracy and

stability criteria, and their computer time per step, as well as

their programming complexity, is much larger than that of the

explicit methods. The goal of the present research is to

develop a method for solving the compressible form of the

Navier-Stokes equations at high Reynolds number that is

unconditionally stable, computationally more efficient than

existing methods, and simple and straightforward to

program. The new method contains two stages. The first stage

uses the explicit predictor-corrector finite-difference method

presented by the author in 1969. j The generated finite-

difference equations approximate the governing equations of

fluid flow to second-order accuracy in space and time, are

simple to program, but are subject to restrictive explicit

stability conditions. The second stage removes these stability

conditions by transforming numerically the equations of the

first stage into an implicit form. The resulting matrix

equations to be solved are either upper or lower block
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bidiagonal equations and are solved more easily than the

block tridiagonal matrix equations of existing implicit
methods. Although the method is presented in one and two

dimensions, its extension to three dimensions is straight-
forward.

Navier-Stokes Equalions

In two dimensions and by neglecting body forces and heat

sources, the unsteady compressible form of the Navier-Stokes

equations may be written in conservation form as

where
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in terms of density p,.x- and y-velocity components u and v,
viscosity coefficients X and t,t, total energy per unit volume e,
coefficient of heat conductivity k, and temperature T. Finally,

the pressure p is related to the specific internal energy _ and p
by an equation of state, p(_,p), where _ = e/p- (u e + v2)/2.

Basic Elements of the Numerical Method

Before discussing solution of the complete Navier-Stokes

equations, it is worthwhile to consider the basic elements of
the method applied to the following model equation:

#u au aeu

at - C-_x +" ax----i-
(2)

only unconditional stability (according to linear stability

theory). Accordingly, for stability we choose

1 Ax

The unsubscripted operators t5 and A denote the implicit
and explicit temporal difference operators, respectively. Thus

8u7 +l is the temporal solution change calculated implicitly

and AU'/ is the temporal solution change calculated explicitly
at mesh point i. The subscripted operators A÷ and A_ denote
spatial difference operators. Similarly, for c>_0 Eq. (2) may

be approximated by

The flow variable u governed by this equation convects with

speed c and diffuses with kinematic viscosity v.

Explicit Method

The 1969 explicit predictor-corrector finite-difference

equations, in delta form, for approximating Eq. (2) are

f Ate Atv

........ 2uT + u7 I)
p: Aui - Ax (u,+l ui ) + _3 (u?+l

Ui -- Ui + AUi

(3)

_Au, +_ = (u i -ui_ I ) + (u?_/ .+l .+l
Ate

n+l n+l Alp
-2u i +ui_ I )

c: _ ' ax

Lu7 + _ = ½ (u7 + u7 +_ + Au? +t)

The first step predicts a new solution at time t=(n+ l)At at
each mesh point i from the known solution at time t = nat and

uses a one-sided difference to approximate the first derivative
and a centered difference for the second derivative. The

second step corrects the predicted values with an opposite one-
sided difference for the first derivative. The method is second-

order accurate and stable if the time step satisfies the

following condition:

hat ) cat hat_ -- _bln+l
1+-_ 6u?÷I=---AAx u?+ Ax ,-i

where 6u", + J and h are shown above, and

A U n -- U n -- U n
- i -- i i-I

A second-order-accurate two-step procedure similar to that of

Eqs. (3) for c<0or c>_0is

Au," is determined as in Eq. (3) with v=0

hat hat( 1+ w- )au? +_ =au? + _ 6u?g/
P: \ ZXxI

,,+ l -- ,, ,,+ t
u i -- u i + tSu I

u,"+l is determined as in Eq. (3) with v=O

hat\ ),At ,+t
c: l+ --I_u"+I=Au?+/+ --_u,_/

u;'÷_ = ½ (u7 +u", *_ +_u; '+_ )

(4)

where h is chosen so that

AI_<

I

(clAx) + (2v/Ax 2 )

1 Ax

Implicit Melhod, J,= 0

If c<0 Eq. (2) may be approximated using the following
first-order-accurate one-sided difference equation:

cAt cat

u? +t =u 7- (I-a) -_r (uT+t -uT) -ot_ (u'[_/-u? +t)

or

hat \ + cat hatl+ -_ )_u7 _= - --a+ u", +ax-_ _uT:/

where

Bu?+t=uT+l-u?, A+u7=uT+_-u?, X=,_lcl

The parameter X was chosen so that the above two implicit

equations would be identical. These equations are un-
conditionally stable (for c<0) if the implicit blending
parameter tz is greater than _,6. From now on in this paper,
however, we will choose h in a more general way to ensure

Equations (4) are the implicit analogs of Eqs. (3) for =,= 0.

The set of difference equations is unconditionally stable (in
the sense that there is no restriction on the size of At). Each

equation represents a bidiagonal scalar matrix equation and is
solved by a single sweep through the mesh. For example, the
solution of the predictor equation for i= !,I- 1,I- 2 ..... 3,2,1
is

au_ + (hat/ax)6.7:/
8u7 ÷ I _

1 + (hat/Ax)

and _u t + i •with boundary values specified for u_'+I ., i

We can unwrap the predictor step equation to gain some

insight on its nature,

where

6u" * t = __ Au",.,
' l+r =

r = hAtl_c

The change in value of the solution at mesh point i as
calculated by the predictor step of the explicit method of Eqs.
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(3)representsbutthefirsttermof thisserieswithX=0;the
changeinvaluecalculatedfortheimplicitmethodofEq.(4)is
determinedbyapositiveweightedaverageofallthelocally
determinedchangesAu,_+,, for k=0,1,2 .... with the weights
decaying with distance from mesh point i. Similarly, the

change in value computed by the corrector step is determined
by a positive weighted average of all the locally determined

changes Au",_+_for k = 0,1,2 ....
The difference method represented by Eqs. (4) is second-

order accurate because the explicit method represented by

Eqs. (3) is second-order accurate, and the net result of the
terms added to Eqs. (3) to obtain Eqs. (4) are of third order;

that is,

r(6u,+/-6ui )6uT+l=Au. + .÷1 .÷/

O(au/Ot)
=Au," + rAxAt O_ +O(At3)

and similarly

tSu7+i = Au i ÷i _ rA.xAt a (au/at__) + o (At 3 )
0x

Thus

u7 ÷_ = '/2 [u7 + (u", +_u7 ÷_) +6u? ÷_ ]

= ½ [u,+ (uT+AuT) + Au_+_ 1+O(A?)

= I/2 n n+l n+!(u i+u_ +Au i )+O(At J)

Implicit Method, c = 0

The Saul'ev method, 2 modified somewhat, may be used to

approximate Eq. (2) with c = 0:

or

vat

U7 ÷' =U _,+ -_ (U_,+j --2U7 + UT-_

hat

Ax
__ [ ,jn_+l,-,+/- u,"÷_ ) - (u,"*l -uT) ]

1 + XAt \ . XAt

where

_u7 +l =u? +1 -u7

vAt

AU7 = -_ (UT+t --2U_' + UT_t )

and for stability

X> Ax At

Similarly, Eq. (2) may also be approximated by

1+ h_t)6u']÷t =AU_ + hat

where _5u7+ i, Au[', and X are as before. Each approximation is
unconditionally stable (unbounded At), first-order accurate in

time, and second-order accurate in space under the constraint
that vAt/Ax 2 remains bounded as At and Ax approach zero.

Each equation is also either upper or lower bidiagonal and can
be solved by a single sweep through the mesh.

Implicit Method Applied to Eq. (2)

We may now present the implicit analog of the 1969 explicit
method as follows:

I Au 7 is determined as in Eq. (3)

/ _.At\ _+t n XAI ,,.;.)
p: tl+ --_)6u, =AUi + _Su,+,

u7 +j=u 7+_u7 +s

" Au7 +/is determined as in Eq. (3)

XAt \ . _ . - hat

. u",+' = '/2 (u7 +u_ _ +au, "+_ )

where h is chosen so that

(5)

1[ 2v _c 0.0]X>max_ Ic I + _ - a-7'

The method is unconditionally stable (unbounded At),

requires solution of bidiagonal equations only, and is second-
order accurate under the constraint that vat/Ax e is bounded

as At and Ax approach zero.

In Eqs. (5), either the predictor or the corrector steps are
considered to consist of two stages. The first stage determines

thelocalsolution changes Au_' or Au 7+t by explicitly ap-

proximating the governing equations. The second stage uses
the local solution changes in an implicit procedure, either

upper or lower bidiagonal, to determine the actual solution
changesSu, _+_ or 6u['+1 that are to be used to update the
solution. Note that in the above inequality for choosing X we

have avoided the selection of negative h. There is no practical

advantage for such a choice. On the other hand, if At already
satisfies the stability condition of the explicit method, the

right side of the above inequality vanishes and h can be chosen
to be zero. In this case, Eqs. (5) reduce to Eqs. (3). The im-

plicit procedures of the second stage are not required for
stability; thus the simpler explicit procedure suffices.

is

Solution of the Navier-Stokes Equations

A desirable form for a numerical method for solving Eq. (1)

[numerics] bUO+s,J = {physicsl )
U._ t = U" +6U_J _I,J t,J

(6)

On the right-hand side, accurate local approximations are

made to the governing physical equations. Thus, at each mesh

point, values from near neighbors are used to obtain

[physics]=AU_0=_At(_+AG]"
Ay /_a

The responsibility of the left-hand side is to convey the locally
determined solution changes globally in a stable manner
without violating the laws of physics. In addition, for

numerical efficiency the left-hand side should be as simple

and straightforward as possible. To gain insight on how the
solution changes are propagated, we differentiate Eq. (I) with

respect to t:

a(au/at) 8A (8u/at) aB(au/at)
-- = (7)

at Ox ay
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where A =aF/au and B=OG/OU are the Jacobians of F and

G. Thus the changes At(aU/3t) should convect and diffuse

throughout the flowfield according to Eq. (7), a closely
related equation to Eq. (l). Implicitly approximating Eq. (7)
in time, we have

( _ OB') OU"+IOU"l+At +At3v-y Ot - Ot

The dots in the equation indicate that the derivatives operate
also on all the factors to the right. Defining

OU" #U "+ s
AU"=AT-- and bU"+l=At

O_[-Ot

we obtain

(l + At ?.x + OB. . .At _y )5U_; t =AU'_j

Therefore, the "numerics" should approximate the role of the

factor in parentheses above with the use of numerically ef-
ficient procedures.

From the above considerations and from the basic

numerical procedures of the last section, we can now present a

numerical method for solving the equations of compressible
viscous flow. Equation (1) may be numerically integrated in
time by the following implicit predictor-corrector set of finite-

difference equations:

p: (l--At A÷ IAl" ](l_AtA+ ]BI']oU_+t_AU nAx / \ Ay ] ia - ,a

u:;_ = u_ + w",),

cf
A F_÷ I A G"+l\AVi)'=-At _ + _ I

Ax Ay /

(l+At -_a}A I - )(I+AtA_ IE_I . _aU,,,=AUC+- _Ax \ Ay ] ,a ,.s

U n+ t -- t n ,G--t,a - ½(Uia+Uia +6U_.; _)

(8)

where A+ lax, A_lax, A+lAy, and A_lay are difference
operators defined by

_A+Zi..L = Zi+l.l--Zi.l A-Zi d = Zi4-Zi-t.i
AX ax ax ax

= Zij÷t -Zi., A_Z_ = Zi4-Z,.j_ I

Ay ay Ay ay

As for the model equation, the first derivative terms are one-
sided differenced as shown above and the second derivative

terms are centrally differenced. The matrices IAI and IBI

have positive eigenvalues and are related to the Jacobians A

and B. Let S x, Sy, and their inverses denote the matrices that
diagonalize A and B with p.=X=k=0 (viscous terms

neglected). If the gas equation of state is perfect, p= ('r-

I )p¢, A =S;IAAS_, and B=S_tABS_., where

S x _-

I 0 0

0 pc 0

0 0 I

0 -pc 0

0 0

! 0

0 pc

0 -pc

0 0

u+c 0

0 u

0 0

I

0

Sy =
0

0

- l/c 2

1

0

I

- 1/c a I

0

1

1

1 0 0 0

-u/o l/p 0 0

-v/o 0 I/p 0

0 0 0

-ulp lip 0 0

- vlp 0 llp 0

v 0 0 0

0 v 0 0

0 0 v+c 0

0 0 0 v-c

where

OA=

;kAt 0

0 _2

0 0

0 0

hat = max [ I

ha2 = max
k

oo I
0 0

,Da=
XAj 0

0 XA,

2v 1 Ax
ttl +

pax 2 At

2v 1 ax 0.01lu+cl+0ax 2 At'

[ 2v lax ]hAj=max l ul + 0.0
pax 2 At '

X4 ,=max lu-c[ + 0.0
pax 2 At '

[ 2v lay 0.01Xal =max [ v [ + pay 2 At '

[ 2v lay 0.01X82=max Iv[ +OAy 2 At '

[ 2v lay 0.01hn._=max Iv+el +pay 2 At '

[ 2v lay 0.01ha,=max Iv-el +pay 2 At '

7g.
v=max[#, h+2#, Prandt-_number 1

0 Xn2 0

0 0 he3

0 0 0 ha,

0.01

I" °l
0 0

AA = , An =
0 0

0 u-c

a.,.dwherec=_Tp/p is the speed of sound, a=V2(u2+v 2)
and B=7- 1.

The matrices Sx and S. are each given above as the product
of two matrices. For e'ach, the right matrix represents a
transformation from conservative to nonconservative

variables, for example, from (_p, 6pu, bay, 6e) to (5p, 6u, /iv,
6,o). The left matrix transforms from nonconservative to
characteristic form (bO-6p/ c 2, Oc6u + 6p, 6v, - Oc6u + 5p)
and (6p-6p/c 2, 6u, Oc6v+6p, -pc6v+6p) for the S,, and Sy
matrices, respectively. The inverses S; _ and S.7 t are simple to

• , . .r

derive. The matrices IA [ and [ B I are defined by

IAI =S;_D_Sx and IBI=S[,'DnSy
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Viscous effects are included through the use of the viscous

coefficient _,. For some test problems, this coefficient had to
be increased during the initial part of the calculation when

large transients in the solution occurred. This will be discussed
in the next section.

For regions of the flow in which At satisfies the following
explicit stability conditions:

1 1
At _< -

2 ( [ u I +c)/Ax+ (2v/p&x 2)

and (9)

1 /
At_< -

2 ( I v l +c)/Ay+ (2v/pAy 2)

all XA and all )'n vanish and the set of difference Eqs. (8)
reduces to the 1969 explicit equations with simple solution.
For other regions in which neither relation is satisfied, the
resulting difference equations are either upper or lower block

bidiagonal equations with fairly straightforward solutions.
For example, let us solve the predictor step of Eqs. (8)

assuming At satisfies neither of 'Eqs. (9). If tSUTj denotes

(t_At'a+ I BI "_6u.+,Ay ] ' 'j

the predictor step becomes

I At At
+ _ IA I,",),_u,:j =,au,",+ _ IA I ",+,./su,,+,.j

and upper bidiagonal equation. The solution can be obtained
for each j by sweeping in the decreasing i direction. After

obtaining <5U7.:for all i,j, then

At ,, ) .+t • Atz+-S_-_ IBI,.*u,. =au,..+_-?IBI" *"+'t.J+ Iv_t.j+ I

is solved. This equation is also upper bidiagonal and is solved

for each i by sweeping in the decreasing j direction,
n+l

thus obtaining 6U,"_ t for all i,j. Then U",.j÷ t -- U,"j + 6U,j , etc.
Some discussion on inverting the matrices II+(At/Ay)

1AII and II+ (At/Ay) IBII and on boundary conditions
for bU will be given in the next section.

The above method is stable for unbounded At, is written in
conservation-law form, and is second-order accurate under

the condition that vAtlpAx 2 and vAtlpAy2 remain bounded as

At, Ax, and Ay approach zero. This method is more efficient
than existing methods for solving the equations of com-
pressible viscous flow because I) for regions of the flow
satisfying explicit stability criteria, the method requires no

more computer time than an explicit method, and 2) for the
other regions, straightforward block bidiagonal equations

need only be solved rather than the more costly block

tridiagonal equations of competing methods. Also, the
method propagates and diffuses change determined locally
using propagation speeds and kinematic viscosities near in

magnitude to those of the governing equations themselves. No
additional parameters not physically relevant are used. In this
sense the method approximates the desired form of Eq. (6).

Program Notes

To provide a better understanding of the method, let us

examine the procedure for solving the block bidiagonal
equation for they-coordinate direction,

It ,a_ -],su.+, au_,+ at IBt,".,+,6u,".,V,+ ay laI,jj--,j = .. ay

The procedure begins with the vectors U_, given for all

i= 1,2 ..... I and j= !,2 ..... J; 6U:j g!ven for a][l i=2,3 ..... I- 1
and j=2,3 ..... J- 1; and [ B I L,6U,"J "1 given for all i=

2,3 ..... I- I. The quantity I B / _.#SUi".f' represents the flux of
change that crosses the top mesh boundary. If this boundary
is located in the far flowfield that remains unchanged during

the calculation, as in the case of the test problems to be
discussed later, this flux is set equal to zero. Otherwise it must

be specified by suitable boundary conditions.
Using the defined quantities of the last section, the

procedure is as follows. For each i and for j=J-l,
J-2 ..... 3,2,

At n J_lln+l

• id+ IVVtj+ Il) w=,ut,+-S_ / tBI

2) x=s,w

3) D B is calculated

4) Y= (I+ _Da_-IX
\ £ty /

5) cSU,+ _,.j =Sy z Y

6) Z=D aY

7) IBI_U_*J=STIZ,.j

Each of the above seven steps requires approximately four
Fortran statements. The matrix inversion of step 4 is trivial

because the matrix is diagonal. The solution at grid point i,j is
obtained at step 5, and the flux to be used in the calculation at
grid point i,j- I is obtained at step 7. if the lower boundary is

a wall or a plane of symmetry, as in the case of the test
problems to be discussed, the computed end flux terms,

[ BIcSU .+',.2 , are saved to be used as a boundary condition for
the corrector step that sweeps away from this boundary in the
increasing j direction. According to the usual rules of
reflection, the starting flux of the corrector step is given by

IB[_U"+_=EIBI_U "+'
t.I 1.2

where

1 0 0 0 1

0 1 0 0
E=

0 0 -I 0

0 0 0 1

This condition assures that the net mass, tangential

momentum, and energy fluxes transmitted across this
boundary vanish and that the net transverse momentum at the
boundary remains zero.

The elements of STt, D B, and S_, are evaluated at each grid
point using local values. If during the initial part of the
calculation the variables change rapidly in time, the

evaluation of the elements ha as given in the last section may
not be adequate to maintain stability. In particular, the
viscous coefficient term 2v/pAy may be underestimated.

Thus, for some of the higher Reynolds number test case
problems, in addition to this term, the following term was
used:

T _

I (6p/c:,) -6p I
(At/Ay)[(_-l)/_lp

This term represents a measure of the change in entropy
caused primarily by viscosity. It is evaluated during step 3
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Fig. ! Sketch of shock/boundary-layer interaction.
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Fig. 2 Initial flowfield for shock/boundary-la_.erinteraction.

using the first element of the vector X,

r _ .
Ixtl

(At/Ay) [ (7-1) 17]P

As steady state is approached, [ x t [ approaches zero and the
added term vanishes.

The number of Fortran statements for the above seven steps

is approximately 30. Approximately 50 are required for a

complete subroutine that includes index control so that sweeps
can be made in either direction using the same statements,
calculation of additional useful intermediate variables, setting

of boundary conditions, and a test to see if the seven steps
should be done at all, at each grid point, by checking to see if

the time step size is larger than that allowed by the explicit
stability criteria of the last section.

The implicit procedure outlined above for the y-coordinate

direction sweeps first toward the lower boundary in the

predictor, then sweeps away from this boundary in the
corrector using reflected boundary conditions. The implicit

procedure for the x-coordinate direction is similar except that
the sweep directions for the predictor and corrector steps
should be switched at each new time step. For the test

problems of the next section, the flux of change at the start of
each sweep in the i direction was set to zero because either the

flow at the boundary was steady or the mesh spacing was large
enough so that the elements of D A and hence I A I vanished.

Numerical Results

TO test the numerical method just presented, a series of
shock-wave/boundary-layer interaction problems were

calculated. The flowfield representing this interaction is
sketched in Fig. 1. The sketch shows an externally generated
shock wave incident upon a boundary layer on a flat plate, if

the shock wave is strong enough, the boundary layer will, as
shown in the sketch, separate from the surface of the plate

and reattach downstream. Between the separation and

reattachment points there is a region of rotating fluid that
causes the boundary layer to thicken and generate a series of

compression and expansion waves that eventually form the
reflected shock wave. The separation region is fairly sensitive
to calculate and therefore serves as a good test for a numerical

method.
The initial flowfield and boundary conditions are shown

schematically in Fig. 2. The initial condition for the interior of
the flowfield is uniform flow. The flow variables at the top

mesh boundary were set to either freestream values or values

for a given shock strength so that the shock wave would
impinge on the plate surface at the lower boundary at a given

point. The lower surface was either a plane of symmetry or a
wall surface, and reflective boundary conditions were used

(u,,_ =u,. 2 ahead of the leading edge of the plate and -u,. 2

along the plate surface; vi. t =-v,, 2, P,,t =P,.2, and e,.l =_,:2
ahead of the leading edge and along the plate for an adiabatic

wall; or 2e,,a,- _,.2 for an isothermal wall where e*au is the
internal energy of the gas at the wall). For the selected test
case problems, the freestream was supersonic and therefore
the values at the upstream boundary were held fixed. At the

downstream or exit boundary, zero-order extrapolation

(Ut a = Ut-tj) was used. The flow leaving is either parabolic
(near the plate) or hyperbolic (away from the plate) in the
streamwise direction so that errors made here should not

propagate upstream. Tests using more accurate boundary
treatment have verified that this is true.

The mesh contained 32 x 32 points and could be stretched in
both the x and y directions. The program has the capability to
calculate for a given number of time steps and then
redistribute the mesh points in a smaller "focused" region

and continue running. Approximately 16 mesh points
spanned the boundary layer. The time step was chosen

initially so that the freestream moved a given percentage
(approximately 1%) of the plate length during each time step.

For high Reynolds number calculations in which
vAt�pAy2 > V2, the time step was successively reduced near the
end of the calculation to avoid any possible steady-state

solution dependence on At.
The calculated results for laminar Mach 2 flow at a

Reynolds number of 2.96x l0 s are shown in Figs. 3a-c. A
shock wave incident upon the plate increased surface pressure

by a factor of 1.4 and was sufficient to cause flow separation.
Molecular viscosity was calculated using Sutherland's for-
mula. The calculation ran for 256 time steps, at which time
the flow was near steady state, and then the mesh was rezoned
to cover just the interaction region and run an additional 256

steps. The calculation required about 1.5 min of computer
time on a CDC 7600 computer. The calculated surface

pressure is compared with the experimental measurements of
Hakkinen 3 in Fig. 3a and with boundary-layer theory 4 (in the
absence of a shock) for skin friction in Fig. 3b. The ex-
perimental probes in the separated region were unable to
measure skin friction other than to show that it was zero or

negative. The calculated velocity profiles ahead, aft, and in

the separation region are compared with the calculated results
of the 1969 explicit method in Fig. 3c. The calculated results
of the new method are consistent with experiment, theory,
and other numerical results.

Table 1 compares the timings of the new method with those
of the 1969 method for a series of shock interaction problems.

Each problem was calculated to the same physical time, which
for the new method required 256 time steps. A simple

algebraic eddy viscosity model was used in the turbulent flow
calculations. For each case the table shows the Reynolds

number, the ratio of the time step used to the maximum
allowed by explicit stability conditions (CFL), the computer

time required per step per grid point on a CDC 7600 com-
puter, and the total computer time required. As the table
shows, the new method is very efficient. It is, however, only

slightly more efficient than the hybrid explicit-implicit-
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Fig. 3 Comparison of results: a) surface pressure, b) skin friction, c)
velocity profiles.

Table I Computation time

CDC 7600 time,

step grid pt Total
Case Method CFL x l0 -4 s time

Laminar 1969 0.9
R=3x 105 New 20

Turbulent 1969 0.9
R = 3 x 106 New 160

Turbulent 1969 0.9
R=3× 10 ? New 1200

.25 12 min

.55 41 s

.55 2 h a

.85 48 s
,55 15 h a

.85 48 s

a Estimated.

characteristic method 5 the author presented in 1976 for the

lower Reynolds number calculations and, at most, twice as

fast for the higher Reynolds number cases, although it is an

order of magnitude easier to program. It is also, for the test

cases considered, more than twice as fast per time step per

grid point as the block tridiagonal implicit methods in use

today. Part of the reason for this is that, because of the mesh

point spacing, more than half the total number of mesh points

required only use of the 1969 explicit method (the first stage

of the method) of solution. At these points, the implicit

procedures (the second stage of the method) were skipped.

For other calculations requiring more or less use of the im-

plicit procedures, the computer time per step per grid point

would be more or less than the values given in the table. The
estimated maximum for a two-dimensional calculation is

2.45 × I0-4 s for laminar flow and 2.75 × 10-4 s for turbulent

flow using an algebraic eddy viscosity model.

Conclusions

A new method has been presented for solving the equations

of compressible viscous flow. For many applications this

method is more efficient and easier to program than other

methods in use today.

The method is the implicit analog of the explicit method

that the author presented in 1969. Because the new method

uses the 1969 method as its first stage, many exisiting com-

puter programs also using the 1969 method can be updated by

adding the described implicit procedures that form the second

stage.
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