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Introduction

The idea of extracting chemical data from the analysis of the electromagnetic

(EM) spectrum is not new. Holding a copper wire in a sufficiently hot flame

produces a characteristic green region in the flame. The copper atoms are exited to

such a high energy state that they emit electromagnetic radiation at several

wavelengths, with green light being dominant. The atomic structure determines

the wavelengths of EM emitted, and since all elements are unique, no two elements

will emit EM at exactly the same wavelengths. Thus each element has its own

unique spectral signature. For example, in the same flame, the element nickel will

emit EM at wavelengths different than copper.

wavelength is the electromagnetic spectrum

of mckel, as shown in Fig. 1. Since this

spectrum is unique, a spectrometric detector

some distance from the flame would allow a

user to determine the presence of nickel,

copper, or both, in the flame.

Individual spectra for other elements

vary in complexity, some having few atomic

transitions (peaks), others having many.

Three germane points of importance to this

paper result from Fig. 1 and the associated

radiation physics: 1) every element has it's

own "spectral signature," 2) the emission will

contain atomic transitions at wavelengths

which may not be part of the visible spectrum,

and 3) the intensity of the emission is a

function of the quantity of emitting matter

present in addition to the system temperature

and other quantum variables.

A plot of radiant intensity versus
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Fig. 1. Example Emission Spectra for
Nickel.

Rocket plumes are emissive events subject to the same physics (with more

complications of course) as burning nickel or copper over an open flame. The

Optical Plume Anomaly Detection (or OPAD) program (Cooper, et al, 1997) was

initiated by researchers at MSFC as an effort to take advantage of the wealth of

information contained in the exhaust plume of a rocket engine. The initial idea was

to identify anomalous spectral events which were consistent with known

mechanical failures and then use them as templates in the health monitoring of

future engine tests (ground or in-flight). This could then be coupled with the

anomalous events found in the vibrational and other sensor data to determine the

overall state, or health, of the engine.

The "template idea," however, was soon replaced by even more ambitious

goals as a result of some initial findings in the TTB experimental program

(Benzing, et al, 1997). The spectral data from one test in particular revealed a

major occurrence of a metallic species which was indigenous to the SSME
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preburner faceplate. An even closer evaluation of the amount of metallic species

present versus time showed an initial erosive event of the metal followed by

numerous other anomalous emissions, all leading up to an engine-threatening

erosion of the faceplate. This meant that anomalous events could be predicted.

As a result of these findings, the
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Fig. 2. Monitoring the SSME Exhaust

Plume using the OPAD System.

focus of the researchers turned to not only

anomaly detection but also metal

quantification. In other words, health

monitoring now involved the simultaneous

tasks of anomaly detection and

determination of the severity of the

anomaly, as illustrated in Fig. 2. This
meant that the free atom densities of all

the metals of interest within the engine

would have to be predicted for every

temporal scan taken by the instruments.

The metal quantification process would

essentially give metal concentration versus

time. Spikes in this time trace would then

be indicative of a metal erosion.

The neural network extracts radiant intensity data from the electromagnetic

spectrum of the exhaust plume and uses these values to predict concentrations, as

well as temperature and broadening parameter, of metals in the flame (Whitaker,

et al, 1997). Fig. 3 illustrates the network's

operation. As the intensities of the

electromagnetic radiation are extracted

from the spectrum, the uncertainties in

those values are propagated through the

network and result in uncertainties in the

predictions of number density, broadening

parameter, and temperature.

Calculation of the uncertainties

begins with an examination of the

procedure used to calibrate the

instruments used in the OPAD system.
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Fig. 3. Basic Operation of the Neural
Network.

Uncertainties in Instrument Calibration

The purpose of instrument calibration is :o determine the response of each

photodetector, or the ratio of incoming radiation to outgoing voltage. During an

engine test, the radiant intensity, I, at each photodetector is

I =(It -IB)" R (units are W/(str cm 2 ang)) (1)
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where I7 is the radiant intensity during engine firing and IB is the radiant intensity

of the background, or ambient light. These two values are measured in "counts"

since the analog-to-digital
Receiving Optics TOP VIEW

_Screen

Fig. 4. Calibration Procedure for the OMA, One of
Several OPAD Instruments.

converter installed in the

computer converts the voltages

released by each photodetector

into an integer. In order to

calculate the radiant intensity, I,

during the test, the value of R

must be determined from

calibration.

Fig. 4 shows a typical

calibration for the OMA, one of

several spectrometers that can be

used as part of the OPAD system.

Using a calibrated irradiance lamp of known intensifies across a segment of the

electromagnetic spectrum allows the values of R in the above equation to be

determined. During calibration, lamp radiation is reflected off of a screen of known

reflectance properties at a certain distance from the receiving optics. Therefore, the

only unknown in Equation 1 is R. Thus,

linterp°lated )2

- (2)

where IL is the lamp intensity (in counts) at the photodetector, and IB is the

background. Any uncertainty in R will be propagated though Equation 1 during an

engine test.

Some of the sources of uncertainty in R include instrument noise,

uncertainties in the lamp irradiance, uncertainties in the screen reflectance, the

distance between the lamp and reflectance screen, the distance between the screen

and the receiving optics, background fluctuations (such as sun and shade, time of

day, changing surroundings, etc.), and others.

Due to time constraints, the uncertainty in R was determined using

statistical methods. Several hundred sample calibration scans were taken at

different times and the environmental factors (sun, temperature, humidity, etc.)

noted. Then values of R were calculated for each photodetector for these scans.

Values of R were determined by the mean of the data points and the uncertainties

were reported as one standard deviation, as in Equations 3 and 4, respectively.

l _j-'x, (3)]2=--

n J=l
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or: x,-_) (4)

Uncertainties in the distances between the screen and lamp and the screen and the

receiving optics were determined but not propagated through the calibration

procedure due to time constraints; they will be included in future studies. Once

these uncertainties were determined, then the uncertainties in the radiant

intensity during an engine test could be determined.

Uncertainties in the Measured Photodetector Radiant Intensity

The uncertainty in I in Equation 1 can be determined mathematically using well

known statistics. For each photodetector (there may be over 2000) in the

instrument, the absolute uncertainty in/, expressed UI, is

(5)

where U1,T and UI, e are the uncertainties in the measured exhaust plume and

background (pre-test) radiance, and UR is the uncertainty in the photodetector

response. Evaluating the partial derivatives results in a simple expression:

(U1) 2 =(U_.TR) 2 +(UI,BR) 2 +(UR(Ir --IB)) 2 (6)

Use of Equation 6 allows one to not only evaluate the overall uncertainty, but also

determine the major contributors. This shows the experimenter what areas of the

experiment should be improved.

To evaluate these equations by hand would be extremely time consuming for

experiments of several hundred scans using instruments of over 2000

photodetectors. Therefore, five ANSI standard C programs were written to convert

raw data from the instruments a standard format, analyze the data for entire scans

or for individual photodetectors, create histograms and temporal charts, and

compute the mean, standard deviation, and absol.ute and relative uncertainties in

any measurement, whether it be counts (such as I_) or values of R. These programs

can average several background scans, or ran=iomly mix background (IB) and

calibration (IL) or engine test (IT) scans. The results of these programs are then
substituted into Equation 6.

Analysis of each term for photodetector number 099 of the OMA instrument

is shown in Table 1.
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(Uz) =7501E -08
W

str .cm z •ang

(UI,rR_ =1.198E -16

(U_,BR) 2 =7.862E -18

(U R(It -I B))2 = 1.170E -15

Table 1. Contributions

to the Uncertainty for

Photodetector #99 in the

OMA Instrument.

The data used in the analysis in Table 1 are

from an SSME test. The results clearly show that

the uncertainty (expressed as lv) in background

measurements contribute the least to the overall

uncertainty. However, for photodetector number 99,

UR is 3.641E-10 (4.802%), and in the third term UR

is multiplied by a large number (IT - IB = 1030

counts on average). Thus if the exhaust plume is

extremely bright, then this error term dominates,

and the errors during the calibration process become

very important.

Propagation Through the Neural Network

The neural network takes the intensity

values from Equation 1 and predicts temperature,

number density, and broadening parameter for the flow. What can be said of the

uncertainties in these estimates? Generally speaking there are three main sources

of uncertainty in the radial basis function neural network (RBFNN) estimation: 1)

error due to the inability of the neural model to completely map the underlying

physical relationship, 2) uncertainty in the training data as a result of the

Spectra6* models' inability to completely describe the physical nature of the flow

emission, and 3) uncertainties introduced during the calibration/response function

creation processes.

Typically, the statement of uncertainties in a neural network prediction

involve only error estimates that are based on the neural model's inability to fit the

training data. No consideration is given to the error component introduced through

the acquisition of the actual testing or training data sets. The terse technical note

described herein serves to highlight this error component and provide a means by

which its effects can be quantified.

The general architecture of the RBFNN is given in Fig. 5 below. It is

assumed that prior knowledge of the uncertainties in the inputs has been

established. The figure shows a fully connected RBF network with radial kernels

and associated weighting factors. The kernel function can be any radially

symmetric function; that is, a function which has a "local" behavior such as the

Gaussian, Cauchy, or Multiquadric. The output quantities (yk) are then given by

the basis function expansion of Equation 7.
rtl

yk=Xw,,(g,.) (7)
]=1

The Spectra6 model is a computer program that produces the training data for the RBFNN
Inputs into the program are quantum variables; outputs are an electromagnetic spectrum and
associated temperature, number density, and broadening parameter. (Cooper, et al, 1997)
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Fig. 5. RBFNN General Architecture.

Note, the bias term in Equation 7 is not included because it drops out in the partial

derivative expansion. For the sake of analysis, assume the kernel function is a

Gaussian (Equation 8) and that the network coefficients (wii, pa) have already been

established. Further assume that any uncertainties associated with the network

inputs are independent and random. With these conditions, the uncertainty in an

output variable can be obtained via Equation 9 below.

(,-am,)
gm = exp = --

R _ (8)

(9)

Through a trivial (just kidding)

evaluated as,
partial expansion, the partial derivatives can be

As an example, the paritial expansion has been worked out for the Gaussian kernel

below,

" ))v3'__.,_k= _ wjkg J ,, _ I. - la j. (11)
O_n J=l
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Conclusions

Improvements in uncertainties in the values of radiant intensity (!) can be

accomplished mainly by improvements in the calibration process and in minimizing

the difference between the background and engine plume radiance. For engine

tests in which the plume is extremely bright, the difference in luminance between

the calibration lamp and the engine plume radiance can be so large as to cause

relatively large uncertainties in the values of R. This is due to the small aperture

necessary on the receiving optics to avoid saturating the instrument. However, this

is not a problem with the SSME engine since the liquid oxygen / hydrogen

combustion is not as bright as some other fuels. Applying the instrumentation to

other type engine tests may require a much brighter calibration lamp.
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