
k

._'i '_ ;!"' :_ /. _ 1997

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

PERFORMANCE OF A BOUNCE-AVERAGED

GLOBAL MODEL OF SUPER-THERMAL ELECTRON TRANSPORT

IN THE EARTH'S MAGNETIC FIELD

Prepared by:

Academic Rank:

Institution and Department:

Tim McGuire, Ph.D.

Assistant Professor

West Texas A&M University

Department of Computer Information Systems

NASA/MSFC:

Office:

Division:

MSFC Colleague:

Space Sciences Laboratory

Science Systems

Mike Liemohn, Ph.D.

XXXIII

https://ntrs.nasa.gov/search.jsp?R=19990010034 2020-06-18T00:47:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10474307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


v



Introduction

In this paper, we report the results of our recent research on the application of a

multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in

the earth's magnetic field. In general, this mathematical model requires numerical solution

of a system of partial differential equations.

The code we use for this model is moderately vectorized. By using Amdahl's Law for

vector processors (Fosdick, 1996), it can be verified that the code is about 60% vectorized

on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the

unvectorized code. In the following sections, we discuss the methodology of improving the
code.

In addition to our goal of optimizing the code for solution on the Cray computer,

we had the goal of scalability in mind. Scalability combines the concepts of portabilty

with near-linear speedup (Sabot, 1995). Specifically, a scalable program is one whose

performance is portable across many different architectures with differing numbers of

processors for many different problem sizes. Though we have access to a Cray at this

time, the goal was to also have code which would run well on a variety of architectures.

Additional Vectorization of the Code

The first step attempted was to examine the code carefully to see if the degree of

vectorization could be increased. Typical consideration for improving vectorized codes
include:

• Most vector-register architectures are designed to handle vectors of a given length;

for instance, the vector registers of the Cray T90 series hold 128 elements of a vector.

Using vectors of that approach that length is more efficient than using shorter vectors.

In a nested loop, the inner loop is usually the one the compiler attempts to vectorize.

Thus, if it is computationally equivalent to do so, the code should be arranged so that

the longer vector operation occurs in the innermost loop.

• When dealing with multi-dimensioned arrays, the storage order can have an impact on

the efficiency. Since F o RT RA _ stores arrays in column-major order, it is most efficient

to access those arrays in that order. This allows us to process the array with a stride

of one. It also reduces the memory and caching overhead, since the elements are being

read and stored in a sequential manner.

• Compiler dependence analysis is of necessity conservative. Thus, the compiler might

not detect all instances where an apparent dependence can be ignored. For example,

do i=2 ,n

a(i-l) = a(i) + b(i)

end do

can be vectorized and stillgenerate the correct value. A more subtle instance is

XXXIII-I



do i=l ,n
a(i+l,j) -- a(i,k) + b(i)

end do

which can be vectorized if is known that j # k. In most cases, however, the compiler

is unable to make such an assumption and does not vectorize the loop. In these cases,

most compilers have a "no dependence" directive that allows the code to be vectorized.

In practice, it was discovered that the Cray f90 compiler performed quite well at

exploiting the vectorization and as a result, the amount of performance increase on

this code by hand vectorizing was not large (_ 5%.) When possible, loops containing

recurrences (which are inherently scalar) were split so the portions which could be

vectorized were separate.

Parallelization of the Code

Cray F o RT RA N90 supports various levels of parallel processing through autotasking. In

addition, it is possible to use macrotasking, since Cray provides a library of synchronization

routines. This approach requires a major restructuring of the code to take advantage

of parallelization. It has value when there is a large granularity to the code, but has

considerable overhead cost. Because the resulting code is not portable, this approach was
not used.

Autotasking directs the compiler to exploit parallelism in the code, typically by

distributing loop iterations to multiple processors. The user may, if desired, insert

directives in the form of comment lines (leading to transportable code) in some or all

of the routines to enhance parallelization in the regions of the code where the preprocessor

cannot determine, that parallelization is safe.

Utilizing the fully automatic method of parallelization only yielded a minimal

improvement in the performance of the code (_ 5%.) This led us to pursue the insertion

of directives into the code in an attempt to increase both the granularity and the average

degree of multiprocessing.

ComputationM Results

The supercomputer used in this study was a Cray T916, a shared memory

multiprocessor vector machine with up to 16 processers and a vector length of 128 64-bit

words. The particular machine used was a 4-processoi model with 256 megawords of main

memory. Each processor has a peak performance of approximately 1.8 billion floating point

operations per second (1.8 Gflops.) The operation system utilized was UNICOS 9.0.2.4

and the FORTRAN compiler f90 version 3.0.0.

XXXIII-2



The problem considered for this study was a collisional three-dimensional
interhemisphericfiux tube model for photoelectrons (PE) (Khazanov et al, 1996). Using

this model, initial calculations of the high energy PE distribution as a function of time,

energy, pitch angle, and spatial location in the equatorial plane and along the field lines, are

reported for different conditions of geomagnetic activity. To explore both the dynamic and

steady behaviors of the model, the simulation starts with the abrupt onset of PE excitation,

and is followed to steady state conditions. The results illustrate several features of the

interaction of PE with typical magnetospheric plasmas and fields, including collisional

diffusion of PE in pitch angle with flux tube filling, diurnal intensity and pitch angle

asymmetries introduced by directional sunlight, and energization of the PE distribution in

the evening sector.

This code had previously been run on an HP 9000 workstation with a run time greater

than one month. The first port to the Cray ran longer than one week. Exact runtime data

is not available, but it is obvious that improving the code is desirable.

For the sake of this project, we chose to use the original input data with a shorter

runtime (i.e., 40 time units rather than 172800) so that many more runs could be done.

On a non-optimized code, this lead to total wallclock time of 89.6 seconds. Utilizing

the compiler's scalar optimization, we achieved a waUclock time of 35.7 seconds. Using

the default level of optimization (which includes moderate scalar, vector, and tasking

optimization) for the fg0 compiler led to a wallclock time of 17.5 seconds. Using aggressive

scalar and vector optimization gave a wallclock time of 15.4 seconds. The addition of

aggressive autotasking led to 14.7 seconds of wallclock time.

At this point is was determined that hand optimization would be necessary to achieve

substantial performance gains. Hand vectorization of the code was attempted first. This

was mainly done by splitting recurrences out of loops in which other operations could be

vectorized. This gave a runtime of 14.1 seconds.

We concluded the work with an examination of how we may be able to help the

compiler with directives. Aggressive autotasking found 20 loops in the code which could be

parallelized. Because several loops contained subroutine calls, these were not parallelized

by the compiler. Careful examination of the code revealed that no side effects resulted

from many subroutine calls, so a compiler directive was inserted to allow those loops

to be parallelized. In addition, it was discovered that on one occasion the autotasking

preprocessor was unable to determine that an outer loop was safe to parallelize, and hence

it parallelized the inner loops. W'e were able to reduce the overhead and increase the

granularity by inserting compiler directives. By doing this we were able to double the

amount of loop parallelized and reduce the wallclock time to 5.3 seconds.

It should be noted that each case was run three times and the median of the wallclock

times were taken. This is help eliminate the machine load factor since we did not have a

dedicated machine.

XXXIII-3



Concluding Remarks

The above results are summarized in the following table:

Non-vectorized code

Non-vectorized code, scalar optimization

Normal code (moderate scalar and vector optimization)

Aggressive vectorization

Aggressive vectorization and autotasking

Manual vectorization and autotasking

Manual tasking

89.6 seconds

35.7 seconds

17.5 seconds

15.4 seconds

14.7 seconds

14.1 seconds

5.3 seconds

We have shown that the Cray T916 can achieve substantial performance improvement

in a "real-world" problem. The ability of the compiler to exploit vectorization is impressive.

Code that is not designed specifically with parallelization in mind may be restructured to

take advantage of parallel processing. Parallelization by hand is necessary in these cases.

The speed-up factor of 2.8 on a four-processor machine is reasonable for a problem

of which is not inherently parallel. It is reasonable to expect that correspondingly faster

performance would arise using additional processors, up to the number of grid points.

References

L. D. Fosdick, E. R. Jessup, C. J. C. Schauble, and G. Domik (1996), An Introduction to

High-Performance Scientific Computing, Cambridge, MA: MIT Press.

G. V. Khazanov, T. E. Moore, M. W. Liemohn, V. K. Jordanova, M. C. Fok (1996),

"Global, collisional model of high-energy photoelectrons," Geophysical Research
Letters 23:331-334.

G. W. Sabot (1995), High Performance Computing: Problem Solving with Parallel and

Vector Architectures, Reading, MA: Addison-Wesley.

XXXIII-4


