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[571 ABSTRACT 

The present invention is embodied in a method of perform- 
ing object-oriented simulation and a system having inter- 
connected processor nodes operating in parallel to simulate 
mutual interactions of a set of discrete simulation objects 
distributed among the nodes as a sequence of discrete events 
changing state variables of respective simulation objects so 
as to generate new event-defining messages addressed to 
respective ones of the nodes. The object-oriented simulation 
is performed at each one of the nodes by assigning passive 
self-contained simulation objects to each one of the nodes. 
responding to messages received at one node by generating 
corresponding active event objects having user-defined 
inherent capabilities and individual time stamps and cone- 
sponding to respective events affecting one of the passive 
self-contained simulation objects of the one node. restricting 
the respective passive self-contained simulation objects to 
only providing and receiving information from the respec- 
tive active event objects. requesting information and chang- 
ing variables within a passive self-contained simulation 
object by the active event object. and producing correspond- 
ing messages specifying events resulting therefrom by the 
active event objects. 

5 Claims, 10 Drawing Sheets 
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SYNCHRONOUS PARALLEL EMULATION 
AND DECRETE EVENT SIMULATION 

SIMULATION OBJECTS AND ACTIVE 
EVENT OBJECTS 

SYSTEM WITH SELF-CONTAINED 

CROSS-REFERENCE TO RELAXED 
APPLCIATION 

This application is a continuation-in-part of application 
Ser. No. 08D46.372 filed by Steinman on May 13, 1994. 
abandoned. entitled “SYNCHRONOUS PARALLEL SYS- 
TEM FOR EMULATION AND DISCRETE EVENT 
SIMULATION” which is a continuation-in-part of applica- 
tion Ser. No. 07B80.221 filed by Steinman on Jan. 21,1992 
abandoned. entitled “SYNCHRONOUS PARALLEL SYS- 
TEM FOR EMULATION AND DISCRETE EVENT 
SIMULAITON.” 

ORIGIN OF INVENTION 

The invention described herein was made in the perfor- 
mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-5 17 (35 USC 202) in  which the 
contractor has elected not to retain title. 

TECHNICAL FIELD 

The invention relates to discrete event simulation of 
objects using a plurality of synchronous parallel computers 
in communication with each other so that the objects being 
simulated may interact. 

BACKGROUND AFtT 

Discrete event simulation of objects on a single digital 
processor is not very diflicult. In the standard approach, all 
events associated with a simulated object are tagged with a 
time index. inserted in an event queue, and maintained in 
increasing time order by the event queue as events in the 
simulation are scheduled at discrete points in time. Simula- 
tion proceeds in the computer by processing the event from 
the queue having the lowest time index. The resulting 
simulation of events in  sequence is thus defined by the time 
indices. 

Processing an event can affect the state variables of an 
object and can schedule new events to occur in the future for 
one or more simulated objects. This interaction of cause and 
effect requires Ulat new events generated be tagged with time 
indices greatex than or equal to the current simulation time 
index. The generated new events are simply inserted into the 
event queue in their proper time index sequence. 

Discrete event simulation on parallel processors is nec- 
essarily very different from the single processor approach 
described above. (See D. A. Reed. “Applications: Distrib- 
uted Simulation,” Multicomputer Networks: Message-Based 
Parallel Processing, The MlT Press, Cambridge, Mass.. pp. 
239-267. 1987.) While it is clear that real world objects may 
interact concurrently in time. it is not always obvious how 
to rigorously simulate them on parallel processors. The 
event queue approach presents the problem of having each 
processor of the parallel array continually determine 
whether it should process the next event in its queue, or wait 
because a new event with an earlier time index is arriving 
from another processor. Moreover. the simulation program 
would have to be optimistic that events tagged for simula- 
tion at a later time index would not be dependent upon the 
results of other events triggered by events simulated con- 
servatively up to the time of the next event in the queue. 

2 
Various techniques have been proposed to solve this 

problem. each with its respective strengths and weaknesses. 
This background discussion will cover only the parallel 
simulation techniques that are relevant to the understanding 

The simplest time driven approach to parallel simulation 
makes use of the causality principle as illustrated in J. S. 
Steinman. “Multi-Node Test Bed: A Distributed Emulation 
of Space Communications for the Strategic Defense 

10 System.” Proceedings of the Tbenty-First Annual Pittsburgh 
Conference on Modeling and Simulation. Pittsburgh. 1990. 
The causality principle allows for events scheduled between 
time 0 and time T to be processed conservatively in parallel 
up to the event horizon at time T. 

The event horizon for a cycle is defined to be the point in 
time where an event to be processed has a later time index 
than the earliest new event generated in the current cycle. 
Simulation errors can occur if events are processed optimis- 
tically beyond the event horizon. For this scheme. known as 

2o the time-bucket approach, the minimum time delay T 
between an event and any of its generated events must be 
known in order to predict the event horizon. Parallel pro- 
cessing can then take place in cycles of duration T. As long 
as the minimum time interval between events and the events 

25 that they generate is known. the simulation can proceed in 
time cycles of duration T. 

This time-bucket approach has the important property of 
requmng very little overhead for synchronization. For 
example. each processor in the Hypercube array of proces- 

30 sors need only synchronize with all of the other processors 
at the end of every cycle, after which all processors incre- 
ment their simulation time in unison by the amount T and 
proceed to simulate other scheduled events. 

Despite the low synchronization overhead of the time- 
bucket approach, there are some major drawbacks to that 
approach.The cycle durationT must be large enough so that 
each processor is able to process enough events to make 
parallel simulation e5cient. However, the cycle duration T 

4o must also be s m a l l  enough to support the required simulation 
fidelity. Another important problem is the balancing of the 
work load. Because of the synchronous nature of the time- 
bucket approach, when one processor has more work to do 
than other processors in a cycle. the simulation will be 

45 inefEicient. Because of these drawbacks. a more flexible 
approach is needed. 

Optimistic discrete event simulation approaches must 
allow for event simulation to occur in error. but when one 
does oaur. a roll-back algorithm is needed to undo the 

50 erroneously simulated event. Various optimistic approaches 
have been proposed (L. Sokol. D. Briscoe and A. Wieland. 
“MTW: A Strategy for Scheduling Discrete Simulation 
Events for Concurrent Execution.” Proceedings of the SCS 
Distributed Simulation Conference. Vol. 19. No. 3. pp. 

55 34-42,1988; K. Chandy and R. Sherman “Space Time and 
Simulation.” Proceedings of the SCS Distributed Simulation 
Conference. Vol. 21. No. 2, pp. 53-57, 1989.) By far the 
most popular optimistic approach is the time-warp operating 
system (D. Jefferson, ‘‘Virtual Time,” ACM Transactions on 

60 Programming Languages and Systems. Vol. 7. No. 3 ,  pp. 
4-25, 1985) in which simulation errors are handled by 
the generation of antimessages which cause the simulation 
to roll back to a time before the simulation error occurred. 

Because some events can generate future events. and they 
65 in turn can generate other future events. cascading of the 

error may occur which complicates the roll-back algorithm. 
Messages and state variables must be saved for each pro- 

5 of the present invention. 
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cessed event in order to be able to implement a rollback commands from the outside world (which schedules events 
algorithm if it becomes necessary. within the parallel simulation). and to synchronize external 

Traditional time-warp implementations have required a modules dynamically. 
large amount of memory overhead. That memory overhead Breathing Time Warp is a new process for parallel 
could be better used for the simulation data. As long as the 5 discrete-event simulation. It adaptively merges the best of 
roll-back overhead is small compared to the average amount Breathing Time Buckets and Time Warp to solve the poten- 
of time it takes to process an event. the time-warp approach tial shortcomings of each algorithm. Time Warp can be 
will have high performance. However, larger data process- unstable because of potential antimessage explosions while 
ing units typically execute programs faster. thereby increas- Breathing Time Buckets can be inefficient if the average 
ing the occurrences of time warp. In that case. the memory 10 number of events processedper cycle is low. Breathing Time 
overhead of time warp could reduce the overall simulation Warp has neither of these problems. 
performance to an unacceptable level. Development of the Breathing Time Warp algorithm was 

STAIXMENT OF THE INVENTION 
motivated by the general observation that events close to 
GVT (in terms of number of events. not time), tend to be 

A new method has been developed for synchronous l5 Processed correctly while events far from GVT have a 
parallel environment for emulation and discrete event simu- greater chance or being rolled back. Thus. it makes sense to 
lation. Cenwal to the new method is a technique c&d aggressively send the generated messages from events Close 
breathing time buckets (BTB) which uses some of the to GVT while not immediately releasing the messages 
conservative techniques found in the prior-art time-bucket generated from events far from GvT- This approach then 
synchronization. along with some of the o p ~ s t i c  tech- 2o provides a much more stable environment for optimistic 
niques of the prior-art time-warp approach. parallel discrete-event simulation. 

An event is created by an input message generated A new approach for determining GVT uses two values. 
internally by the same processor or externally by another NL and N2. to determine when to compute GVT. and how 
processor. A system for routing messages from each proces- much to limit the optimist Of the simulation. This approach 
sor to designated processors, including itself (hereinafta 25 (in conjunction with the incremental state-saving techniques 
referred to as a “multirww” directs h e  message to the used by SPEEDES) effectively eliminates the need for 
processor that is intended to process the event. The events memowprotection algorithms such as the cancel-back algo- 
are defined kough various virtual fundions by the rithms which are typically found in some advanced Time 
during initialization. It is through these virtual functions that 3o 
events are processed. Note that multiple messages for an The novel features that are considered characteristic of 
object with the same time index will generate multiple this invention are set forth with particularity in the appended 
events for that object, not a single event for multiple claims. The invention will best be understood from the 
messages. The events are thus initialized by data contained following description when read in connection with the 
within the messages. After initialization the messages are 35 accompanying drawings. 
discarded. and each event is attached to its own simulation In addition to the Delta Exchange mechanism, the present 
object. invention provides a Rollback Queue for incrementally 

A processor optixnistically performs its calculations for saving the state of the object as it is modified by event 
the event and generates messages to schedule future events processing. When an event changes the state of its simula- 
to be generatedin the same processor or any other processor. 40 tion object. a rollback item is pushed onto the top of the 
but the generated messages are not immediately released Rollback Queue and specific rollback items. which are C t t  
Changes required in the variables of the object affected by objects. inherit from a base-class rollback item object. Also. 
the event are calculated and stored. Immediately afterwards storing values. rolling back an event, or cleaning up the 
the changes calculated are exchanged for the values of the Rollback Queue is accomplished through store. rollback and 
affected variables of the object. If for any reason the 45 cleanup W u a l  functions which are defined by the base-class 
variables should not yet have been aected. such as because rollback item. Further. new types of rollback items can be 
an event processed by another object generates a message easily added into the SPEEDES environment. 
for the alTected object in its past. the event being generated The present invention also provides a new technique for 
must be rolled back That is accomplished in the BTB supporting lazy cancellation, which allows events, which are 
algorithm by exchanging back the computed changes for the 50 C t t  objects in SPEEDES. to be processed out of order when 
old values of the affected variables and canceling any each event does not effect another event. Lazy cancellation 
messages generated but not yet released. In that manner, the is supported by SPEEDES with an object oriented approach 
shortcomings of the prim-art time-bucket technique are because accidentally processed events for a simulation 
overcome in most situations by permitting events to be object in the work order might not matter. For example. in 
Optimistically processed, and if it results that a message 55 prior approaches. when a rolledback event is reprocessed. 
should not have been processed, the processed event is the same answer might be produced. In other words. the 
rolled back and any messages generated in the processing of event makes the same state changes to the simulation object 
the event are discarded. while also generating the same events. Sending antimes- 

External interactions are made possible by using a host sages (if Time Warp is used) only to later regenerate the 
program connected to the parallel computers that services 60 same messages again for events that are rolled back having 
communications between external user modules and the the same properties is wasteful. Also. reprocessing the event 
parallel computers. A useful interactive capability is the if it makes the same changes to the state of its simulation 
ability for a user to query or monitor the state of simulation object is wasteful and inefficient. 
objects while the simulation is in progress. For this purpose, Lazy cancellation avoids the inefficiencies of the prior 
the simulation system of parallel computers constitutes a 65 approaches because it is supported by SPEEDES as an 
large data base of objects that can be accessed from a user object-oriented approach. The state of the simulation object 
module. Further useful interactive capabilities are to issue is rolled forward using the state change made by the event 

Systems. 
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the first time it was processed without the need for memory 
overhead. Because events are objects in SPEEDES. the 
inputs from the simulation object that are required for 
processing an event are saved in the data structures of the 
event object. 

Lazy cancellation is performed so that the event- 
processing inputs are first saved from the simulation object 
in the event object. and then. before reprocessing the event. 
SPEEDES determines whether the input values of the simu- 
lation object changed or if the input values would produce 
a different result. If the input values are the same. the event 
is rolled forward. otherwise. an antimessage is sent. This 
approach is much more efficient than making byte-for-byte 
comparisons of the old state of the simulation object with its 
new states. which is done in the prior approaches. 

The lazy cancellation approach of the present invention is 
also more flexible. Events can store important input infor- 
mation in their internal data structures to support sophisti- 
cated optimization techniques as well. For example. the user 
may enable lazy cancellation only for specific events, while 
using aggressive or optimistic cancellation as the default for 
all other cases. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a block diagram illustrating the object-based 

architecuture at a single node of the invention. 
FIG. 2 is a timing diagram illustrating three successive 

cycles of operation of the invention and the event horizons 
thereof. 

FIG. 3 is a block diagram illustrating the architecture of 
the main program of the invention. 
FIG. 4 is a block diagram illustrating the operation of the 

invention using a time warp protocol. 
FIG. 5 is a block diagram illustrating the operation of the 

embodiment corresponding to FIG. 4 whenever an antimes- 
sage is transmitted. 

FIG. 6 is a timing diagram illustrating the operation of a 
preferred embodiment of the invention. 

FIG. 7 is a timing diagram illustrating one method of 
operating the embodiment corresponding to FIG. 6. 

FIG. 8 is a timing diagram illustrating the preferred 
method of operating the embodiment corresponding to FIG. 
6. 

FIG. 9 illustrates how processed events are globally 
sorted in accordance with the invention. 

FIG. 10 is a graph illustrating one aspect of the perfor- 
mance of the invention. 

FIG. 11 is a timing diagram illustrating two regimes for 
responding to an earlier viewed event of the simulation. 

FIG. 12 is a block diagram illustrating the host interactive 
architecture of the invention. 

FIG. 13 is a process flow diagram of the breathing time 
warp process of the invention. 

FIG. 14. is a block diagram illustrating an example of the 
structure of incremental state saving capabilities i n  
SPEEDES. 

FIG. 15. is a flow diagram illustrating the operation of the 
Rollback Queue. 

FIG. 16. is a flow diagram illustrating the operation of 
lazy cancellation. 

DETAILED DEScRlpTION OF THE 
INVENTION 

The object-based architecture of the simulation process of 
the invention carried out at each node is illustrated for a 
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6 
single simulation object in FIG. 1. Discrete event simulation 
of objects begins with some basic steps for a single 
processor. such as a processor at a node of a Hypercube. 
First an event object is initiated by an input message 10 for 
a simulation object received via a multirouter 11 from the 
same processor or another processor. Time tagged messages 
received are queued in an event library 12. Multiple mes- 
sages for a simulation object with the same time index will 
generate multiple event objects for the simulation object. 
All event objects are user-defined as to their inherent 

capabilities from a base-class of generic simulation objects, 
where the term “objects” refers to object oriented program- 
ming techniques used to simulate physical objects assigned 
to processors for simulation of events. such as missiles. 
airplanes, tanks. etc.. for simulation of war games. for 
example. 

Event objects 14 are initialized by data contained within 
the messages received. After an event object is initialized. 
the message for it is discarded. Each event object is then 
attached to its own simulation object by a pointer to the 
simulation object E. 

Processing an event object in a processor is done in 
multiple steps that are written by the user into the simulation 
program. In the first step, an event object optimistically 
perf- its calculations and generates messages 13 to 
schedule future events. However. the event object of the 
input message 10 is not immediately executed, Le.. the state 
of the simulation object. is not changed, and the messages 
for future event objects are not immediately released. 
Instead. the state changes and the generated messages are 
stored in the event object 14. Only the changes of the 
simulation object state variables are stored within the event 
object 14. 

In the second step. the state variable changes that were 
computed in the first step are exchanged with the simulation 
object 15 so that the event object then has the old state values 
and the simulation object has the new values. For example, 
the state variables may consist of 1000 bytes. If the event 
requires only four bytes to be changed. only those four bytes 
are saved and exchanged. If rollback is later required 
another exchange restores the previous state of the simula- 
tion object. 

This feature, referred to as “delta exchange.” reduces 
memoly used in optimistic simulations at the expense of 
having to supply the exchange code in the simulation. 
Performing a delta exchange involves negligible time. so 
that rollback is carried out efficiently when needed without 
the need of special-pqmse hardware. 

The simulation program may include as part of delta 
exchange. the step of each time writing out to files these 
deltas. The simulation may then be rewound if rollback is 
necessary through several pairs of steps resulting in a 
reverse delta exchange for several events in sequence 16. 
thus restoring the changes in reverse order from the files. 

A delta exchange completes the first phase of carrying out 
an event. but as just noted. although the state of the simu- 
lation object is changed in the first phase. it can be rolled 
back. In the second phase, fuaher processing is carried out. 
such as cleaning up memory, or sending messages 13 out to 
this andor other processors and to graphics for record or 
display. This phase is carried out only after the event object 
is known to be valid so that there is no possibilily of a 
rollback being required. Consequently, it is usually per- 
formed much later in time than the two steps in the first 
phase, but always without changing the state variables of the 
simulation object. 
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SPEEDES Internal Structure 

The invention is realized in a simulation system called 
Synchronous Parallel Environment for Emulation and Dis- 
crete Event Simulation (“SPEEDES”). 

While other multiple-synchronization systems (or test 
beds) have been developed. one reason for the success of 
SPEEDES is its unique object-oriented design. To begin this 
discussion. we first break event processing into some very 
basic steps (see FIG. 1). 
Creating an Event 

An event is created by a message. Note that multiple 
messages for an object with the same time stamp will 

simulations are still efficient even when this extra step is 
performed. Further. because the Delta Exchange mechanism 
normally has low overhead. special-purpose hardware to 
support rollback efficiently may not be necessary. 

The Delta Exchange mechanism has the added benefit of 
permitting fast rewind capabilities. Much like an efficient 
text editor that saves only the keystrokes (i.e.. changes to the 
text Ne). the Delta Exchange mechanism saves the changes 
to the simulation objects. These changes (stored in  events) 

io can be written out to files. The simulation can be rewound 
by restoring the changes in reverse order. This is like hitting 
the undo button in a text editor. The rewind capability can be 

5 

generate multiple events, not a single event with multiple 
messages. Events are separate objects in C-H and should not 
be confused with simulation objects. User-defined events 15 Processing an Event: Phase 2 
inherit capabilities from a base-class generic event object. In the third step, further processing is done for an event. 
which defines various virtual functions. It is through these This usually involves cleaning up memory or sending exter- 
virtual functions that events are processed. nal messages out to graphics. This step is performed only 

An important optimization is in  the use of free lists for after the event is known to be valid. in other words. when 
memory management. SPEEDES manages old messages 20 there is no possibility for the event to be rolled back. This 
and events in a free list and reuses them whenever possible. step is usually performed much later in  time than the 
This speeds up memory management and avoids the previous two steps. The simulation programmer should not 
memory fragmentation problem. assume that the simulation object contains valid state infor- 
Initializing an Event mation when processing in Phase 2. The processing done in 

Events are initialized by data contained within the mes- 25 this step must not change the state variables of its simulation 
sage through a user-supplied virtual initialization function. object. 
After the event is initialized. the message is discarded into Managing the Event List 
a free list. Each event is then attached to its own simulation One of the most time-consuming tasks in supporting 
object (i.e.. the event object receives a pointer back to the discrete event simulations can be managing the event list. 
simulation object). 30 Managing a sorted list of future events can cripple the 
Processing an Event: Phase 1 performance of low-granularity simulation. Io parallel dis- 

Processing an event is done in multiple steps that are all Crete event simulations. such management often leads to 
supported with Ci-t virtual functions written by the user. In superlinear speedup. SPEEDES makes use of a new tech- 
the first step. an event optimistically performs its calcula- nique for handling the event list. 
tions and generates messages to schedule future events. 35 The basic idea of this new technique is that two lists are 
However. the simulation object’s state must not change. In continually maintained. The primary list is sorted, while the 
addition, messages that would generate future events are not secondary list is unsorted. As new events are scheduled. they 
immediately released. are put into the secondary list. The earliest event scheduled 

The event object itself stores changes to the simulation to occur in the secondary list is preserved. When the time to 
object’s state and the generated messages. Only variables 40 process this event comes. the secondary list is sorted and 
affected by the event are stored within the event object. then merged into the primary list. The time stamp of this 
Thus. if a simulation object contains 50.000 bytes and an critical event is sometimes called the event horizon. How the 
event requires changing one of those bytes. only that one invention processes event objects in successive cycles 
byte is stored within the event. There is no need to save defined by an event horizon is illustrated in FIG. 2, which is 
copies of all 50.000 bytes of the object in case of rollback 45 discussed in detail below with reference to the description of 
Delta Exchange the Breathing Time Buckets simulation protocol. Basically, 

In the second step, the values computed in Phase 1 are in FIG. 2 events 20 generated during one cycle of the 
exchanged with the simulation object. This exchange is simulation become pending events 22 during the next cycle. 
performed immediately after the first step. After an Each cycle only processes those pending events 22a which 
exchange, the event has the old state values and the simu- XI do not occur beyond the event horizon 24 of that cycle. 
lation object has the new values. ’ b o  successive exchanges Those pending events 2% which occur beyond the event 
(in the case of rollback) then restore the simulation object’s horizon are not processed during the current cycle. 
state. This simple approach for managing the event list is faster 

When an event is rolled back there are two possibilities than single-event insertions into linked lists. It can also 
concerning messages that were generated by the Phase 1 55 outperform some of the more complicated data structures 
processing. One is that the messages have already been such as splay trees and priority heaps, if enough events are 
released. In this case. antimessages must be sent to cancel collected in the secondary queue on the average for each 
those erroneous messages. The other is that the messages cycle. 
have not been released yet. In this case, the messages are Event Queue Objects and Multiple Protocols 
simply discarded In a SPEEDES simulation. the user does not supply the 

The Delta Exchange mechanism greatly reduces memory main progrm The main program is provided by SPEEDES. 
consumption in optimistic simulations. However. it has the which. during initialization. reads in  a standard file to 
drawback of forcing the user to supply the exchange code. configure the simulation. The user can select the synchro- 
Errors could creep into the simulation if care is not taken in nization protocol by modifying this file. 
this step. 65 SPEEDES supports multiple-synchronization protocols 

Performing the Delta Exchange method normally by creating an appropriate event queue object. Each protocol 
involves a negligible amount of time. Thus. sequential has its own specific event queue C-H object. which is 

used for restarting the simulation after crashes. check-point 
restarting. what if analysis. or playback. 

60 
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created during initialization. Each event queue object is then 
responsible for performing its specific synchronization algo- 
rithm for the simulation. Event queue objects must follow 
the rules for event processing (Phase 1. Delta Exchange. 
Phase 2). 

In  the creation of C+t objects that make use of 
inheritance. the lower base-class objects are constructed 
before the higher ones. Thus. when the main program crates 
one of the event queues. the generic base-class event queue 
object is constructed first. The constructor of this base-class 
automatically calls the user code that creates all the simu- 
lation objects and initializes them with their starting events. 
This is how the user plugs his code into the SPEEDS 
environment. 

After initialization. the main program in SPEEDES loops 
until the simulation is done. During each loop. four virtual 
functions illustrated in FIG. 3 are called for the event queue 
object: 

1. PROCESS PHASE 1 
2. SIMULN'IONTIME 
3. PROCESS PHASE 2 
4. EXTERNAL BLOCKING 
Phase 1 and Delta Exchange event processing is per- 

formed for events during the event queue PROCESS 
PHASE 1 method. Many events are t y p i d y  processed in 
t h i s  step. When it is determined that enough events have 
been processed and that it is time to synchronize, the global 
simulation time (for example. Global Virtual Time [GVT] in 
Time Warp) is then determined in the SlhNJLAI'ION TIME 
method. Cleanup. synchronous message sending, and further 
event processing are done in the PROCESS PHASE 2 
method. If the simulation expects the outside world to send 
a message that must wive before the simulation can 
continue. blocking is done in the EXTERNAL BLOCKING 
method. 
Message Sending 

SPEEDES uses both synchronous and asynchronous mes- 
sage sending approaches. Time Warp uses the asynchronous 
style. while the other algorithms synchronously send their 
messages. 

There are two extremes for event processing and message 
sending. In one extreme. events take very little cpu time to 
be processed; message sending is the bottleneck Here. 
synchronous message sending wins because it is faster. In 
the other extreme, events take a very long time to be 
processed; event processing is the bottleneck In this case, 
message sending delays do not affect the simulation's per- 
formance and it does not matter whether synchronous or 
asynchronous approaches are used. However. somewhere 
between these two extremes is a boundary where one 
approach may be better than the other. 
SPEEDES SIMULATION PRCYI'OCOLS 

As illustrated in  FIG. 3. the SPEEDES main program 
interfaces through a generic event queue with any one of 
several different protocols, including the well-known prc- 
tocols of time warp event queue. time bucket event queue 
and sequential event queue. This section briefly discusses 
the well-known parallel simulation protocols supported by 
SPEEDES. while the next section explains the new parallel 
simulation approach. Breathing Time Buckets. in more 
detail. Following the discussion of Breathing Time Buckets, 
we describe some new protocols that look promising for 
efficient parallel simulation. 
Sequential Simulation 

10 
generates messages for his events. but they are not queued 
up for transmission. Instead, they are turned into events 
directly. The Delta Exchange mechanism is also used. The 
combined overhead for message generation and Delta 

5 Exchange has been observed to be less than 1% for low- 
granularity events (i.e.. events in which the system overhead 
dominates). 
Time Bucket Synchronization 

One of the simplest approaches to parallel simulation 
LO makes use of the causality principle. As long as a minimum 

time interval. T. between events and the events that they can 
generate is known. the simulation can proceed in time cycles 
of duration T. This approach is called Time Bucket Syn- 
chronization. It has the important property of requiring very 

15 little overhead for synchronization. Each node must syn- 
chronize with all the other nodes at the end of every cycle, 
after which all nodes increment their simulation time in 
unison by the amount T. 

Despite the low synchronization overhead. the Time 
20 Bucket approach has some drawbacks. The cycle duration T 

must be large enough for each node to process enough 
events to make parallel simulation fidelity. Load balancing 
over the small time interval T can also be a problem. 

In most discrete event simulations. the time step T is 
25 unknown or. even worse, has the value zero. Thus. simula- 

tions that can run under t h e  Bucket synchronization are a 
subset of all parallel discrete event simulations. 
Time Warp 

The Time Warp algorithm has been heavily discussed in 
30 the. literature. SPEEDES offers a unique set of data struc- 

tures for managing the event processing in its version of 
Time Warp. 

When an event is processed, it may generate messages. 
These messages are immediately handed to the TWOS- 

35 MESS server object supported by SPEEDES. This object 
assigns a unique ID to the outgoing messages and stores the 
corresponding antimessages back in the event. Note that 
antimessages are not complete copies of the original 
message, but are very short messages used for bookkeeping. 

Referring now to FIG. 4, when a message arrives at its 
destination. an antimessage is created and stored in the 
TWOSMESS hash table. The hash table uses the unique 
message ID generated by the sender. An event is automati- 

45 cally constructed from the message and is handed to the 
Time Warp event queue object. This event is put in the 
secondary queue if its time stamp is in the future of the 
current simulation. Otherwise. the simulation rolls back 

Rollback restores the state of the simulation object. which 
50 means calling the Delta Exchange method for all the events 

processed by that object in reverse order and generating 
antimessages. Aggressive cancellation is used. 

Referring now to FIG. 5. antimessages are stored in the 
events and are simply handed to the TWOSMESS object. 

55 When these antimessages arrive at their destinations. the 
hash table already contains pointers to the events that they 
created. Those events are then rolled back (if already 
processed) and marked as not valid. 

Periodically (typically every 3 seconds of wall-clock 
60 time). the Global Virtual Time (GVT) is updated. The GVT 

represents the time stamp of the earliest event unprocessed 
in the simulation. One problem in determining the GVT is in 
knowing whether messages are still floating about in the 
system. This problem is solved by having each node keep 

40 All of this is done transparently for the user. 

When SPEEDES runs on one node. the sequential event 65 track of how -many messages it has sent and received. Fait 
synchronous communications are used to determine when 
the total number of messages sent equals the total number of 

queue object is automatically created. AU the overhead for 
message sending and rollback is removed. The user still 
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messages received. When this condition is true. no more hardware communication channels to the appropriate node 
messages are in the system and the GVT can be determined. containing the destination object. When messages arrive at 

After the GVT is known. cleanup is performed. The their destination nodes. they are fed into the event library. 
memory for all processed events with time stamps less than which converts messages into events. 
or equal to the GVT is handed back to the SPEEDES 5 These new events are not immediately inserted into the 
memory management system (free lists). The hash tables are event queue. Rather. they are collected in a temporary queue 
also cleaned up. as their antimessages are no longer needed. as described previously. When all the new events are finally 
BREATHING TIME BUCKEI'S created. the temporary queue is sorted. using a merge sort 

The original SPEEDES algorithm (Breathing Time algorithm that has mlog(m) as a worst-case sort time (for m 
Buckets) is a new protocol or windowing parallel simulation io events). After the temporary queue of new events is sorted. 
strategy with some unique properties. Instead of exploiting it is merged back into the local event queue. 
lookahead on the message receiver's end or using preknown There is an obvious problem with what has been 
or calculable delays. it uses optimistic processing with local described so far. Some of the nodes may have processed 
rollback. However. unlike other optimistic windowing events that went beyond the GST (Le.. the true event 
approaches. it never requires antimessages. Local rollback is 15 horizon). An event. which is attached to a locally simulated 
not a unique concept either. However, the Breathing Time object. must be rolled back if any of the newly generated 
Buckets algorithm allows full connectivity between the events affect the same object in  its past. Rollback involves 
simulation objects (often called logical processes). discarding the messages generated by the event (which have 
Fundamental Concepts not yet been released because the time stamp of the event is 

The essential synchronization concept for Breathing Time 20 greater than the GST) and exchanging state variables back 
Buckets is the causality principle. Like the Time Bucket with the stimulated object. Thus. rollback overhead should 
approach. the Breathing Time buckets approach processes remain s m a l l .  Antimessages are never needed because bad 
events in time cycles. However. these time cycles do not use messages (which would turn into bad events) are never 
a constant time interval T. They adapt to the optimal width. released. 
which is determined by the event horizon. Thus. in each 25 Asynchronous Broadcasts 
cycle. the maximum number of causally independent events If the Breathing Time Buckets algorithm ended here. it 
(ignoring locality) is processed. This means that no limiting would have a limited number of applications. Pathological 
assumptions are made that restrict the simulation as there are situations could arise if the algorithm was not modified. For 
in the Time Bucket approach. Deadlock can never occur. example. FIG. 7 shows how an unbalanced work load could 
since at least one event is always processed in a cycle. 30 affect performance. The problem with Breathing Time Buck- 

Refemng now to FIG. 6, the event horizon is defined as ets as presented so far is that all nodes wait for the slowest 
the time stamp of the earliest new event generated in the node to finish. A modification to the basic algorithm is 
current cycle (much like the event list management previ- needed to circumvent this problem. 
ously described). Processing events beyond this boundary A simple mechanism to solve this problem incorporates 
may cause time accidents. Thus. events processed beyond 35 an asynchronous broadcast mechanism that tells all the 
the event horizon may have to be rolled back. The local nodes when a local event horizon is crossed and is illus- 
event horizon for a node is defined as the time stamp of the trated in FIG. 8. When one node crosses its local boundary. 
earliest new event generated by an event on that node. The it broadcasts this simulation time to all the other nodes. 
global (or true) event horizon is the minimum of all local When a node receives one of theses broadcast messages, it 
event horizons. as illustrated in FIG. 6. The event horizon 40 may determine that it has gone beyond the point of the other 
then defines the next time step T. node's boundary; thus, it should stop processing. on the 

To determine the global event horizon, optimistic event other hand. the node may not have reached that time yet, so 
processing is used. However. messages are released only processing should continue. It is very likely that the first 
after the true event horizon is determined, so antimessages node to cross its local event horizon (in wall-clock time) has 
are never required. Rollback simply involves restoring the 45 a greater value for this boundary than another node. If this 
object's state and discarding messages enonmusly gener- happens. a second node will broadcast its time as well. 
ated. Thus, the Breathing Time Buckets algorithm eliminates Multiple broadcasts may occur within each cycle. 
all the potential instabilities due to excessive rollback that It is important to get a proper view of the broadcast 
are sometimes observed in Time Warp. This will be dem- mechanism. Runaway nodes that process beyond the Que 
onstrated later in this specification. 50 event horizon while the rest of the nodes are waiting can ruin 
Determining the Event Horizon the performance of the Breathing Time Buckets algorithm 

Determining the event horizon on a single processor is not unless something is done. The proper view of the broadcast 
very difficult. It is much more challenging to fmd in parallel. mechanism is that it aids in speeding up the processing by 
For now. assume that each no& is allowed to process its stopping runaway nodes. The asynchronous broadcasts are 
events until its local event horizon is crossed. At this point, 55 in no way required by Breathing Time Buckets to rigorously 
all nodes have processed events up to their local event synchronize event processing. The broadcasts function in 
horizon and have stopped at a synchronization point. the background and only aid in enhancing performance. 

The next step is for the node to synchronously commu- Non-Blocking Sync 
nicate its value for the local event horizon. The minimum of With the asynchronous broadcast mechanism designed to 
all these is defined to be the global event horizon. In other 60 stop runaway nodes. the Breathing Time Buckets algorithm 
words. the earliest time stamp of a message waiting to be becomes a viable solution to support general-purpose dis- 
released is identified. The global event horizon is then used crete event simulations. However. there still is room for 
to define the global simulation time (GST) of the system. improvement. It is wasteful for nodes that have crossed their 

After the GST is defined. all events with time stamps less I d  event horizon to sit idle waiting for other nodes to 
than or equal to this time are made permanent. This means 65 complete their processing. Note that this problem always 
that messages which were generated by events that had time arises in  the world of synchronous parallel computing. It is 
stamps less than or equal to the GST are routed through the important to evenly balance the work load on each node so 
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the time spent waiting for the slowest node to finish its job 
is minimized. The Breathing Time Buckets algorithm. as 
described so 

far. suffers from this same “waiting” problem. An obser- 
vant simulation expert might ask “Why do you insist on 
stopping just because the event horizon has been crossed?” 
In fact. there really is no reason to stop processing events 
until all the nodes have crossed the horizon! Erroneously 
processed events can always be rolled back without much 
overhead (because no communications are involved). 
Therefore. it does not hurt to continue processing events 
beyond the horizon. It might pay to be optimistic and hope 
that the processed events with time stamps greater than the 
event horizon do not have to be rolled back. The trick then 
is to efficiently find out when all the nodes have finished. 

One way to support this needed mechanism would be 
force each node to send a special message to a central 
manager when it thinks that it has crossed the event horizon. 
When the central manager receives this message from all 
nodes. it broadcasts a message back to the nodes saying that 
it is time to stop processing events for th is  cycle. This 
approach is used when running Breathing Time Buckets on 
a network for Sun workstations over Ethernet. This mecha- 
nism has the good characteristic of being portable. However. 
it is not scalable to large machines. 

Other ways to solve this problem exist. using scalable 
asynchronous control messages. shared memory, or reduc- 
tion networks, but a better solution would be to use a global 
hardware line. The idea here is that when each node crosses 
the event horizon. it sends a signal on a hardware global line. 
When all the nodes have done this. an interrupt is simulta- 
neously fired on each node and a dag is set telling us that all 
nodes have crossed the event horizon. 

While the Breathing Time Buckets algorithm does not 
require global hardware lines for synchronization, making 
use of the global line has been observed to enhance the 
performance by as much as 15% over the asynchronous 
control message approach. 
Local Rollback 

One further improvement can be made to the Breathing 
Time Buckets algorithm. Events that are generated locally 
@e.. messages that do not leave the node) do not have to 
participate in the event horizon calculation. Rather. they can 
be inserted into the event list and possibly be processed 
within the same cycle. This capability is very important for 
simulations in which events schedule future events for the 
same object. A good example of this would be a preemptive 
priority queueing network. Supporting this capability 
involves more overhead, but it may be essential for a large 
class of simulation applications. 
INTERACTIVE3 SPEEDES 

This section will discuss the dBculties of supporting 
interactive simulations. We will then describe how 
SPEEDES solves these problems. 
Simulation Output 

In an interactive parallel simulation involving humans, 
information pertaining to events that have been processed is 
released to the outside world. Humans can view these data 
in various forms (graphics, printouts, etc.). Humans are then 
allowed to interact with the simulation based on information 
that was previously released. 

When a simulation runs on a single computer, using a 
sorted event queue, events are processed in their correct time 
order. If the results of processed events were released to the 
outside world. then they would naturally be viewed in their 
correct time order. This is not true for parallel simulations. 

In parallel simulations that operate in cycles, each node 
has its own local event queue. Assume that m events are 

14 
processed globally for a particular cycle and that there are N 
nodes. Then each node has m/N locally processed events 
(assuming perfect balance). While these processed events 
are maintained in their proper time order locally. further 

5 steps are required to merge them into a single globally sorted 
list. The steps to do this on a parallel computer are illustrated 
in RG. 9 and are as follows: 

The time cycle boundaries t, and t,,, are known. Assume 
a flat distribution for the time stamps of the processed 

10 events. Each node breaks up its processed event queue into 
N sublists. each of length mlN2. Every sublist passes to a 
different node k. where k4.1.2. . . . N-1. The lower time 
boundary of each sublist residing on node k is t,+k 
(t,+l-t,)/N. All events in each of the sublists on node 0 have 

15 time stamps less than those on node 1. etc. At this point. each 
node performs a local merge sort of its N sorted sublists 
using a binary search tree. Merging the N sublists on each 
node takes (m/N) log,N steps. Thus. the time for merging 
these lists can written as: 

20 
T mer&&) log,N 

It would appear that parallel simulations require an addi- 
tional amount of work to send globally sorted event infor- 
mation out to the external world. However. there is more to 

imagine a simulation in which each event generates a 
single new event. If m events are globally processed in 
particular cycle. then each node will receive. on the average 
(assuming perfect balance.). m/N new events. Thus. m/N 
new events must be inserted back into each local event 
queue. This can be accomplished by first soaing the m/N 
events and them merging them back into the local event 
queue. 

Sorting m events for a simulation running on one node 
35 takes m log,(m) steps. ~f perfect speedup is attained one 

might naively expect it to take [m log2(m)]/N steps for N 
nodes. However, each node’s performing the task of sorting 

events only takes (m/N) log,(dN) steps. There is an 
apparent superlinear speedup in maintaining the event 
queue. The amount of time it takes to sort m events on N 
nodes is better than a factor of N compared with the time on 
one node. The time for maintaining the event queue can also 
be written as: 

25 consider. 

30 

40 

7’ -fd‘O[%(m)-hN 45 

When combining Tmerge and Tsort, the superlinear speedup 
is exactly cancelled. There is no contradiction to the thm- 
retical upper bound for parallel speedup. The best way to 

50 understand the apparent superlinear speedup (which is 
always present in parallel simulations that use local event 
queues) is to realize that information is lost if the processed 
events are not regathered into a single globally sccted list for 
the purpose of output. 

55 Simulation Tie Advancement Rate (STAR) Control 
If humans are allowed to interact with a simulation while 

it is in progress. then it is important for the simulation to 
advance smoothly in time. In other words. the Simulation 
Time Advancement Rate (STAR) should be as close to a 

60 constant as possible, and equal to one if real-time interaction 
is desired Interactive parallel simulations must be able to 
control the advancement of simulation time with respect to 
the wall clock. 

One important principle in controlling the STAR is that it 
65 can always be slowed down; it is always tougher to speed it 

up. For example. if a simulation can run two times faster 
than real time (from start to finish). then pauses can always 
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be added to the simulation to slow it down to real time if 
desired. as illustrated in the graph of FIG. 10. While the 
average STAR may run two times faster than real time. the 
instantaneous STAR at any given time can vary. At times. 
the instantaneous STAR may be slower than real time. Three 
important points must be made: 

First. the parallel simulation algorithm should run as fast 
as possible. For example. if the same simulation could run 
with a STAR equal to ten. using a different approach. then 
slowing it down to real time would be easier than when 
using algorithm with a STAR equal to two. The first and 
most important goal for any interactive parallel simulation 
approach should be to run as fast as possible. 

Second. a mechanism to smooth the STAR is needed. If 
the simulation is allowed to progress significantly into the 
future. the results of the simulation can be buffered. The 
results can then be released to the external world smoothly 
in time (i.e.. throttled by the wall clock). However. when the 
outside world interacts with the simulation operating in this 
manner. rollback may be required to bring the simulation 
back to the time that was perceived by the user. Rollback due 
to external interactions requires saving the state of all 
simulated objects at least as far back in time as when the 
interaction occurred If the simulation is allowed to progress 
too far into the future, an enormous amount of memory will 
be required for rollback state saving. 

Another option for smoothing the STAR is to process 
event sin large cycles and then. as a rule. not allow external 
interactions to occur until the next cycle. If the cycles are 
large enough. then the STAR will be smoothed. The cycles 
must be throttled by the wall clock to maintain the desired 
STAR. However. large cycles may force an undesirable time 
granularity into the interactive simulation, and the user may 
not be able to interact as tightly with the simulation as 
desired. Furthermore. the information for each processed 
event coming from the simulation should also be throttled by 
the wall clock to avoid a choppy-looking simulation. 
Third. regardless of whether or not the simulation keeps 

up with the desired STAR, rigor should always be main- 
tained. Simulation mors (or time accidents) resulting from 
an attempt to control the =AR should never be allowed to 
happen. Setting the desired STAR to infmity should have the 
same meaning as letting the simulation run as fast as 
possible. 

If the simulation cannot keep pace with the desired STAR. 
then there should be no pauses to throttle the simulation. If 
the simulation operates in cycles. then it could possibly 
catch up in the next cycle (and should be allowed to). A 
resolution for the desired STAR should be specified to 
determine acceptable performance (in other words. how far 
the simulation can lag behind the desired STAR and st i l l  be 
within specs). 
Human Interactions 

In the past. it has been very dif€icult to support interactive 
parallel discrete event simulations. Consider. as an example. 
the Time Warp algorithm as implemented in SPEEDES. In 
Time Warp. each node keeps track of its own simulation 
time. Because of the optimistic event processing. there is no 
certainty of correctness beyond the GVT. Therefore. Time 
Warp can release to the outside world only those message 
that have time stamps less than or equal to the GW. Note 
that we assume that the outside world (e.g., graphics. 
humans, and external programs) cannot be rolled back. 

If only viewing the results of a simulation were desired. 
there would be no problem. Output from the simulation 
could be buffered and released only at GVT update bound- 
aries. However, when the outside world tries to interact with 
the simulation. the situation becomes more difficult. 

16 
Humans like to interact (see the COMMAND section) 

with the parallel simulation based on the output that has been 
received (see the QUERY and MONlTOR sections). The 
earliest time the user can interact with the simulation is at the 

5 GVT. Otherwise. the law governing external rollbacks 
would be violated. The goal for interactive parallel simula- 
tions is to allow the human to interact as tightly with the 
simulation as possible. 

In the SPEEDES implementation of Time Warp. an unex- 
10 pected external message received from the outside world can 

cause an object to roll back to the GVT. This allows the 
tightest interactions. Because conservative algorithms (such 
as Time Bucket synchronization) do not support rollback. 
they do not permit the same tight interactive capabilities, as 

15 illustrated in FIG. 11. This is one of the major drawbacks of 
conservative algorithms. 
EXTERNAL MODULES 

Referring now to FIG. 12. interactive SPEEDES accom- 
modates external interactions by using a host program 30 to 

20 service communications between the central parallel simu- 
lation 32 and the outside world. The host program allows 
external modules 34 to establish connections to the central 
parallel simulation using. for example. UNIX Berkeley 
sockets. 

One important characteristic of the SPEEDES approach is 
that external modules (i.e.. external computer programs that 
would like to be part of the simulation) are not required to 
participate in any of the high-speed synchronization proto- 
cols. Instead, a hybrid approach is used. This is extremely 

30 important for interactive simulations over networks that 
have high latencies. The high-speed cenlral simulation runs 
on the parallel computer and provides control mechanisms 
to the outside world. 

External modules view the parallel simulation much as a 
35 central controller views it. The external modules are still 

event-driven. but they must not communicate too often with 
the central simulation. Otherwise. the simulation will be 
bogged down by the large comunication latencies. 

Interactive SPEEDES does not make any assumptions 
concerning the numbex of external modules or human users 
participating in the simulation. In fact. the number can 
change during the course of simulation. The connection 
procedure simply involves establishing a communication 
socket to the host. 

25 

QUERY 
45 

A very useful capability interactive SPEEDES supports is 
the ability to QUERY the stat of simulation object while the 
simulation is in progress. The simulation can be viewed as 

5o a large database of object that change in time. The QUERY 
function allows an external user to probe into the objects of 
the simulation to detennine how they are performing. 
MONlTOR 

The MONITOR capability allows the state of a particular 
55 simulated object to be monitored as its events occur. The 

effect of every event for that object can be sent back to the 
external monitoring module. This can be extremely useful as 
an analysis tool for studying the behavior of various com- 
ponents within the parallel simulation. 

60 COMMAND 
The COMMAND function supported by interactive 

SPEEDES allows a user to send a command (or generate an 
event) to a simulation object. This permits users to change 
the simulation while it is in progress. Commands should 

65 work in conjunction with the QUERY and MONlTOR 
functions so the user can change the simulation based on 
what is perceived. 
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EXTERNAL MODCiLE 
The last interactive function SPEEDES supports is the 

control of an  EXTERNAL MODlrLE from within the 
parallel simulation. It is assumed that external modules are 
remote objects that tend to have long opaque periods 
between communications. The are controlled by an object 
simulated on the parallel computer. The external module 
attaches itself to a simulation object and then is controlled by 
that oqject. 

External modules do not participate in the high-speed 

18 
efficient. Time Warp, on the other hand. sometimes exhibits 
instabilities that can unleash an avalanche of antimessages. 

Breathing Time Buckets has one drawback: it requires 
cycles to process enough events to remain efficient. 

5 However. an analytic model or analysis that predicts the 
number of events processed on the average for each cycle 
has been developed. This analysis shows that large simula- 
tions with many objects and events perform more efficiently 
with Breathing Time Buckets than small simulations. It also 

io confirms the fact that lookahead. even in optimistic 
synchronization algorithms supported internally within simulations. improves performance. 
SPEEDES. Rather. they are given input messages with a The Time Warp algorithm has been heavily discussed in 
start time. an end time. and their data to process. When the the literature. The main distinction between Time Warp and 
external module has completed processing its data. a done Breathing Time Buckets i s  that messages in Time Warp are 
message is sent back to the controlling simulation object. 15 sent optimistically (i.e.. aggressively. or with risk). When an 
This causes another message to be sent back to the external event is rolled back. all of the messages that it generated 
module. and processing continues. must be canceled by sending antimessages. It is possible for 

If the done message has not arrived before the appropriate simulations with excessive numbers of rollbacks to produce 
simulation time. the parallel simulation (which is running an explosion of cascading antimessages. This "thrashing" 
faster than the external module) waits. If the done message 20 phenomenon can result in unstable performance of Time 
arrives early. the external module (which is running faster Warp. 
than the parallel simulation) will have to wait for the One other distinction between Time Warp and Breathing 
simulation to catch up before it receives its next message. Time Buckets is the way garbage collection is handled. I n  
When an external module disconnects from the simulation Breathing Time Buckets, garbage collection is performed at 
(whether on purpose or accidentally). this blocking mecha- 25 the end of each cycle while in Time Warp, there are no 
nism is automatically removed natural cycle boundaries. Instead, a concept called Global 

Time Warp and Breathing Time Buckets are two general- Virtual Time (GVT) is defined as the time tag of the 
purpose optimistic synchronization strategies for supporting minimum unprocessed event (or message) in the system. 
parallel discrete-event simulations. However. each one of Traditional approaches periodically (typically every three 
these approaches has potential fatal shortcomings. Time XI seconds of wall-clock time) pause the simulation for the 
Warp may exhibit rollback explosions that can cause an puIpose of globally determining GVT on all of the proces- 
avalanche of antimessages. Breathing Time Buckets. on the sors. Garbage collection is then performed for all processed 
other hand. may not be able to process enough events per events with time tags less than or equal to GVT. 
synchronization cycle to remain efficient. NEW GVT PROCESS EMPLOYED IN BREAMDIG 

developed in the Synchronous Parallel Environment for The present invention. Breathing Time Warp. overcomes 
Emulation and Discrete-Event Simulation (SPEEDES) oper- the foregoing limitations. Breathing Time Warp in 
ating system. This new strategy solves both of these prob- SPEEDES uses a unique GVT algorithm. which. in  con- 
lems by mixing the two algorithms together, resulting in the junction with incremental state-saving techniques that 
best of both methods. 40 reduce memory consumption rates. effectively eliminates 

This specification describes the implementation of the (for most cases) the possibility of memory consumption 
Breathing Time Warp algorithm in SPEEDES, and then problems that can be caused by processing events too 
shows how this new approach sometimes improves the optimistically. Complicated and expensive cancel-back 
performance of parallel discrete-event simulations. algorithms. therefore, are not required. nor are they sup- 
HISTORY OF TIME WARP AND BREATHING TIME 45 ported in SPEEDES. 
BUCKEWS Breathing Time Warp in SPEEDES accepts two run-time 

Synchronous Parallel Environment for Emulation and input parameters, N1 and N2. As nodes locally process their 
Discrete-Event Simulation (SPEEDES) began as a simula- events. SPEEDES (on each node) keeps track of how many 
tion environment that featured a new algorithm (Breathing events have been processed locally beyond GVT. When this 
Time Buckets) for synchronizing parallel discrete-event 50 number exceeds N1 on a node (or there are no more local 
simulations. As the environment matured. directly compar- events to process), the node calls its nonblocking sync 
ing this algorithm with other synchronization strategies such function. and without blocking. continues to process events. 
as Time Bucket Synchronization and Time Warp became When the last node makes its call to the nonblocking sync 
desirable. The most straightfmard way to make those function, all of the nodes simultaneously stop their event 
comparisons was to support the other algorithms within the 55 processing and GVT is globally determined. 
SPEEDES environment. This provided a much more accu- In addition to this. another boundary. N2. is defined to be 
rate capability for measuring different synchronization an upper limit for the number of events that are allowed to 
approaches because when making comparisons, the same be processed beyond GVT. This effectually stops mnaway 
simulation code is executed. Also. supporting multiple syn- nodes from consuming all of their available memory while 
chronization strategies in a single environment such as 60 still remaining optimistic. Typical values for N1 and N2 
SPEEDES results in  a more powerful and flexible simulation used by SPEEDES are 500 and 2.500. respectively. These 
system. numbers are tunable, user-defined parameters. Optimal val- 

Some of the early benchmarks developed under ues for N1 and N2 are a function of the hardware and the 
SPEEDES showed the potential problems of Breathing Time event granularity of the application. but they are not a 
Buckets and Time Warp. However. these two algorithms 65 function of simulation time. 
break down in different ways. Breathing Time Buckets is not Choosing N1 and N2 is typically not very difficult. N1 is 
always able to process enough events per cycle to remain normally chosen to be large enough so that enough work is 

A new invention, called Breathing Time Warp, has been 3s TIME WARP 
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done by the processors during each GVT cycle (a function 
of the hardware and the average event processing work 
load). N2 should be much larger than N1 so that optimistic 
event processing is not inhibited. but N2 should not be so 
large that all of the available memory on a processor can be 5 The Time Warp Phase 
depleted. The Breathing Time Warp algorithm starts every cycle 

One might observe the similarities of this approach with with the Time Warp algorithm. The first N1 events processed 
the Moving Time Window strategy for limiting the amount beyond GVT have their messages sent out immediately. This 
of optimism in Time Warp. However. unlike Moving Time means that the messages that are transmitted in this phase 
Windows. the SPEEDES approach is independent of simu- IO might have to be canceled by antimessages. although. as it 
lation time. It does not require knowledge of the intricate has already been mentioned. these messages most likely will 
timing strategies in the event scheduling that is performed not require antimessages because the events that generated 
within the simulation. It does. however. effectively solve (or them are probably valid since they are close to GVT. In a 
at least reduce) the problem that overly optimistic simula- sense, this is the opposite of other risk-free approaches that 
tions may encounter. namely. overconsumption of the avail- 15 hold onto messages until it is known that it is safe to process 
able memory on a processor. The Moving Time Windows them. 
approach. while successful in some applications, does not At the start of a processing cycle. each node will possibly 
have these characteristics in the most general sense. have a number of events already processed beyond GVT. 
MOTIVATION FOR BREATHING TIME WAFS’ The Breathing Time Warp algorithm goes through these 

Time Warp. the conventional version. has the problem of 20 events and releases their messages if they have not yet been 
sometimes being overly optimistic. For example. in simu- sent. Note that at most. N1 events will have their messages 
lations where the event granularity is very low (Le.. com- released. If there are more than N1 optimistically processed 
munications overhead is significant), eveq message that is events beyond GVT. the Breathing Time Buckets algorithm 
sent or received wastes time in the simulation. For these switches on starting with the N1+1 event. 
cases. it may be extremely important to only send the 25 Event processing is continued with the Time Warp strat- 
messages that have a good chance of being valid. Another egy until N1 events have been processed beyond GVT. 
way of saying this is. “We want to reduce the risk so that During this phase. there may be rollbacks and antimessages. 
antimessage explosions never happen.” but when N1 events have been processed beyond GVT. the 

Breathing Time Buckets. at the other extreme. only sends Breathing Time Buckets algorithm automatically switches 
messages that are known to be valid It. therefore. can be 30 on. 
viewed as an approach for providing risk-free Time Warp. The Breathing Time Buckets Phase 
Nevertheless. Breathing Time Buckets may be too conser- In the Breathing Time Buckets phase. events are 
vative in its attempt to eliminate the need for antimessages. processed, but their messages are not released They are 
It may turn out for some applications that cycles in Breath- saved within the event. which in SPEEDES is a Ctt 
ing Time Buckets do not process enough events to remain 35 software object. The minimum time tag of all unsent mes- 
efficient. sages is monitored as an estimate of the event horizon 

A basic observation of optimistic parallel simulations can according to the Breathing Time Buckets algorithm, 
be made at t h i s  point that is the motivating premise of the During the processing of events in the Breathing Time 
Breathing Time Warp algorithm: Buckets phase, there may be messages and antimessages 
Basic Premise 40 working their way through the hardware communications 

The probability of an optimistically processed event king channels. They are received and handled appropriately. It is 
rolled back tends to increase the furthex out (in tern of possible that some of the messages received correspond to 
number of events) it is processed beyond GVT. In other events that should have been processed in the Time Warp 
words, the further a node gets beyond GVT, the less Likely phase (Le., events that would have been within N1 events 
its event processing is valid. This is especially true for 45 locally from GVT). If this happens, SPEEDES switches 
runaway nodes that are way out h front of the simulation. back toTime Warp processing (i.e., with aggressive message 
Another way of stating this is: Events close to GVT (in terms sending) for that event. 
of numbers of events) tend to be processed correctly. espe- When the event horizon is crossed. all nodes stop their 
cially if lookahead is available. processing and go through a GVT calculation. Note that the 

With this basic premise as a motivation for designing 50 event horizon. at this point, might be different from GVT 
optimistic. parallel. discrete-event simulations, it makes because it is possible for some of the event-generation 
sense to release the messages generated from events that are messages to still be in transit at this time. These messages 
close to GVT, but not to immediately release the messages must be flushed out of the system before GVT can be 
generated by events that are far from GVT. This is the basic accurately &termined. 
strategy of Breathing Time Warp. 
BREATHINGTlME WARP 

Time Warp), but then at some point makes a transition to 
risk-free message-sending methods (Le.. Breathing Time 
Buckets). There are multiple phases in the Breathing Time 
Warp algorithm. 

55 TheGVTPhase 
One of the problems in determining GVT is ensuring that 

The Breathing Time Warp process is a mixture of both 
Time Warp and Breathing Time Buckets. It should be noted 
that if there is a minimum time delay, T, between events and 
the events that they generate (this is one way of describing 
lookahead). then The Breathing Time Warp algorithm can 
also be a mixture of Time Buckets. Events can be processed 
conservatively up to GW+T so that state-saving overhead. 
etc. can be eliminated for those events. However. this aspect 
of the algorithm will not be discussed in this paper. 

Each cycle in the Breathing Time Buckets algorithm starts 
out by using aggressive message sending methods (i.e.. 

there are no messages remaining in the communications 
hardware. If a message with a time tag earlier than all other 
events is still in transit. GVT will be incorrect and simulation 

60 errors may occur. Furthermore. it is a good idea to flush all 
of the messages out of the communications hardware to 
provide flow control. If this is not done, it is possible to 
overtax the capabilities of the communications hardware, 
cause errors. and possibly even cause crashes to occur in the 

When a node in SPEEDES sends a message 
asynchronously. a local counter. n-mess-sent. is incre- 

65 system. 
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mented. Additionally. when a node in SPEEDES receives an 
asynchronously sent message. a local counter, n-mess-rec, 
is incremented. During the GVT phase, each node reads 
incoming messages while at the same time monitoring 
(globally) whether n-mess-sent is equal to n-rness-rec. 
In practice, achieving this may be difficult. Some sample 
code (which has been simplified for this paper) for finding 
GVT is given in Appendix B hereof. 
The Garbage Collection Phase 

The garbage collection phase of the Breathing Time Warp 
algorithm follows immediately after the GVT phase. It is 
sometimes also called the Phase 2 processing step in  the 
SPEEDES generic cycle and has been discussed in the 
literature. During this phase. messages which have not yet 
been released are synchronously sent from all of the pro- 
cessed events with b e  tags less than or equal to GVT. 
Furthermore, an additional processing step is permitted for 
each event (such as sending input/output to the outside 
world). Then. all rollback-related mechanisms and state- 
saving memory resources are returned to the SPEEDES 
operating system. 

One important note on how rollback is managed in 
SPEEDES is that when an event is processed optimistically, 
it is simultaneously inserted into two processed event lists. 
One of the lists contains all of the locally processed events 
on that node and is called Qproc. The size of the @roc list 
is used to make comparisons with N1 and N2 (see discussion 
above on Time Warp). The other list that the processed event 
resides in is maintained within its own simulation object 
(i.e.. the simulation object that was updated by the event). In 
other words, each simulation object also contains a list of its 
processed events. 

Garbage collection is performed by going through the 
Qpoc list. removing valid events. and then cleaning these 
events out of their own object's processed list. Systems that 
do not use a two-list approach (Le., one for all events 
processed locally on the node, and another for each object 
containing its processed events). require every simulation 
object to be checked for cleanup, even if no events have been 
processed for that object in the current GVT cycle. If a 
simulation has many thousands of objects on each node. this 
overhead can become quite expensive. Therefore, the 
SPEEDES approach scales much better than other 
approaches that do not use two processed event lists. but 
rather have only processed events for each object. The 
foregoing is summarized in FIG. 13. The preferred process 
consists of a time warp step (block 50 of FIG. 13) and a 
breathing time buckets step (block 60). The time warp step 
of block 50 includes processing events (block 52). reading 
received messages (block 54) and antimessages (block 56), 
transmitting new messages generated by the processing 
sub-step of block 52 and stopping such transmission before 
N1 new messages corresponding to time stamps greater than 
GVT have been transmitted (block 58). Thereafter. the 
breathing time buckets step is performed (block 60). includ- 
ing processing events (block 61). reading received messages 
(block 62). reading received antimessages (block 63). while 
refraining from transmitting new messages (block 64). A 
new value of GVT is computed in the manner described 
above (block 66) and then new messages corresponding to 
time stamps less than GVT are transmitted (block 68). The 
process then cycles back to the time warp step of block 50. 
CHARACTERISTICS OF BREKI'HING TIME WARP 

Breathing Time Warp takes on the characteristics of both 
Breathing Time Buckets and Time Warp. Consider various 
extremes for a simulation running under the Breathing Time 
Warp algorithm. 

22 
Large Event Horizon 

In the case where the event horizon is very large (Le.. 
many events can be processed each cycle). the Breathing 
Time Warp algorithm behaves much like the Breathing Time 

5 Buckets algorithm because most of the events are processed 
in the Breathing Time Buckets phase. Performance studies 
show that for simulations with large event horizons. the 
Breathing Time Buckets algorithm performs as well as. or 
better than. Time Warp because of the elimination of anti- 

IO messages and because of faster synchronous message send- 
ing. As a result. Breathing Time Warp adaptively becomes 
Breathing Time Buckets for this case. 
Small Event Horizon 

In the case where the event horizon is very s m a l l  (Le.. 
15 very few events are processed during each cycle). the 

Breathing Time Warp algorithm behaves much like Time 
Warp because most of the events are processed in the Time 
Warp phase. Simulations with small event horizons should 
not perform well using the Breathing Time Buckets 

20 algorithm. but they may perform well using either Time 
Warp or Breathing Time Warp. especially if the number of 
objects in the simulation is large. 

Theoretical studies and measured performance have 
shown that simulations which have poor lookahead (Le.. 

25 small  event horizons) in general do not perform as well as 
simulations with a high degree of lookahead. Another way 
of stating this is that without lookahead. Time Warp can 
exhibit large numbers of rollbacks that may explode into an 
avalanche of antimessages. Breathing Time Warp handles 

30 the problem of avalanching antimessage explosions by not 
releasing messages after N1 events have been processed 
beyond GVT. This algorithm then improves on the pure 
Time Warp algorithm in that it effectively solves the insta- 
bility problems that are sometimes observed in Time Warp. 

Test results confirmed that Breathing Time Warp can 
improve the performance of parallel discrete-event simula- 
tions. Measurements were made using a heterogeneous 
network consisting of eight high-performance worlstations 

40 linked together through Ethernet (a very difficult parallel 
environment to work in). The communication overhead in 
this environment was quite high compared to the processing 
power of the workstations involved. 
CONCLUSION 

Breathing Time Warp is a new process for parallel 
discrete-event simulation. It adaptively merges the best of 
Breathing Time Buckets and Time Warp to solve the poten- 
tial shortcomings of each algorithm. Time Warp can be 
unstable because of potential antimessage explosions while 

50 Breathing Time Buckets can be inefficient if the average 
number of events processedper cycle is low. Breathing Time 
Warp has neither of these problems. 

Development of the Breathing Time Warp algorithm was 
motivated by the general observation that events close to 

55 GVT (in terms of number of events. not time) tend to be 
processed correctly while events far from GVT have a 
greater chance of being rolled back Thus. it makes sense to 
aggressively send the generated messages from events close 
to GVT while not immediately releasing the messages 

60 generated from events far from GVT. This approach then 
provides a much more stable environment for optimistic 
parallel discrete-event simulation. 

A new approach for determining GVT uses two values. 
N1. and N2. to determine when to compute GVT. and how 

65 much to limit the optimism of the simulation. This approach 
(in conjunction with the incremental state-saving techniques 
used by SPEEDES) effectively eliminates the need for 

35 TESTRESULTS 

45 
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mcmory-prokction algorithms such a5 the cancel-back algo- 
rithms which are typically found in some advanced Time 
Warp systems. 

FIG. 14 illustrates an example of the structure of incre- 
niental state saving capabilities in SPEEDES. The structure 
of the incremental state saving 100 includes the Delta 
Exchange mechanism 102. An inline EXCHANGE function 
104 is defined that is overloaded in SPEEDES to make the 
Delta Exchange niechanism 102 easier for the user. The 
EXCHANGE tunction 104 accepts various types of argu- 
ments that can be of different types. By using the 
EXCHANGE function 104 overloading in C t t .  values of 
different types of arguments are easily and efficiently 
exchanged. 
ROLLBACK QUEUE 

Although the Delta Exchange mechanism 102 is 
extremely fast and efficient. a Rollback Queue 106 is also 
included in SPEEDES’s incremental state saving system 
because the Delta Exchange mechanism 102 is not ideal in 
every situation. For instance. managing dynamic memory 
allocations 108. adding or removing an item from a dynamic 
data structure (such as a list or tree) contained within an 
object 110. managing memory copies 112. and managing 
methods inside the simulation object 114 that change values 
of its internal state variables are some examples of when the 
Delta Exchange mechanism 102 is not ideal. 

FIG. 15 illustrates the operations of the Rollback Queue 
106. The Rollback Queue is an incremental state saving 
operation that is nearly transparent to the user. The Rollback 
Queue incrementally saves the state of the object as it is 
modified by event processing and allows the modification of 
state variables in the simulation objects. The Rollback 
Queue operations are done for each single event. A set of 
rollback queue operations are defined that create rollback 
queue items when invoked. These items are put into the 
rollback queue for rollback support when necessary. Thus, 
rollback information is automatically not saved during ini- 
tialization or when processing events conservatively and not 

The Rollback Queue saves the changes that occur when 
an event modifies the state of its simulation object. Hence, 
because events are rolled back on an event-by-event basis. 
the Rollback Queue is encapsulated through a hidden base- 
class in the event object. However, before each event is 
processed. SPEEDES makes the Rollback Queue available 
in the simulation object as well. providing a way for the 
simulation object to alter its state with its own methods. 

During the processing of a single event (150). the 
SPEEDES first determines whether the event is done being 
processed (152). If the event is done, SPEEDES exits (154) 
from the Rollback Queue’s operations. Otherwise. 
SPEEDES determines whether the state of the simulation 
object was changed by the event (156). When an event 
changes the state of its simulation object. the operation 
specific rollback item is created (158) and then the state 
change operation is performed (160). Next. a rollback item 
is placed (162) onto the top of a particular single event’s 
Rollback Queue 166. Specific rollback items 164. which are 
CU objects. inherit from a base-class rollback item object. 
such as “C-SIMOBJ.” A virtual function defined by the 
base-class simulation object can be “terminate( ).” 
SPEEDES automatically calls this virtual function at the end 
of the simulation for every object manager and simulation 
object. This gives each object an opportunity to output the 
statistics that it might have accumulated during the simula- 
tion. 

The base-class rollback item defines a store. rollback and 
clean-up virtual function. Storing values. rolling back an 

optimistically. 
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event. or cleaning up the Rollback Queue is accomplished 
through the store. rollback. and clean-up virtual functions 
respectively. Also. new types of rollback items can be easily 
added into the SPEEDES environment. 

Storing values is accomplished by retrieving values first. 
then calling the store virtual function to store the value. 
Rolling back an event is accomplished by first removing 
rollback items out of the Rollback Queue. then calling the 
rollback virtual function to undo the state changes that were 

IO done. Next, the rollback items are stored in reverse order in 
a “qreverse” listing 168. This provides a rollforward 
capability. which is used for lazy cancellation. which is 
discussed below. Cleaning up the Rollback Queue is neces- 
sary after an event is successfully processed. such as at 

15 garbage collection time in Time Warp. This is accomplished 
by first removing the rollback items out of the Rollback 
Queue. then calling the clean-up virtual function to clean up 
the Rollback Queue. In certain cases. some of the rollback 
items do not require any work for clean-up. In these cases. 

20 the virtual clean-up function is called. but no processing is 
done. 

Referring back to FIG. 14. simple assignments 114 are 
used with the operation of the Rollback Queue 106 to create 
new rollback items 116 due to the ability to overload 

25 operators in C++. SPEEDES provides an assignment opera- 
tor for simple variable assignments. Instead of using the 
equal sign (“=”) for assignments. S P E E D S  provides an 
“RB=” operator for changing state variables inside simula- 
tion objects while providing rollback capability. 

The ‘RB=” assignment operator automatically creates a 
new rollback item. saves assignment information, and then 
places it onto the top of the Rollback Queue. When running 
sequentially, or conservative protocols. the “RB” symbol 
can be defined as null so that “RB =” reverts back to the 

35 simple “=” assignment operator. thus removing all of the 
rollback memory overhead. 

In addition. another simple assignment 114 provides 
special state variables 118 that can be used as local variables 
inside an object. State variables 118 are used like a normal 

40 variable since default conversions can be defined for an 
object in Ctt-. Thus. when assignments are made to a state 
variable, SPEEDES uses operator overloading to store roll- 
back information in case the event is rolled back. For 
example. STXI‘E-INT 120. STm-FLOKl‘ 122, STATE- 

45 DOUBLE 124. and STKIEJQlNTER 126 can be provided 
as state variables. These state variables are automatically 
initialized to zero in their constructors. 

The Rollback Queue also easily accommodates dynami- 
cally creating or destroying memory 108. Using the normal 

50 method 128, if an event creates memory. then upon rollback 
this memory is deleted. Similarly. if an event deletes 
memory, then upon rollback. the memory is freed again. 
Thus. the memory is actually only deleted during clean-up. 
For example. an event can delete a Ci+ object stored in a 

55 simulation object. and then create a new object and save it 
in the simulation object. An “‘RE%-new” function 130 and an 
“RB-delete” function 132. for example. can be used to 
accomplish this. Further, both the Delta Exchange mecha- 
nism and the Rollback Queue can be utilized in  the same 

SPEEDES optimizes the performance of all dynamic 
memory allocations by using “free lists” 133 for faster 
memory management with for example, the RE%-new 130 
and R B d e l e t e  132 functions. For instance. instead of 

65 calling the FU-new 130 and RBdele te  132 functions. 
“RE%-free-new” 134 and “IZE-free- delete” 136 are 
called. When the free lists are used. memory blocks are 

5 

30 

60 event. 
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never deleted. Instead, the memory blocks are saved in a list percent size. wherein size is the dimension of the 
for later reuse when the memory is needed again. Free lists C-XQUEUE array. to determine which C-XQLJEUEi to 
133 accelerate memory allocation and also reduce the prob- use to search for the item with the proper identification. The 
lem of memory fragmentation. rollback supported operations provided by the C-XHASH 

In addition. the RollbackQueue copies blocks of memory 5 object can be inserting an item into the C-XHASH and 
112 into the state of the simulation object for certain removing an item with identification from the C-XHASH. 
simulation applications where this is required. Memory In addition. other C-XHASH methods allow the construc- 
copies are supported through. for example. an “RB- tor’s argument to be the hash size. the number of items in the 
memory” 138 function. C-XHASH can find the item with the same identification. 

Management of dynamic data structures 110 such as lists io a single C-XQUEUE can be formed. and a single 
or trees contained within simulation objects is accomplished C-XQUEUE can be returned. 
by the Exchange Queue. As part of its state. a simulation Also. the operators “+=” and “-=” are overloaded to add 
object may contain a list of items. This list may grow or and remove items from the C-XHASH. In other words. the 
shrink as events add or remove items to. or from. the list. xhash+=item and the xhash-item. wherein the hash  is an 
The Exchange Queue uses reversible operations. Rolling 15 C-XHASH object and the sq-item is a pointer to an 
back an event that inserts an item into the Exchange Queue C S Q J I T M .  The “-=” operator assumes that the C-SQ- 
requires removing that item from the Exchange Queue to ITEM already has a pointer. 
restore the state. Similarly. rolling back an event that The C-XPRIOmY Queue is based on a SPEEDES 
removes an item from the Exchange Queue requires rein- Qheap priority queue data structure which is used in 
serting that item into the Exchange Queue. Also, the 20 SPEEDES for its own event list management. The 
&change Queue can be a doubly linked list based on the C - X P R I O ~ Y  data structure uses the time-tag field in its 
first-in, first-out (FIFO) property. list of CSQlTEM’s to always return the item with the 

A “+=” operator can be overloaded for example to add an lowest timetag. Example basic rollback supported opera- 
item to the Exchange Queue, and the “-=” operator can be tions for the C-XPIUOFUTY queue object are inserting the 
overloaded to remove an item from the Exchange Queue. An 25 item into the CJPRIORITY. removing the item with the 
event in SPEEDES can remove an item that is specified by lowest time-tag, taking no arguments by the constructor. 
an integer identification from an Exchange Queue, delete it. rebrieving the earliest time in the list. and retrieving the 
and then add a new item. The FIFO requirement can also be number of items in the list. Only the “+=” operator is 
bypassed. Moreover, the order of the items in the Exchange overloaded to add a C-SQITEM to a C-XPRIORWY 
Queue does not matter since items are removed based on 30 object. 
their identification. Therefore. the Rollback Queue can accommodate various 

SPEEDES manages, through the dynamic data structure types of state-changing requirements such as dynamic 
management 110. lists of items in various data structures memory allocation. memory copies, methods in simulation 
through. for example. “C_XQUEW 140, “C-XHASH” object that change the state of its internal data. and dynamic 
142 and “C-XPRIOIU” 144 data structures. as well as 35 data structures such as the Exchange Queue. In addition. if 
other 146 data structures. All items that are stored in these a user needs to schedule an event and then later cancel it. a 
data structures must inherit from a base-class, such as cancel handle. or a Time Warp antimessage stub. can locate 
‘‘CCSQ-ITEM’’ defined in a header file. Memory for these an event that needs to be canceled. A special mechanism is 
items can also be managed by a free list tool. The provided in SPEJ3DES for users to create and destroy cancel 
C-SQfTe has various methods for setting the item’s 40 handles. The SPEEDES rollback supported cancel handle 
identification. returning the item’s identification, setting the utilities can be for example returning a new cancel handle 
item’s time value and returning the item’s time value. and deleting a cancel handle. 

The C-XQUEUE data structure is a linked list structure LAZY CANCELLAITON 
that can be used either as a FIFO queue, or as a general list FIG. 16 illustrates lazy cancellation as supported by 
of items. Items can be added or removed from the 45 SPEEDES. One of the important benefits derived by events 
CLXQUCEUE while the rollback reverse operations are being Ci+ objects is that lazy cancellation can be very 
managed. Basic rollback supported operations for the efficiently supported. The handling of lazy cancellation by 
CLXQUEUE can be inserting an item at the end of the SPEEDES is unique. Lazy cancellation is supported by 
queue. removing the top item from the queue. and removing SPEEDES with an object oriented approach because ami- 
the item with identification from the queue. In addition. 50 dentally processed events for a simulation object in the work 
other C-XQUEUE methods can be for example, taking no order might not matter. The utility of lazy cancellation 
arguments by the constructor. identifying the number of requires the incremental state saving techniques of rollfor- 
items i n  the CXQUEUE. identifying the top item in the ward as well as rollback capabilities. Lazy cancellation has 
C-XQUEUE, identifying the bottom item i n  the the benefit of rolling the state of the simulation object 
CXQUEUE. and finding the item with the same identifica- 55 forward using the state change made by the event the first 
tion. time it was processed. thus requiring all of the incremental 

Also. the operators “+=” and “-=” are overloaded to add state-saving techniques to be reversible. 
and remove items from the C-XQUEUE. In other words, The object oriented approach of lazy cancellation sup- 
the xqueue+=item and the xqueue-item, wherein the ported by SFEEDES solves problems experienced by pre- 
xqueue is an C-XQUEUE object and the sq i t em is a 60 vious parallel discrete simulations. For example. when a 
pointer to an C-SQ-I’EM. The “-=” operator assumes rolledback event is reprocessed. the same answer might be 
that the CSQEJZM already has a pointer. produced. In other words, the event makes the same state 

The C-XHASH object can be used in a similar manner changes to the simulation object while also generating the 
as the C-XQUEUE. The C B A S H  object is imple- same events. This allows for the possibility that a simulation 
mented as an array of C-XQUEUE objects and uses modu- 65 will beat the critical path. The critical path determines the 
lar arithmetic to hash on an integer identification. In other minimum time for a conservative discrete-event simulation 
words. the C-XHASH uses the remainder identification to be completed (ignoring all memory overhead other than 



5.794.005 
27 

event processing). It is not possible for conservative simu- 
lations to beat the critical path because conservative simu- 
lation requires events to be processed in their correct time 
order. 

Moreover, sending antimessages (if Time Warp is used) 
only to later regenerate the same messages again for events 
that are rolled back having the same properties is wasteful. 
Also. reprocessing the event if it makes the same changes to 
the state of its simulation object is wasteful. 

Conventional lazy-cancellation approaches for determin- 
ing if reprocessing a rolledback event will get the same 
answer require saving the entire state of the simulation 
object and then making a byte-for-byte memory comparison 
with its previous state (ie.. when the event was first 
processed) to the new state. If the results are identical. then. 
obviously. processing the event will again give the same 
answer. Another conventional approach avoids sending 
unnecessary antimessages by comparing (after reprocessing 
the event). byte-for-byte, the newly generated messages with 
the old ones @om the first time the event was processed). If 
they are identical. the new messages do not have to be sent. 
However, if they are not identical. antimessages to cancel 
the old messages are sent alone with the new messages that 
have just been generated. However. these approaches are not 
feasible in an incremental state-saving environment because 
they require too much memory overhead. 

In contrast. the object oriented approach of lazy cancel- 
lation supported by SPEEDES instead rolls the state of the 
simulation object forward using the state changes made by 
the event the first time it was processed, thereby requiring all 
of the incremental state-saving techniques to be reversible. 
SPEEDES uses an object-oriented approach that very 
quickly accomplishes the same as the conventional methods 
without the overhead. The object oriented approach of lazy 
cancellation supported by SF‘EEDES is also referred to as 
lazy reevaluation. 

Because events are objects in SPEEDES, the inputs kom 
the simulation object that are required for processing an 
event can be saved in the data structures of the event object. 
Before reprocessing the event. and after the event has been 
rolled back (170)- SPEEDES determines whether lazy can- 
cellation has been enabled (172). If lazy cancellation has not 
been enabled. antimessages are sent to cancel generated 
events and the Rollback Queue is cleaned-up (173). Later. 
when the event needs to be reprocessed (174), SF’EEDES 
determines whether lazy cancellation has been enabled 
(176). If lazy cancellation has not been enabled, the event is 
reprocessed (178). Otherwise. a virtual function. “check 
lazy”. is called (180). The check lazy virtual function, which 
is supplied by the user. compares the previous inputs from 
the simulation object still stored in the event object with the 
new values in the simulation object. If the values are the 
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same or if the event would still get the same answer. then the 
event is rolled forward (182). Otherwise. antimessages are 
sent. the Rollback Queue is cleaned-up. and the event is 
reprocessed (184). The virtual function can return a “I” if 
they are the same or if it is determined that the event would 
still get the same answer. The virtual function can return a 
“ 0  otherwise. 

After an event has been rolled back. SPEEDES examines 
a flag stored in  the event object to determine whether the 
event is participating in  lazy cancellation. This allows events 
to participate on a selective basis in lazy cancellation. When 
it is time to process that event again. SPEEDES determines 
whether the event would have produced the same answer. 

Thus. lazy cancellation as supported by SPEEDES is 
performed so that the eventprocessing inputs are first saved 
from the simulation object in the event object. Next. before 
reprocessing the event. SPEEDES determines if the input 
values of the simulation object changed or if the input values 
would produce a different result. If the values are the same. 
the event is rolled forward. otherwise. an antimessage is 
sent. Therefore, the approach of the present invention is 
much more efficient than making byte-for-byte comparisons 
of the old state of the simulation object with its new states. 
which is done in most other approaches. 

I n  addition. the lazy cancellation approach of the present 
invention is more flexible. Events can store impoxtant input 
information in their internal &ta structures to support 
sophisticated optimization techniques as well. For example. 
the user may enable lazy cancellation only for specific 
events. while using aggressive cancellation as the default for 
the rest. 
PRINT STATEMENTS 

During the course of processing events in a simulation. 
information can be printed to the screen or to a file. 
However. for more accurate print statements. events can 
only release output after the event is committed to allow 
only valid output information from the simulation. The print 
utility supported by SPEEDES can be. for example. 
RB-PRINT( ). Also, a file can be printed to an opened file. 
In addition. the string passed to the RB-PRINT( ) function 
can be used multiple times in the same event since a separate 
copy of the string is made by RB-PFUNT. 

While the invention has been described in detail with 
specific reference to preferred embodiments thereof. it is 
understood that variations and moditications thereof may be 
made without departing from the true spirit and scope of the 
invention. 

APPENDIX A 

The following appendix is the listing of the C-language 
computer code used to implement the invention using the 
breathing time buckets protocol. 

Xirrhrdc ”evtq.H” 
#include “cyc1e.W 

speedes-evtq object 

~~ ~~ 

I! speedes-evtq C method file 
#mclude <stdl0 h> 
#mclude “Cms I€’ 
hclude “speedes-evtq H” 

#Include “defunc W 
Metine OPI’IMEE 

Metine INFNITY 1 OeZO 

C _  SPEEDES_EVTO cmtnrt  an event owue obtect 
class C-SF’EEDES_EVTQ : public C 3 V T Q  (I 

private: 
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protected: 

C-CYCLE *cycle; 
C-QUEUE *qext: 

11 cycle synchnizing object 
/I qwue of externally generated event 

public: 

CSPEEDES-EVTQ( j; 
virtual void temp-pmess( ); 

virtual void permprocess( ); 
virtual void lindAvt( ); 

kndif 

tevent = evcnt->gettime-tag( ); 
if (tevent r tearly) break; 

if (!event->getarccesed( )) { 
event->@mp-pocessf ); 

event-xxchange( ); 
event-)calculate-rmin( ); 
event-xet-pcssed( ); 

1 
11. . . update tmin 

tmin = event->gettmin( ); 
if (tmin c localt) h a l t  = tmin; 
e-: 
eveni = (C-EVENT *)evem->get-lii( ); 

) 

11. . . now do the rest of the events optimistically 

if (!cycle-xhcck(localt. tevent)) { 

deft = L i t e m s  - Ltemp; 

for (i = 0; i < nlefi; ii+) { 

printf("EEDES3VTQ CreatedW'j; 

cycle = new C-CYCLE( j, 
qext = new C-QUEUE( ); 

\ 

tenq-mxess - pmcess events phase 1 

void C-SPEEDW-EVTQ::temp-pmess( ) { 
int i; 
int nleh; 
double tblock: 
double tmin; 
double tearly; 
double @vent; 
CJVENT *event; 
C-EVENT *ext-event; 
cycle->start( ); 
e t e m p  = 0; 
h a l t  = tend; 
tearly = gvt + O.!3+minstep; 

I/ this starts tk cycle management 

I/ all events with times less than 
tearly can be processed conservatively 
11 . . . if there is a minimum time step, we that information to run 
faster 
event = (C-EVENT *)top; 
for (id; i a i t e m s ;  ii-tj { 

I1 . . . handle externally generated events 

extevent = extemaleventftearly); 

qext-aushbot(extevent); 
if (ext-event-> 
gett im-tag( ) < Lccalt) locait = extevent-zgettime_tag( ); 
if (cycle-xkk(localt, event->get_time-tag( ))) break 

1 

if (ext-event != NULL) { 

n_temPtt; 
event = (C3VENT *)even->getlink( ); 

t 

1 
/I . , . c k k  if blocking messages are expected to arrive 

if (objects->geLblochg( )) { 
objects->update-block( ); 
tbbck = objects->gettblock( ); 
cyc le -~ tmin ( tb lock) ;  

1 
cycle->stop( ); 11 stop the c m n i  cycle 

1 
tiub_gvt - f i d  thc minimum global time for safe processing 

if (!event->geLpmcesd( )) { 
void C_SPEEDES3VTQ::fi(  ) { 

I/ . . . cyc le -xkk(  j manages asyduonous broadcasts and nowblocking syncs. 
pvt = cycle->getnextgvt( ); 
gbbally determined 

I /  the event borizon is 

if (cycle-xkkflocalt, event->gettime_tag( ))) breal, 
} 

event->te.mp-process( ); 
event-xxchange( ); 
event-xalculate-trnin( ); 
event-zsetqrocessed( ); 

1 
nnin = event->gettmin( ); 
if (tmin c h a l t )  localt = tmin: 

permprocess - process events phase 2 
event = (C-EVENT * ) q p t o c - ~ p ~ t o p (  ); 
ev!p-*lete-event(eveni); 

void C-SPEEDES-EVTQ: :pPmW ) 
int size; 
int i,len; 

1 
11 . . . get the incoming messages and turn them into fuhm cvents 

while((message = multirouter-~etmess(size)) != NULL) { 
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char *message; 
C 3 V E h T  'event; if (header-xxt) { 
C-HOLDER *holder; 

I /  external 
C-HEADER 'header; message 

t e w  

header = (C-HEADER *)message; 

lostuser-xznd-nEssage( (CBMAIEADER * piiessage): 

// . . .  loop over all of the events that can he processed 
event = ( C 3 V E N T  *)evtype->nlessage_even((nlessage j; 

// internal 
i iperni  = 0: 
n-rOll= 0; qproc-zpusLbt(event), 

message tums into an event 

t 
multirouter->reset( ); f 
while (=items) { // . . .  get messages that were gemrated locally on nly node and turn 

them into events 
// . . .  pull out processed events, p rocess  them further (garbage collection) and 
collect thci generated messages len = qhd->length( j; 

for (i=O; iden; i+) { 
event = ( C 3 V E N T  *)pop-top( ); 
if (gvt < event->gettime-tag( f) { 

break; if (header-xxt) { 

t 
event->pcrreprccess( ); 
event-xendmcss(qM); 

holder = (CBOLDER *)qlnd->pop_top( ); 
message = holder->getbuff( ); 

pushtop(event); header = (C-HEADER *)message; 

hosLuser-zscndslessage((CJM3IEADER *)message); 
evtype->delete-ssage(holder); 

// this only collects messages in the multirout event = (C-EVENT *)evtype-~ssage-event(message); 

evtyp-xleleteslcssagesagt0loldcr); 
object qpm->pushbot(event); 

qproc-~usLbt(event) ;  1 
if (event->gettim-tag( ) < tend) epe rm+;  

1 
t 
I/ . . .  sort all of the new events 

qpI-=-=m 1; 
/ I  . . , send and receive messages synchronously (crystal muter on hypercubes) qproc-xoncat(qext); 

multirouter-xnultirout( ); 
// . . .  attach these new events to thei appropriate objects 

// . . .  delete tbe alrcady processed event using free lists 
len = qproc-slength( ); 
event = ( C 3 V E N T  *kproc->ptop( ); while (qprcc->length( )) { 

event->attachobject( ); 
-U += event-srOlLback( ); 
event = (CBVENT *)cvent->getlinL( ); 

r 
// , . . merge these mw events into tbe event queue 
merge(qPr0c); 

t 

for (i=O; i < b ,  i+) { 

// rollback objects with events in tbei past 

40 

APPENDIX B -continued 

GVT = LVT 
The following is a pseudo-code listing of a software 

program employed in canying out the breathing time warp 
process of the invention: 45 combine(LVT.MINDBL,sizeof(double).l); GVT=LVT 

APPENDIX c 
/I ....... Determine GVT. 
// ....... loop until h r e  are m Inole m s a g s  in the system. The following is a pseudo-code listing of a software 
WMe (1) I 
// ....... get all incoming lncssages and antimessages. 
I /  ....... 
I/ ....... antimssages. 

mssages( ); 
antimessages( ); // read all available antimessages THE DELTA EXCHANGE 

program employed in k n y i n g  out the &remental state 
saving of the invention: note: receipt of these might genetate additional 

I/ read all available messages 

// ....... asy~~hmnous messages are sen! through the twosmess 
N ....... object which keeps track of n-mess-sent and 
// ....... -ess_rec. We break out of the loop if ~ m c s s _ r a c  
I /  ....... is equal to n-mess-sent 

\ ! 

5s void EXCMGE(int  &il, int Sri2) { 
int temp; 
temp = 11; 
il = i2; 
i2 = temp; if (twosmess-zchocL_mscount( )j break; 

i/ ....... get the local virtual time (LVT) as the time tag 
/ I  ....... of the next unprocessed event or unsent message 
/ I  ....... on my no& (i.e., the event horizon). 
LVT = get t ime-nextevent(  ); 
if (LVT > eventhorizon) LVT = eventhorizon; 
// ....... GVT is the global minjmum of L W  on all nodes 
// ....... the combine function gets the minimum of all LVT's 
// ....... and returns the value in the same variable LW 
combine (LS'T,MINDBL,sizeof(double), 1); 

6o void EXCHAh'GE(d0Uble &dl, double &d2) { 
double temp; 
temp = dl;  
dl = d2; 
d2 = temp; 

1 
THE ROLLBACK QUEUE 

65 // ..... Rollback Item base class 
// ._.__ Mvrits from C-M so that 
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N ..... C-RB-ITEMS can be put into a C-QUEUE object 
class C-RBATEM: public C D M  { 

private: 
protected 

public: 
void *ptr; 

void set-ptifvoid +p) {pa = p;} / I  set the pointer 
virtual void store(it v) { ; } // virtual store variabie 
virtual void store(float v) {;} // virtual store variable 
virtual void store(doub1e v) {;} /I virtual store variable 
virtual void store(void *vj { ;} // virtual store variable 
virtual void cleanup( j { ;} / I  virtual cleanup 
virtual void rollback( ) { ;} // virtual rollback 

//pointer to altered state variable 

t 
// ..,.. mUig back the Rollback Queue 
int rollback( ) 

C-RBLlTEM *a; 
C-QUEUE qreverse; 
while (RoUbackQwue->leqgth( )) { 

a = (C-RB-IIEM*)RollbacLQueue-~-top( ); 
a-mUback( ); 
qreverse.p&top(af; N save for lazy carrellation 

t 

t 

void clean up( ) { 

'Rollback Que.= = qreverse; 
return Rollback-Queue->length( ); // return n rollbacks 

// ..... clean up the Rollback Queue 

C - R B J E M  *a 
while (RollbackQueue->length( )) { 

a = (C-RB-ll'EM *)RolIbacLQueu->pop_to21( ); 
a-->cleanup( ); 
delete (a); 

1 
SIMPLE ASSIGNMENTS 
// ..... Rollback Item for integer a s s i m n t s  
clasr C-RB3TEMJNT: public C-RB_FTEM { 

private: 

protected: 
public: 

int oldvalue; I/ old valuc saved here 

void setoldvalue(int v) {oldvalw = v,} 
vhtual void store(int v) {*lint *) ptr = v;} 
virtual void store(fl0at v) {*(it *) ptr = (inf)v;} 
virmal void store(doub1e v) {*(it *) pa = (intjv;} 
virmal void rollback( ) { 

int -7 

"OEdValue = yint *)pa; 
*(i +)ptr = temp; 

temp = oldvalue; 

1 
1 
DYNAMIC MEMORY 
N ..... Rollback item for dynamic memry 
class C-RB3EhCXEMORY: publii C-REUTEM { 

private: 

protected 
public: 

int flag; // flag for creatioddebtion 

void se t f l ag  (inf f )  {flag = e }  
virrual void cleanup( ) { 

if (!kg) delete ptr; 
1 

if (flag) { 

I e W  

t 

virtual void rollback( ) { 

flag = 0; 

flag = 1; 

t 
1 
// ..... allocate dynamic memory 
void RB-new(void *obj) { 

C-RBJIEM_MEMORY *a; 
a = new C_RB3TEMJMWORY( ); 
a-xetpqobj) ;  
a-%et flag( 1); 
RollbackQueue->pushtop(a); 

t 

// ..... delete dynamic mefnay 
void RB-delete(void *obj) { 

C-RB-lTEM-MEMORY *a; 
a = new C-RB-ITEM-MEMORY( 1, 
a-xet-pm(ohj); 
a->setflag(O); 
RollbackQueue->pusl~top(a): 

5 

t 
MEMORY COPIES 

10 I/ ..... Rollback Item for dynamic memory 
class C-RB-TZEKMEMCPY public C-RE-lTEhl { 

private: 
char *oldvalue 
int size; 

// old value of buffer 
N sue of the memory copy 

protected: 
15 public: 

void setoldvalue(char *ovj {oldvalue = ov;} 

virtual void cleanup( ) { 
delete oldvalue; 

void setsize(int sj  {size = s;} 

20 

1 
virtual void rollback( ) { 

char "temp; 
temp = rrew char[sizel: 
=~PY(~P,Ph;si-=);  
memcpy(ptr,oldvalue,size); 
memcpy(oldvalue,temp,size): 
delete temp; 

25 } 
} 
// ..... memory copy us& Rollback Queue 
void RB-mmcpy(char *pl, char *p2, int size) { 

C-RBJTEhLMEMCPY *a; 
char *oldvalue; 
a = new C-RB-I'IEM-hEhKPY( ); 
a-%tptr(pl); 
a-->sttsize(size); 
oldvalue = new cmsizel ;  
memcpy(o1d vdue,pl,size); 
a-xetoldvaJue(obdva1ue); 

memCpy(p1 ,p2,sW; 

30 

35 RollbackQueue->pushrop(a); 

1 
EXCHANGE QUEUE 
// ..... Rolltrack Item fa tbe Exchange Queue 
class C-RBATEMXQUEUE: public C-RBJTEM { 

private: 
40 C-XQUEUE *xq N pointer to Exchange Queue 

// flag for insertion or removal 
Nkg for top or bot 

int kg ;  
int t o p 3 g ;  

pmtccted: 
public: 

void setixq(C_XQUEUE *x) {xq = x;} 
void setdag(int f )  {flag = t} 
void set-tq-flag(int fj {top-flag = f:} 
virtual void rollback( ) { 

45 

50 

55 
t 
flag = 1; 

} 
1 

1 
// ..... add an item to the Exchanae Queue 
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// ..._. tenlove an iten] fmni the Exchange Queue 
void opzrator -= (C-XQUEUE &xq. C_XQ_ITEM *it) { 

C-RXiTEhru[QLJEUE *a; 
a = new C-RBJlXhLXQUEUE( ); 
a->set-xq(&xq); 
a->set-pa(it); 
a-xet-ilag(0): 
a->set-top-flag(l j; 
RollbackQlleue->pushtop(a); 
xq.remove(it); 

} 
ROLLBACK, AND LAZY CANCELLATION 
// _.__. Event is processed 
event->init-RollbaclQuew; 
event->Phase I( ); 
event-->exchange( ); 
event-xendmessages( ); 
// ..... Event is rolled back 
event-xxchange( ); 
event->init-RolIback-Queue( ); 
RollbackQlleue-mllback( j; 
if (event->getlazy-flag( )) { 

event-->send -antimessages( j; 

event-)set-lazy-processed( ); 
k W  

t 
// ..._. Rollfoforwad or repmess an event 
if (event->get-lmy-pessed( ) { 

if (event-xhecklazy( j { 
even->initRollbackQue( ); 
Rollbaclr_Queue-z~ollback( );N Roll fonvard 
event-->exchange( j; 

evcnt-xencI-antimessage$ j; 
event->i&-Rollbac~Qwue( ); 
event-xleanup_RollbacLQucue( ); 
event->FhaseI( ); 
even-->exchange( ); 
event-xend-message$ ); 

t e w  

/ I  Reprocess an event 

t 
} 

~~~ ~ 

What is claimed is: 
1. In a system of interconnected processor nodes operat- 

ing in parallel to simulate mutual interactions of a set of 
discrete simulation objects distributed among said nodes as 
a sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 
defining messages addressed to respective ones of said 
nodes. a method of performing object-oriented simulation at 
each one of said nodes comprising: 

assigning passive self-contained simulation objects to 
each one of said nodes; 

responding to messages received at one node by gener- 
ating corresponding active event objects having user- 
defined inherent capabilities and individual time 
stamps and corresponding to respective events affect- 
ing one of said passive self-contained simulation 
objects of said one node; 

restricting said respective passive self-contained simula- 
tion objects to only providing and receiving informa- 
tion from said respective active event objects; 

requesting information and changing variables within a 
passive self-contained simulation object by said active 
event object; and 

producing corresponding messages specifying events 
resulting therefrom by said active event objects. 

2. A system of interconnected processor nodes operating 
in parallel to simulate mutual interactions of a set of discrete 
simulation objects distributed among said nodes as a 
sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 

36 
defining messages addressed to respective ones of said 
nodes. said system performing object-oriented simulation at 
each one of said nodes and comprising: 

means for assigning passive self-contained simulation 
objects to each one of said nodes; 

means for responding to messages received at one node 
by generating corresponding active event objects hav- 
ing user-defined inherent capabilities and individual 
time stamps and corresponding to respective events 
affecting one of said passive self-contained simulation 
objects of said one node; 

means for restricting said respective passive self- 
contained simulation objects to only providing and 
receiving information from said respective active event 

means for requesting information and changing variables 
within a passive self-contained simulation object by 
said active event object; and 

means for producing corresponding messages specifying 
events resulting therefrom by said active event objects. 

3. A system of interconnected processor nodes operating 
in parallel for simulating mutual interactions of a set of 
discrete simulation objects distributed among said nodes as 

25 a sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 
defining messages addressed to respective ones of said 
nodes, said system performing object-oriented simulation at 
each one of said nodes and comprising: 

passive self-contained simulation objects assigned to each 
one of said nodes; and 

corresponding active event objects generated in response 
to messages received at one node. said active event 
objects user-defined inherent capabilities and having 
individual time stamps and corresponding to respective 
events affecting one of said passive self-contained 
simulation objects of said one node. wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 
produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 

4. A system of interconnected processor nodes operating 

a set of disaete simulation objects distributed among said 
nodes; 

a computer program operating on said system for simu- 
lating mutual interactions of said set of discrete simu- 
lation objects as a sequence of discrete events changing 
state variables of respective simulation objects so as to 
generate new event-defining messages addressed to 
respective ones of said nodes; 

wherein said computer program performs object-oriented 
simulation at each one of said nodes and comprises, 

passive self-contained simulation objects assigned to each 
one of said nodes. and 

corresponding active event objects generated in response 
to messages received at one node, said active event 
objects having user-defined inherent capabilities and 
individual time stamps and corresponding to respective 
events af€ecting one of said passive self-contained 
simulation objects of said one node, wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 

5 

lo 

l5 objects; 

20 

30 

35 

40 

45 

in parallel comprising: 

5o 

55 

60 

65 



5.794.00s 
37 

produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 5 

5. A computer-readable medium for causing a computer 
system of interconnected processor nodes operating in par- 
allel to function as a parallel processing system. comprising: 

a computer-readable storage medium: 
a computer program stored on said medium; 
a set of discrete simulation objects distributed among said 

nodes; 
wherein said computer program operates on said system 

for simulating mutual interactions of said set of discrete 15 
simulation objects as a sequence of discrete events 
changing state variables of respective simulation 
objects so as to generate new event-&fining messages 
addressed to respective ones of said nodes and wherein 

10 

38 
said computer program performs object-oriented simu- 
lation at each one of said nodes and comprises. 

passive self-contained simulation objects assigned to each 
one of said nodes. and 

corresponding active event objects generated in response 
to messages received at one node. said active event 
objects having user-defined inherent capabilities and 
individual time stamps and corresponding to respective 
events affecting one of said passive self-contained 
simulation objects of said one node. wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 
produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 

* * * * *  


