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Abstract. The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum

gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various

oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary

conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core

cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary

dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to

spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate

shear induced dissipation near the core-mantle boundary, these are taken to be" (i) no-slip at the core-mantle

interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-

slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv)

hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular

momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most

1.5°/yr.

1. Introduction

The westward drift of certain features in the geomagnetic field across Earth's surface at a few tenths of a

degree per year has long been used to suggest westward drift of Earth's magnetized core (Halley, 1692). To the

extent that the field is frozen into an electrically conducting fluid outer core, westward drift indicates westward flow

near the top of the core. Bulk westward flow at about 0.12°/yr emerges from somewhat more detailed inversions of

secular geomagnetic change (see, e.g., Voorhies, 1995); however, this rate can be reduced by diffusion, hence

slipping, of the field through the imperfectly conducting fluid (see, e.g., Voorhies, 1993). Such westward flow poses

an interesting problem for those who suspect that, during the course of geologic time, Earth's Core and mantle have

relaxed to a state wherein the angular momentum of the core is quite close to that of a rigid body rotating with the
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angularvelocityof themantle.(Thisapartfromdifferentialspinupduetoinnercoresolidification,differentialtidal

spindown,differentialprecession,andvariousoscillations).

A slightconvectivelevelingoftheplanetaryazimuthalmomentumgradientstillseemstoofferthemostfacile

explanationof westwarddrift. Comparedwithanon-convecting,uniformlyrotatingstate,buoyant,lowazimuthal

momentumfluidatdepthfloatstowardstheuppersurfaceanddriftswest;dense,highazimuthalmomentumfluid

abovesinkstowardsthelowersurfaceanddriftseast;andthe azimuthal momentum gradient is reduced. The

reduction is arguably very small for several reasons" the convective motions are feeble, strongly constrained by the

rotation itself, and may be largely confined to spirals on surfaces of constant planetary momentum. Slight

departures from motion on such surfaces may nonetheless be realized, notably if they increase convective efficiency

by decreasing dissipation or, perhaps for thermo-compositional magneto-convection, by distributing Ohmic and

viscous dissipation so as to aid core cooling. Westward drift has thus long provided a reason to consider seriously

the convective outer core geodynamo hypothesis, whereby convective fluid motions maintain the aperiodically

reversing geomagnetic main field against magnetic diffusion and Ohmic dissipation.

This facile explanation of westward drift clearly requires eastward flow of the fluid at depth in the outer core.

If the total angular momentum of the core is quite close to that of a rigid body of identical inertial moment rotating

with the mantle, then the speed of the eastward flow at depth will exceed that of the westward flow above so long as

the geometric effects of reduced moment arm and volume at depth dominate the increased density of quasi-

hydrostatic compression.

The foregoing argument for eastward flow at depth has 10ng been obvious to students of the secular variation.

It is now clear that tight magnetic coupling of eastward flow near the base of the outer core to the similarly high

conductivity solid inner core would tend to spin up the inner core. Indeed, deviation from co-rotation shears the

magnetic field lines that thread the inner core boundary and are thus embedded in both liquid and solid conductors.

Such shear induces electric current and restoring Lorentz torques that tend to return the system towards a

magnetically locked equilibrium - perhaps after several resistively damped oscillations (Gubbins, 1981). The

essential geophysics was elucidated by Glatzmaier & Roberts (1995a, b; 1996), via numerical simulation of the core

geodynamo, and led to their celebrated prediction of an eastwardly drifting inner core.

Seismologic substantiation of this prediction by Song & Richards (1996) and Suet al. (1996) suggests

considerable uncertainty as to the amplitude of eastward inner core drift. The former obtain about 1.1 °/yr; the latter
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obtain about 3°/yr (2.27+0.90 °/yr, 3.02 + 0.42°/yr, and 3.28°/yr depending upon details of the inversion). Creager

(1997) obtains a lower rate of about 0.25°/yr, while Souriau et al. (1997; 1998) question the seismologic detection of

inner core rotation itself. This paper shows how eastward drift of a solid inner core can be simply, albeit not

unambiguously, calculated from geomagnetic westward drift without recourse to either numerical simulation or

models of inner core acoustic anisotropy.

2. Simple Model and Example

Consider a planet rotating with sidereal angular velocity O(r,t) and mass density equal to marginally stable

reference density p(r) plus small perturbation _p(r,t) (I _p/p I << 1). For simplicity, position r is measured in

centered spherical polar coordinates (radius r, colatitude 0, and east longitude _) rotating with a rigid mantle at

uniform angular velocity _2ozA(2 -= _cos0 - Orsin0). This filters out secular tidal despin, polar wander, precession,

nutation, and decadal and higher frequency fluctutations in the angular velocity of the mantling solid, which fall

outside the focus of this paper.

A .

The planetary rotational velocity OoZ×r is eastward Oorsin0_. The planetary momentum density M i s

eastward Md_, is _P_orsin0, and is the planetary azimuthal momentum of a material parcel of unit volume. Clearly

M_ tends to increase with distance away from the rotation axis, s ---rsin0. For a small planetoid of homogeneous

^
mass density Po' the planetary momentum gradient VM_ is uniformly steep PoOo s. For a self-gravitating

compressible planet,

VM_ = p_2o( _ + sVp/p). (1)

If the rotation is not too fast, then a roughly spheroidal planet remains nearly spherical, the stratification is nearly

radial p(r), Vp = _r P, and Dr p < 0. If the density scale height is not too small (pl_ r p1-1 > s), then VMd_ is not

vastly different than for homogeneous density; however, surfaces of constant planetary momentum flare away from

the rotation axis as distance from the equatorial plane ] z l increases. Such surfaces are more akin to hyperboloids of

revolution than right circular cylinders. For terrestrial example, calculated from the seismologic density model of

Kennet et al. (1995), the constant M_ surface tangent to the equator of Earth's solid inner core intercepts the fluid

outer core-mantle boundary at colatitude 25.4 ° - some 300 km south of the right circular tangent cylinder intercept

at 20.5 ° .
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To avoid convective leveling of the planetary momentum gradient in a thick, rapidly rotating, roughly

spherical annulus such as Earth's electrically conducting liquid outer core, one need only arrange (a) perfect

exchange of planetary momentum between rising and falling fluid; (b) perfect confinement of convective motions to

surfaces of constant planetary momentum; or (c) perfect exchange of planetary momentum between fluid parcels

•moving onto and parcels moving away from each surface of constant planetary momentum. Although case (c) is

thought to be an excellent approximation, it seems unlikely that any of these conditions could be perfectly satisfied

in a real planet.

Core Angular Momentum Anomaly. The angular momentum density in the core is the sum of planetary and

deviatoric portions. The planetary angular momentum density is northward (rx_Mt_ = -OpI2or2sin0). The

deviatoric angular momentum density is due to perturbation density and relative velocity v(r,t). The total angular

momentum of the core is the volume integral

L = I IS [rxSp_orsin0 + rx(pv + 8pv + _hO_orsin0)] dV (2a)
CV

-- Lp + AL,

where CV denotes core volume. If p(r) is axisymmelric p(r,0), then the planetary angular momentum of the core Lp

is parallel to the reference rotation axis. The deviatoric angular momentum,

AL - f f I rx(pv + 8pv + t_pI)orsin0 ) dV (2b)
CV

-_ __S rx(pv + _Sp_2orsin0 ) dV,
cv (2c)

is just the core angular momentum anomaly which some think small (1AL [ << Lpl).

Does the Taylor-Proudman Theorem Inhibit Leveling? To find out, partition the mass transport equation

into main (V*pv = 0) and fluctuating parts. The curl of an approximate balance between the Coriolis force density

(2_o_Xpv) and hydrostatically uncompensated scaloidal force densities (such as perturbation pressure) gives the

Proudman-Taylor constraint 2_o(_.V)pv -- 0 (see, e.g., Gubbins & Roberts, 1987). The relative momentum density
i.'.._

pv does not vary much along the direction of the rotation axis; yet motions orthogonal to the rotation axis are

allowed and might slightly level VM_. Such leveling would appear as a non-zero mean gradient in the deviatoric

azimuthal momentum (pv_ + 8pvd_ + 8P_orsin0 ) rather than a change in VM_ itself.
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Purely azimuthal flow v_(r) satisfies the constraint when relative momentum pv_ varies only with s (i.e.,

v_(r) - [9(r)]-l[f(rsin0) + Ko ] where Ko is a constant and f is a function of s alone). At fixed s, the decrease in p

with radius, hence distance ]z I from the equatorial plane, can be compensated by faster flow. Surfaces of constant

v_ thus tend to curve towards the rotation axis as I z l increases. Such curvature resembles a spherical vortex

modulating azimuthal flow that would otherwise be invariant along more familiar co-axial right circular cylinders.

The effect could be quite large for motions spanning multiple density scale heights, as in a stellar or giant planetary

convection zone, but the mass density contrast across Earth's outer core is only 22%. The notion of a spherical

vortex persists because Taylor-Proudman conditions are not fully met by magneto-convection of a viscous fluid;

because smaller scale motions might excite and maintain such a vortex; because of the shape of the bounding solids;

and because of geomagnetic westward drift.

2.1 Simple Spherical Vortex and Boundary Conditions

As in many models, inner-outer core and core-mantle transition zones are here approximated by sharp material

interfaces. The solid inner core is approximated by a rigid ball of radius d, the fluid outer core by a spherical

annulus of outer radius c and inner radius d, and the reference density by laterally homogeneous p(r). For the bulk

eastward or westward flows considered here, spherical shells rotate as if rigid bodies; therefore, attention is directed

towards the spherical vortex

V(r) = Wo(r ) sin0 $ = c0(r) rsin0 $ , (3a)

where Wo(r) is the equatorial amplitude of bulk eastward flow, co(r) is the perturbation angular velocity or "eastward

V • • • A

drift", and the relative ortaclty is 2co(r)z. Spherical vortex (3a) is partitioned into frozen field and diffusive portions

co(r) = CoB(r) + Oarl(r), (3b)

where cOBrepresents geomagnetic drift in the frozen-flux approximation and corl(r) denotes diffusive slip. The

radially varying ratio [co/corlI indicates the relative importance of advection to diffusion in the vortex.

The hypothetical kinematic model (3a) is not intended to satisfy conditions needed for the Taylor-Proudman

theorem, the rigidized sphere model of differential precession (Vanyo, 1984), a dynamical simulation (Glatzmaier &

Roberts, 1995a, b; 1996), or a thermal wind model (Aurnou et al., 1996; 1998). The rigidized sphere model would

correspond to a homogeneous spherical vortex beneath a boundary layer (co(r < c') -- 0. l°/yr). Whether or not an

inhomogeneous spherical vortex is excited and maintained by smaller scale, possibly turbulent, convective and/or
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wave motions (u = v - V), it conforms to the boundaries more naturally than a cylindrical vortex and thus eases

discussion of boundary conditions.

Although the outer core might slip past the mantle almost as easily as mercury under leaded glass, radius c" is

used to denote the base of a thin viscous boundary layer separating a free-streaming fluid core from a rigid mantle.

At the edge of the free-stream,

C

re(c-) = toB(C-) + ton(c- )

toB(C') : -0.1157°/yr. (3c)

The illustrative numerical value is the 1945-1980 mean from the preferred solution of Voorhies (1995; the value

-0.121°/yr was for 1967.5). Inversions for steady flow and steady flux diffusion suggest some eastward diffusive

slip 0.51 toB(C-)l _>torl(C-) _>0; steady, surfically geostrophic flow inversions suggest a westward diffusive slip

torl(C') < 0 and slower westward magnetic drift (Voorhies, 1993). The maximum westward flow used below is the

frozen-flux extreme, -to(c') = -toB(C-).

For a rigid mantle, the hydrodynamic no-slip core-mantle interface condition is

to(r_>c) = 0.

For a rigid inner core, the hydrodynamic no-slip inner core boundary condition is

(3d)

to(r<d) = to(d) = lim to(d+8)
8___>0+ (3e)

Viscous and magnetic locking of a rigid inner core to fluid at and near the base of the outer core suggest little or no

slip, and little or no shear, at the inner boundary. At the desired equilibrium, neither advection nor shear of

magnetic field lines threading the inner core excite restoring Lorentz torques. The no shear condition amounts to the

hydrodynamic stress-free inner boundary condition,

I

to (d) = 0,
(30

where to' denotes Orto. The combined no-slip/no-stress conditions yield t0(d') = to(d) = to(d+). The intent of (30 is

to filter out, not rule-out, oscillations about, and secular trends in, the desired equilibrium. Granting conditions (3c-

f), diffusively uncompensated westward drift to(c-) = toB(C-) offers kinematic driving for a non-trivial spherical

vortex. Gravitational locking of the inner core to the mantle (Buffet, 1997) would further require to(d) to be zero.
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2.2 Axial Angular Momentum Anomaly for Small Density Perturbations

For spherical vortex (3a), the integrand in equation (2c) for ALz would vanish everywhere if 8p/p were equal

to -o_r)/f2 o. In the frozen-flux limit of (3c), such detailed balance would have 8p(c-)/p(c') be 8.8x10 -7. Provided

the volume integral of 8p vanishes, this density surplus above would imply a density deficit, hence eastward flow,

below. For example, if surplus mass in the shell of radius c- and thickness 8r were balanced by a mass deficit in an

equally thin shell of radius d+, then 8p(d +) would be -(c/d)28p(c'), or -8.2 8p(c'); moreover, with e - d/c,

co(d+) = -_o 8P(d+)/P(d+) = _o[C/d]'2 8p(c-)/p(d +) = _co(c.)e2p(c_)/p(d+) .(4)

would be -6.67co(c') (using e = 0.3499 and Po(C')/Po(d+) = 0.8168 from Kennet et al., 1995). The corresponding

eastward drift of a magnetically locked inner core would be about 0.8°/yr.

If buoyancy and Coriolis force densities are the same order of magnitude in a convecting outer core, then 8p/p

-- 12DoXV/g I -- 4x 10 -9. The density perturbation needed for detailed balance, being up to 200 times this value,

seems quite unstable. Perturbation angular momentum density shall thus be omitted compared with relative angular

momentum density (rxpv). The axial angular momentum anomaly (2c) for spherical vortex (3a) thus reduces to

2rc_ c

AL z = S S _ rsin0 [p(r)w(r)sin0] r2sin0 drd0d_ (5a)
0 00

C

= (8_/3) I p(r)co(r)r 4 dr . (5b)
0

Although p(r) has long been inferred seismologically with great confidence, c0(r) is needed to evaluate AL z.

From (3c), the key supposition AL z = 0, and several arbitrary differential rotation profiles and boundary conditions, I

calculated inner core drifts ranging from 0.2°/yr to 3°/yr. The agreement with the range of seismologic estimates

appears wholly fortuitous. The following sample reveals the ambiguities and shortcomings of such ad hoc

calculations, yet suggests a more satisfactory approach.

2.3 A Parabolic Shot at Inner Core Rotation

If AL z from (5b) were steady as well as small, then the hydrodynamic stress-free condition at the base of the

viscous sub-layer,

rOr(r'lv _) = rsin0co'(c-) = 0, (6a)
C"
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seems a fair substitute for (3d) because it filters out viscous exchange of angular momentum between the mantle and

the main-stream. Equations (6a) and (3c) together give a free-slip main.stream boundary condition.

Of the infinity of profiles that satisfy (6a), (3c) and (3e), consider the simple quadratic form

2
c°r

to(d < r < c') = m(c') - (-_--d_d) [to(c') - to(d)]. (6b)

Vastly more complicated forms for to(r) with much more shear and curvature tend to increase viscous dissipation

and diffuse away more rapidly. By the well-known omega-effect, they also induce magnetic fields with much more

shear and curvature which, in turn, tend to increase Ohmic dissipation and diffuse away more rapidly. Such

complicated, seemingly transient, forms for to(r) are not selected because the excess dissipation in the body of the

outer core interferes with the task at hand: cooling the core over geologic time by smaller scale thermo-

compositional convective motions. (This is formalized in section 3).

For uniform density throughout the core, substitution of (6b) into (5b) and setting the resulting integral for

ALz to zero yields, after some algebra,

to(d) -to(c)[ 1- e5 - Q*= ],

e5 + Q* (7a)

where e ---(d/c) = 0.3499 as before and

Q* - (1- e)2)[1/21 - e5 + 5e6/3 _ 5e7/7) = 0.1064

The eastward drift of the inner core from (7a, b) is

(7b)

to(r < d +) = -7.96 to(c') = 0.92 °/yr (7c)

where the last step sets to(c-) to toB(C') above. In this example, the solid inner core reduces the jump in to across the

outer core; indeed, if e were zero, then to(0) would be -20to(c').

When uniform core density is replaced with bilinear density variation across the outer core and across the

inner core, equation (6b) and the assumption of zero ALz yield a modified version of (7a-c) that reduces to

to(r < d+) = -7.383 to(c') = 0.85 °/yr (7d)

for the boundary densities of Kennet et al. (1995). Increased density at depth decreases the eastward flow required

to null the axial core angular momentum anomaly, by about 10% in this example.
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Differential rotation profile (6b) is not only arbitrary, it does not quite satisfy (3t). The shear at the inner

boundary proves quite small, but the accompanying dissipation would not seem to aid inner core solidification and

core cooling. In contrast, the concentration of shear induced dissipation into a thin upper boundary layer may aid

core cooling by steepening the temperature gradient across the core-mantle interface; this speeds conductive heat

transport into, and perhaps helps drive convective heat transport across, the deep mantle. Core motions that pump

magnetic energy into the field outside the core and drive Ohmic dissipation in the mantle also export energy from an

overheated core, presumably a core that cools, contracts and liberates gravitational energy in accord with

Hamilton's, if not Fermat's, principle.

3. Variational Method

If a particular core angular momentum anomaly is stationary against perturbations in its underlying differential

rotation, then the planet might settle into small oscillations about this state. Such a state could be energetically

accessible if it does not cause too much dissipation D of magnetic and kinetic energy. One might thus seek a state

wherein (i) AL is stationary against perturbations in co; (ii) there is no angular momentum exchange between the

outer core and its bounding solids; and (iii) the dissipation in the core is stationary and minimum. This non-

magnetic, uniformly rotating state has evidently not yet been attained, perhaps due to thermo-compositional

convective core cooling. A non-zero differential rotation excited and maintained by smaller scale convective

motions ought not interfere with such cooling by excesssive dissipation in the body of the core; however, a

concentration of dissipation by the differential rotation into a thin core-mantle boundary layer and in the overlying

mantle may aide core cooling.

The importance attached to conditions (i), (ii), and (iii) above is thus reversed. The desired differential

rotation profile has stationary dissipation, preferably concentrated near the outer boundary via conditions (3c, d).

Angular momentum exchange is discouraged via inner-outer core locking conditions (3e, f); the resistive mantle is

left unlocked, not only to increase dissipation near the core-mantle boundary, but because core viscous torque on the

mantle turns out to be feeble and can be compensated by magnetic or topographic, if not gravitational, torque (see,

e.g., Voorhies, 1991). With viscous boundary layers resolved, condition (6a) is not needed.

Stationarity of D(_) + _Lz(_0 ) is written

?

{D + JkALz} = 0, (8)



where_denotesperturbationsindifferentialrotationprofileand_,isaLagrangemultipler.Onlymagneticand

viscousdissipationdirectlyattributedtosphericalvortex(3a)alone are included here. The stationary dissipation

solution described below sets _, = 0; however, some interesting side cases use non-zero _,.

3.1 Magnetic and Viscous Dissipation

For a Newtonian fluid with rate of strain eij , molecular kinematic shear viscosity v, and viscous stress Pij

equal to 2pveij + 2PV_ijekk/3 , the viscous dissipation for solenoidal flow (3a) alone is

Dr(to) = Sf _ 2pV(er_2 + eq_r2) dV
CV

= I._ I pV(_rto)2r2sin20 dV
CV

c

= (8n/3) S pvr 4 (co')2 dr. (9a)
0

(see, e.g., Chandrasekahr, 1961). For a rigidly rotating inner core, the lower limit of integration in (9a) can be reset

to d. Viscous dissipation in a high viscosity inner core can remain much less than in the outer core, provided the

magnitude of viscous stress is similar in both regions.

Ohmic dissipation of Amperian current (density J) in the liquid metal core of electric conductivity

Dt_ = S t_'lj2 dV (9b)

is thought to dominate viscous dissipation. By Ohm's law for conductors moving in arbitrary magnetic field B,

J = t_(E + vx B), (10a)

an electromotive force vxB equal and opposite to electric field E causes no current and no Ohmic dissipation.

Motions inferred in the frozen-flux approximation, wherein E + vxB is set to zero to ensure finite J despite large o,

therefore cause no Ohmic dissipation.

We choose the solenoidal vector potential A appropriate to the Coulomb gauge (B = VxA, E = -V_ - 0tA ).

To isolate current due to spherical vortex (3a) alone, denoted J(to), the portion of V(to)xB equal to 0tA(to ) plus

electrostatic V_b(to) must be removed. Ohm's law for the spherical vortex is thus written

Jr(tO) = -o[tOrsin0B 0 + Or_(tO) + OtAr(tO)]

J0(tO) = _[tOrsin0Br " r-lO0_(tO) - btA0(tO)].

(10b)

(lOc)



II

Faraday induction (atB = Vxc_ tA) due to frozen-flux geomagnetic drift toB alone vanishes in a magnetic reference

frame rotating at sidereal angular velocity _o + toB" In such a frame, the relative angular velocity of the fluid is torl

by (3b); therefore, the atA(to ) term in (10b, c) is eliminated by replacing co with torl

Jr (m) = "°[tol]rsin0B0 + 0r_(to)] (10d)

J0 (to) = °[tz_qrsin0Br " r'la0_(to)]. (10e)

The electrostatic term in (10d, e) must also differentially rotate out, but with a conceivably different Ohmically

non-dissipative vortex denoted co (r). Clearly J(to*) must be zero, as must Or d0(to* ) - a0Jr(to* ). For uniform o,

the latter condition applied to (10d, e) gives

O[0r(to r2sin0B r) + 00(to*rsin0B0)] = 0,

or, for solenoidal B,

(1 la)

o[(to*)' r2sin0B r - to*r0¢B(_] = 0. (1 lb)

For to* to be non-zero, sheafing of the field must balance advection of the non-axisymetric field.

A magnetically dissipative vortex (°1] "to violates (11), generates non-zero meridional currents (10), and

thus induces azimuthal field from meridional field (the famous omega-effect). Substitution of (10d, e), after

• .

removing non-dissipative co , into (9b) yields

Do(to) = _ I I o(torl - to*)2r2sin20(Br 2 + B02) dV. (12a)
CV

The definition of weighted mean meridional magnetic pressure,

Pm(r) - (3/8_)_ _ (2_t)-l(Br2 + B02)sin30d0d¢, (12b)
0 0

and (3b) allow (12a) to be rewritten as

C

Do(to) = (8rc/3) S 2P m 1]-1((o . toB - to*)2 r4 dr, (12c)
0

where 1] is magnetic diffusivity (_to) "1. If to equals coB + to* in a magnetically locked inner core, the lower limit of

integration in (12c) can be reset to d. Elsewhere, such balance minimizes Ohmic dissipation due to the vortex alone.

Note (12c) excludes the inner product of other currents within the core, notably sources of Pm, with J(to).



Whenco onthe left of (1 lb) is replaced with magnetically dissipative corl "cO ' the resulting term is not

generally zero. A non-zero integral of the square of this term is thus a sure sign of, if not directly proportional to,

Ohmic dissipation. The imbalance between shear and advection of the magnetic field by a dissipative vortex

suggests a possible alternative expression for Ohmic dissipation

D_(o)) = III _[(coq - co*)' r2sin0B r - (corl - (0*)r_q_B¢]2dV. (13)
CV

If the advective term proportional to Oq_B¢ were omitted, then (13) would resemble (9a) with an 'effective viscosity

px' equal to ¢jr2Br2. With _ -- 3x105 S/m and Br2 -- (3.3 gauss) 2 averaged over [ r[ = c, pX is about 4x1011 Pa

s and % is about 4x 107 m2/s. The latter value is about 14 orders oi' magnitude larger than the molecular kinematic

shear viscosity of the liquid metal. This may help explain differences, highlighted by Lumb & Aldridge (1991),

between 'effective viscosities' obtained presuming a non-magnetic core and the viscosity of the liquid metal.

Appendix A shows how such oversimplification of D_j(CO) destroys boundary layer structure yet, with non-zero l,

leads to seemingly reasonable values for inner core eastward drift.

3.2 Variational Calculus and Illustrative Solution

With AL z from (5b) and D(CO, co') equal to the sum of magnetic dissipation (12c) and viscous dissipation (9a),

the stationarity condition (8) is written

C

_{(8_/3)S [2Pm_]'l(co-or B - m*) 2 + pv (co')2 + tpco]r4dr} = 0. (i4)
d

The lower limit of integration has been reset to d for a rigidly rotating, magnetically locked inner core. Stationarity

requires the integrand of (14), denoted f(co, co' ; r), to satisfy Euler's equation, which sets _f/Oco equal to (Bf/_co ')'

(see, e.g., Marion, 1970) and reduces to

co' ' + [ln(pvr4)]'co' " 2Pm (pvri)-l(co - COB- co*) = t/2v (15)

To simplify (15), omit variations in p, v, and _ with radius and set _, to zero. For such stationary dissipation,

co' ' + (4/r)co' - 2Pm(PVrl)'l(co - coB - co*) = 0. (16)

Equation (16) also describes a balance between azimuthal Lorentz and viscous forces (see Appendix B). The

general solution to (16) is the sum of particular solution cop and homogeneous solution _. Particular solution cop =

coB + cO satisfies

t t t

COp + (4k)cop = 0 (17a)

12.



and is

tOp(r) = tOo + B(c/r)3' (17b)

where tOo and B are integration constants. Primary spherical Couette flow (17b) also describes a non-magnetic case

(Cartwright et al,, 1996; B. Bills, 1998); non-zero _, adds a quadratic to tOp(r). Homogeneous solution _ satisfies

_'' + (4/r)_' - 2Pm(pWl)'l_ = 0. (18a)

The functional form of Pm(r) is needed to solve (18a). The detailed form does not matter much for the problem at

hand, provided Pm(r) does not vary by more than eight orders of magnitude across the outer core, because

2Pmr2(pxrq)'l is enormous and _ is therefore small except in thin boundary layers.

If the meridional magnetic field originates in the core, then positive Pm(r) should tend to increases with depth

below c, perhaps reaching a maximum and then falling to modest values. The illustrative case simply takes Pm(r) to

be Kc2/r 2, so solutions to (18a) are of power law form

= C(r/c)P + D(r/d)q, (18b)

where

p = (1/2){-3 + [9 + (8Kc2/pvrl)] 1/2}

-- (2Kc2/pwl) 1/2 -_ 2x 107. (18c)

q = (1/2){-3 - [9 - (8Kc2/pV_l)] 1/2} - -p

The value ofp in (18c) follows from: a 5 gauss meridional field at radius c = 3.48 Mm, hence K = 0.1 Pa; p -- 104

kg/m3; the molecular kinematic shear viscosity v of the molten metal, which is well-known to be about 3x 10-7 m2/s

(Poirier, 1988); and t_ -- 3x 105 S/m as above. Because p is so large, the first and second terms in (18b) respectively

dominate the core-mantle (outer) and inner-outer core (inner) boundary layers. The outer boundary layer scale

height l _/_' I is fi = c/p = 20 cm (about 2.5 times the Ekman depth). The inner boundary layer scale height is e_5.

If Pm(r)[pvrl] "1 were decreased by eight orders of magnitude, 6 would increase to 2 km, which remains thin

compared with 2.2 Mm of molten iron. The iUuslrative case is therefore robust.

The general solution of (16) is the sum of (17b) and (18b)

tO(r) = tOo + B(c/r)3 + C(r/c)P + D(r/d)q. (19)

Spherical vortex (19) exerts no net azimuthal force density in the outer core in so far as viscous diffusion of its

momentum balances Lorentz drag.

1,3
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3.3 Boundary Conditions for Magnetically Locked Inner Core

The four parameters (too' B, C, D) in (19) are precisely those needed to match bounday conditions (3c-f). The

contribution to to(c) from D(c/d)q = D(c/d)**q = De**(2x 107) proves negligibly small, so the no-slip core-mantle

interface condition (3d) on (19) implies

tOo = -B -C.

Westward drift condition (3c) is applied at c" - c - 10& To an accuracy of [(c - 108)/c]P = 10"5, this gives

(20a)

to(c') -- too + B = -C.

Similarly neglecting the small contribution from CeP to to(d),

(20b)

to(d) = B[(c/d) 3 - 1] - C + D.

The top of the inner boundary layer is taken to be d+ = d + 10eS, so

(20c)

to(d+) = B[(c/d) 3 - 1] , C. (20d)

By subtracting (20c) from (20d), we see that the jump in to across the inner boundary layer is -D. Thus [ D [ is small

when to' (d) is zero, as required by condition (3f). The latter is intended to reduce dissipation in the inner-outer core

transition region that does not immediately aid core cooling. Because CpeP << C, this condition gives

to' (d) = -(3B/c)(c/d) 4 + (Cp/c)(d/c) p-1 + (Dq/d)

= (Dq/d) - 3B(c/d) 4 = 0,

hence

D = 3q-lB(c/d) 3 .

Recalling q = -2x107, (200 confirms [DI << IB I. Substitution of (20a, b, f) into (19) gives

(20e)

(200

to(r) = to(c-)[1 - (r/c)P] + B[(c/r) 3 - 1 + (3/q-)(c/d)3(r/d)q] (21)

To relate B to to(c'), and thus assign a numerical value to to(d) via (3c) and (20d), it is assumed that AL z in

(5b) is zero. (Alternatively, AL z might be calculated from a value for to(d) or constrained via non-zero _.). With p

already treated as uniform and omitting the tiny contribution to AL z from the boundary layers, this requires

c"

0 = to(a)a5/5 ) + B[(c/r)3.1]}r4dr. (22a)



Theelementaryintegration,withto(d)beingto(c') + B[(c/d) 3 - 1) from (20b, d), gives

B = -2to(c')[3 - e 2]'1.

Substitution of (22b) into (21) yields the solution

(22b)

to(r) -- to(c'){ [1 - (r/c)P] + 2(3 - e2)'l[(c/r)3 - 1 + (3/q)(c/d)3(r/d)q] }. (22c)

Clearly (22c) depends wholly upon to(c'). If to(c') were presumed to be zero, then to(r) would vanish; if ] to(c') I

were presumed to vastly exceed ] toB(C-) I, then to(r) would be quite large. Geomagnetic inversions indicate an

intermediate case wherein to(c') is a large fraction of toB(C').

By (22c), or by combining (22b) with (20d) and (20b),

to(d) to(c') [I + 2(e3" 1)= ]
3e 3 _ e5 (23a)

= -to(c-)[13.31]. (23b)

In the diffusive extreme, to(c-) and to(d) would be zero. In the frozen-flux extreme, to(c-) would be coB and, using

coB from (3b),

to(d) = -toB(C-)[13.31] = 1.54O/yr.

Equation (23c) offers a soft upper bound on inner core eastward drift.

The shear across the core-mantle boundary layer in the illustrative example is

(23c)

to' (c) = q+C/c - 2B/c -- -to(c-)/_. (24)

The feeble viscous torque exerted by (24) on the mantle must be compensated by magnetic torques on the resistive

mantle or magnetically permeable crust; however, even with the frozen-flux value for to(c-), a very weak toroidal

magnetic field at the core-mantle interface, albeit of magnitude no less than 8 nT, could suffice (Voorhies, 1991). If

it were not compensated, the resulting secular increase in the length of the day of roughly 5.5 _ts/decade, or less than

one hour per 4.5 Gyr, would seem far smaller than other effects omitted above.

Both viscous and magnetic dissipation due soley to spherical vortex (22c) are concentrated in the core-mantle

boundary layer and sum to a tiny fraction of the geothermal flux. Viscous dissipation (9a) in the core-mantle

boundary layer due vortex (22c) alone would be about (4_c4pv/3_)[to(c-)] 2, or 40 kW. Magnetic dissipation (12c)

due to this vortex alone is due solely to the homogeneous solution (18b). For the form of Pm adopted above, the

/s -1



portion of this disspation occuring in the core-boundarly layer would be about (4nc4Ki.to/3_)[o_(c-)] 2, or about 0.5

MW. These values seem very small; however, if other motions of the outer core dissipated magnetic and kinetic

energy at the same rate per unit volume, then total disspation in the outer core would be about 3 TW. Dissipation of

this magnitude might arise if the other motions continually entrain and mix thin boundary layers into the body of the

outer core or, perhaps more simply, have a very small scale in one direction.

4. Summary

The idea that geomagnetic westward drift indicates a slight convective leveling of the momentum gradient

within Earth's core was pursued in search for a differentially rotating mean state, upon which various oscillations

and secular effects might be superimposed. The variational calculus of stationary dissipation applied to a spherical

vortex within Earth's core leads to an inhomogeneous second order differential equation for the differential rotation

profile to(r). For a magnetic, liquid metallic outer core (Pmr2/p,crl >> 1), the bulk of the vortex is separated from

the bounding solids by 20 cm thin magneto-viscous boundary layers.

Because part of the motion may induce no electric current, hence no Ohmic dissipation, four boundary

conditions are required instead of two. The four conditions imposed on this form are: (i) no-slip at the core-mantle

interface, (ii) geomagnetically estimated bulk westward flow of up to 0.12°/yr at the base of the thin core-mantle

sub-layer, (iii) no-slip at the inner-outer core interface, and (iv) the hydrodynamically stress-free inner core boundary

condition appropriate to a magnetically locked inner core. To compute the eastward drift of such an inner core from

geomagnetic westward drift, it is assumed that the axial core angular momentum anomaly is zero.

The eastward drift of the inner core resulting from this analytic exercise is at most 1.5°/yr. This value is

within the 0-3°/yr range predicted by some numerical simulations and inferred from seismological data. It is

remarkable that a simple, kinematic spherical vortex model featuring liquid metallic viscosity should show any

similarity to either. Values temporarily exceeding 1.5°/yr might be explicable in terms of decadal oscillations.

Provided the axial angular momentum anomaly of the core is not too large, there appears to be no serious conflict

between geomagnetically inferred westward drift at the top of the core, eastward drift at depth, and seismologically

inferred eastward drift of the inner core. The general agreement by no means reduces the importance of inner-outer

core-mantle oscillations, differential precession, differential tidal despin, or differential spin up due to inner core

solidification.
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APPENDIX A

If O_B_ were omitted and heterogeneous t_r2Br2 parameterized as a laterally homogeneous 'effective

viscosity' p(r)x(r), then (13) would reduce to

C

D o - (8n/3) I PZ r4 (o}')2 dr. (A1)
0

The similarity between (A1) and (9a) provokes comment on dynamic shear viscosity pv as a parameterization

of momentum transport by electromagnetic molecular interactions ("collisions"). Hydrodynamic stress (Pij = "Pgij +

Pij) may be viewed as a macroscopic average over intermolecular electromagnetic (Maxwell) stress <Tij>. The

reference stress T°ij is due to a tangle of fluctuating intermolecular fields (e, b) originating in the molecules. A

macroscopic average (e.g., over a cubic millimeter and a milli-second) amounts to an isotropic cohesive equilibrium

<Tij°> = -pgij. Applied macroscopic strain rate co' rsin0 shears the intermolecular field within a liquid, arguably

t .

inducing a contribution to b_ equal to co rsm0nbr, where _ depends upon details of the interactions. The

contribution to <Tr4_> is <brb_>/21.to, or (rsin0/2_to)<nbr2>Co '. In the absence of macroscopic fields, <b> remains

zero; moreover, terms analogous to those omitted in going from (13) to (A1), specifically <(Debris)2> and <b r _bd_> ,

would seem as negligible as <_d_b_> when the applied strain rate is uniform over the averaging 4-volume. If the

contribution to <Try> is identified with Pij' then pv might be identified with <_:br2>/4Po. The fact remains that

interactions establishing viscosity involve intermolecular collisions, while macroscopic B is due to Amperian

currents regulated by conduction electron collisions; therefore, n differs from _ and v differs from Z. Large values

, • . . ,

of core effective wscos_ty have little or nothing to do with viscosity, but may have much to do with Lorentz forces

and Ohmic dissipation.

If D(_o) were treated as the sum of (A1) and (9a), then (g) would amount to

C

0 -- 8 (8n/3) ] [pz(co')2 + 7_Oo(r)eo(r)]r4 dr (A2)
0

because v << Z- Stationarity would require the integrand of (A2) to satisfy Euler's equatmn,"



to'' + [ln(pzr4)]'to ' - M2 Z = 0. (A3)

The first and second integrals of (A3) are straightforward when p(r) and z(r) are, respectively, approximated by

uniform constants. The result is written

/8

to(r) = tol-(C1/3pg)r'3 + (L/20Z) r2 (A4)

where C 1 and tol are the two constants of the two integrations. In (A4), primary spherical Couette flow is the

homogeneous solution and the parabolic term on the far right is the particular solution for non-zero _,. The constrast

with (19) is remarkable; moreover, (A4) shows no sign of the boundary layers and, even with non-zero _,, can sate

but three of four boundary conditions.

Stress Free CMB vs. ICB: If to' (c') were zero, then (A4) would imply

(_/z) = -10(c1/0z)c5 •

When (A4, A5a) are used in (5b) and AL z is set to zero, again for uniform density, one obtains

(C1/PZ) = colC3/SQ,

where Q depends only on e and is about 0.2259. It has also been shown that

(A5a)

(A5b)

tol = co(c')6Q/(6Q- 1).

Subsitution of (A5a-c) into (A4) and evaluation of the result at inner radius d yields

(A5c)

to(d) = to(c-) [6Q/(6Q - 1)] {1- (5Q)-l[(3e3) -1 + e2/2]}

= - to(c') (22.68) = 2.62°/yr, (A5d)

where the last step uses the frozen-flux value for co(c') from (3c). One also obtains an tol of-2.44×10 "10 rad s -1

and C/pZ = -9.1x109 m3/s.

The foregoing oversimplification of D_(to) leaves some shear at the inner core boundary; indeed, from (A4 -

A5d) it follows that

to'(d) = co(c)c "1 (6/5)(6Q- 1) -1 [3e "4 -e]

= 224.2 c-1 co(c-) = -28.3 co(d)/d. (A6)

Such shear could curl field lines threading the inner core and generate non-irrotational currents, magnetic diffusion,

Ohmic dissipation that might inhibit inner core solidification, and restoring Lorentz torques. If it were not



compensatedbyothertorques,theviscousstresswouldtendtospindowntheinnercoreandspinuptheoutercore,

albeitextremelyslowly.

If thehydrodynamicstress-freeconditionwereinsteadappliedattheinnerboundary,thenaslowerinnercore

eastwarddrift of -1.847o_(c),orabout0.21°/yr,wouldresult.Thenon-zeroshearonthemain-streambelowthe

core-mantleboundary,o)'(c'),wouldbeaboutbeabout7.08o)(c')/c.If uncompensated,thiswouldtendtospinup

thecoreandspindownthemantle.

APPENDIXB:ForceBalances

* 2TheazimuthalLorentzforcedensityimpliedby(10a-e)isJr(C0)B0- J0(0_)Br,is -_(¢0- coB co)rsin0(Br +

B02),andisequivalenttomagneticfriction-Cf(V_- VB - V*)withdragcoefficientCf - O(Br2+ B02). The

azimuthalviscousforcedensityfromthedivergenceofPr_is,assuminguniformpv,pvsin0(ro)'' + 4_o'), or

pvr'3(r4o_ ' ) '. There is no azimuthal Coriolis force on motions v_; pressure forces are scaloidal; and buoyancy

forces are mainly radial. A balance between Lorentz drag and viscous diffusion would have

/?

9vsin0(ro)' ' + 4o)') - c(_o - o)B - o)*)rsin0<Br2 + B02> = 0. (B1)

Only the azimuthal mean value of (Br2 + B02), denoted by angle brackets, appears in (B 1) because other currents J -

J(¢o), and other motions v - V(_o), in the core are excluded from the analysis of the vortex alone. When (B1) is

multiplied by sin20d0d_ and integrated over a sphere, the result is identical to (16). Spherical vortex (19) is thus

'force-free' in the limited sense that the viscous diffusion of its momentum is balanced by the Lorentz force caused

by the current it generates from the ambient field.
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