
United States Patent [I91 [III Patent Number: 5,794,005
Steinman [a] Date of Patent: Aug. 11, 1998

[54] SYNCHRONOUS PARALLEL EMULATION
AND DISCRETE EVENT SIMULATION

SIMULATION OBJECTS AND ACTIVE
EVENT OBJECTS

SYSTEM WITH SELF-CONTAINED

[75] Inventor: Jeffrey S. Steinman. Chatsworth. Calif.

[73] Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration. Washington. D.C.

[21] Appl. No.: 363546

[22] Filed Der. 12, 1994

Related US. Application Data

[63] Continuation-in-part of Ser. No. 246,372, May 13, 1994,
abandoned, which is a Continuation-in-part of Ser. No.
880,211, Jan. 21, 1992, abandoned.

[52] U.S. C1. 395600 3951683; 3951557;
3641578

[58] Field of Search 3951500, 683.
3951557; 3W140. 578

[51] Int. CL6 .. G06F 19/00

[561 References Cited

U.S. PATENT DOCUMENTS

4,901,260 2/1990 Lubachevsky 364578
5,247,650 9/1993 Judd et al. 395/500

OTHER PUBLICKITONS

Chandy. K. and Misra, J. “Distributed Simulation: A Case
Study in design and Verification of Distributed Programs”,
IEEE Transactions on Software Engineering, vol. SE-5, No.
5, pp. 440452, 1 9 9 .

Felderman. R. and Heinrock. L. ‘ W o Processors Time
Warp Analysis: Some Results on a Unlfying Approach”.
Proceedings of the SCS Multiconference on Advances in
Parallel Processing. vol. 3 . pp. 34-41,
Fujimoto. R. “Design and Evaluation of the Rollback Chip:
Special Purposes Hardware for Time Warp”. IEEE Trans-
actions of Computers. vol. 41. No. 1. pp. 48-82. 1992.

(List continued on next page.)

Primary Emminer-Kenneth S. Kim
Attorney, Agent, or Finn--John H. Kusmiss

[571 ABSTRACT

The present invention is embodied in a method of perform-
ing object-oriented simulation and a system having inter-
connected processor nodes operating in parallel to simulate
mutual interactions of a set of discrete simulation objects
distributed among the nodes as a sequence of discrete events
changing state variables of respective simulation objects so
as to generate new event-defining messages addressed to
respective ones of the nodes. The object-oriented simulation
is performed at each one of the nodes by assigning passive
self-contained simulation objects to each one of the nodes.
responding to messages received at one node by generating
corresponding active event objects having user-defined
inherent capabilities and individual time stamps and cone-
sponding to respective events affecting one of the passive
self-contained simulation objects of the one node. restricting
the respective passive self-contained simulation objects to
only providing and receiving information from the respec-
tive active event objects. requesting information and chang-
ing variables within a passive self-contained simulation
object by the active event object. and producing correspond-
ing messages specifying events resulting therefrom by the
active event objects.

5 Claims, 10 Drawing Sheets

ROUTER

GENERIC OBJECT
EVENT QUEUE

https://ntrs.nasa.gov/search.jsp?R=19990008585 2020-06-18T00:39:58+00:00Z

5,794,005
Page 2

OTHER PUBLICATIONS

Fujimoto. R. “Lookahead in Parallel Discrete-Event Simu-
lation”. International Conference on Parallel Proccessing.
vol. 3. pp. 34-41. 1988.
Fujimoto, R. “Parallel Discrete Event Simulation”. Commu-
nications of the ACM. vol. 33. No. 10. pp. 30-53, 1990.
Gordon, L. “On Distributed Simulation Involving Human
Interaction”. Proceedings of the SCS Summer Computer
Simulation Conference. pp. 1 4 1992.
Jefferson. D. “Virtual Time”. ACM Transaction on Program-
ming Languages and Systems. vol. 7. No. 3. pp. 404-425.
1985.
Lord Systems Company, “Strawman Distributed Interactive
Simulation Architecture Description Document”. Prepared
for Program Manager-Training Devices Naval Training
Systems Center. vol. 1-2, 1992.
Lubachevsky. B. “Several Unsolved Problems in LargeS-
cale Discrete Event Simulations”, In Proceedings of the 7th
Workshop on Parallel and Distributed Simulation
(PADS93), vol. 23, pp. 60-67, 1993.
Steinman. J. “SPEEDES: A Unified Approach to Parallel
Simulation”, Proceeding of the SCS Multiconference on
Advances in Parallel and Distributed Simulation. vol. 24.
No. 1, 1992.
Weiland, F. “A Critical Path Tool for Parallel Simulation
Performance Optimization”, Proceedings of the Interna-
tional Conference on System Sciences. 1991.
Dickens. D.. and Reynolds, F! ”SRADS With Local Roll-
back” Proceedings of the SCS Multi-Conference on Dis-
tributed Simulation. vol. 22. No. 1. Jan. pp. 161-164.1990.
Feldennan. R.. and Kleinrock. L. “Tfvo Processor Time
Warp Analysis: Some Results on a Unifying Approach.”
Proceedings of the SCS Multicoderence on Advances in
Parallel and Distributed Simulation. vol. 23, No. 1, pp. 3-10.
1991.
Fox, G. Solving Pmblenu on Concument Processors. vol. 1
Prentice Hall, Engleeood Cliffs. New Jersey. 1988.
Fujimoto, R. Tsai. J.. and Gopalalrrishnan, G. “Design and
Evaluation of the Rollback Chip: Special Purpose Hardware
for Time Warp.” Technical Report UUCS-88411. Depart-
ment of Computer Science. University of Utah, 1988.
Jones. D. “An Empirical Comparison of Priolity-Queue and
Event-Set Implementations.” Communications of the ACM.
vol. 29, No. 4. pp. 300-311. 1986.

Kaudel. F. “A Literature Survey on Distributed Discrete
Event Simulation.” Shuletter. vol. 18. No. 2 pp. 11-21.
1987.
Lin. Y.. and Lazowska. E. “Exploiting Lookahead in Parallel
Simulation.” IEEE Transactions on Parallel and Distributed
Systems. vol. 1. No. 4, pp. 457469 1990.

Lin. U.. and Lazowska. E. “Processot Scheduling for Time
Warp Parallel Simulation.” Proceedings of the SCS Multi-
conference on Advances in Parallel and Distributed Simu-
lation. vol. 23. No. 1. pp. 11-14. 1991.

Lubachevsky, B. “Bounded Lag Distributed Discrete Event
Simulation.” MultiConference on Distributed Simulation.
Feb., pp. 183-191. 1988.
Nicol. D. “Performance Bounds on Parallel Self-Initiating
Disctete Event Simulation.” Technical NASA Contractor
Report 182010. ICASE Report No. 90-21. 1990.

Reynolds. P. “A Spectrum of Options for Parallel Simula-
tion.” Proceedings of the 1988 Winter Simulation Confer-
ence. pp. 325-332. 1988.

Reynolds, P. “An mcient Framework for Parallel Simula-
tions.” Roceedings of the SCS Multiconference on
Advances in Parallel and Distributed Simulation. vol. 23.

Sleator. D.. and Tarjan. R. “Self Adjusting Binary Search
Trees.” Journal of the ACM. vol. 32, No. 3. pp. 652-686.
1985.
Sokol. L.. Stucky. B.. and Heang. V. “MTW: A Control
Mechanism for the Parallel Discrete Simulation.” Interna-
tional Conference on Parallel Ptocessing vol. 3. Aug.. pp.
250-254. 1989.
Steinman. J. “Multi-Node Test Bed: A Distributed Emula-
tion of Space Communications for the Strategic Defense
System.” Proceedings of the Twenty-First Annual Pitts-
burgh Conference on Modeling and Simulation. vol. 21, Part
3, May, pp. 1111-1115. 1990.

Steinman, SPEEDES: Synchronous Parallel Environment
for Emulation . . . , Publication date 1990. pp. 95-103.

Jefferson, The Status of Time Warp Operating System. 1988.

NO. 1, pp. 167-174. 1991.

p ~ . 738-744.

U.S. Patent Aug. 11, 1998 Sheet 1 of 10

I-
3
I-
3
0

cL

5,794,005

U.S. Patent

GfNERATED
EVENTS

PENDING
EVENTS

GENERATED
EVfNTS

P END1 NC
EVENTS

GENERATED
EVENTS

PENDING
EVENTS

Aug. 11, 1998 Sheet 2 of 10 5,794,005
20 20

I A I

22a ---
I I , I \I

CYCLE 3
FIG. 2

SPEEDES
MAIN PROGRAM

1 NITIALIZE

PHASE 1

J.

PROCESS
PHASE 2

EXTERNAL
E3 LO C KI NG

-
TIME

TIME WARP
WENT QUEUE

B RMTH t NG
TIME BUCKETS
EVENT QUEUE

TIME BUCKET
EVENT QUEUE

1 I SEQUENTIAL

181 QUEUE FIG. 3

U.S. Patent Aug. 11, 1998 Sheet 3 of 10

1 - MESSAGE - POINTER
-W ANTIMESSAGE - _ -

EVENT

- MESSAGE - POINTER
-+ ANTIMESSAGE - - -

NODE 0

WOSMESS

HASH -

I
I
1 +
T
I
I
I
I
I
I
I

E HASH

5,794,005

NODE 1

TWOSMESS
1 EVENT

-
c

FIG. 4

NODE 0
WOSMESS

7 -

I
f

- - I
-I -
-1-
I
I
I
I
I
I
I

NODE 1

WOSMESS
EVENT

I 1

FIG. t/

U.S. Patent Aug. 11, 1998 Sheet 4 of 10

NODE 0 NODE 1
EVENTS EVENTS START ~

OF CYCLE

5,794,005

FIG.

LOCAL
EVENT

HORIZON

MESSAGES
FUTURE SIMULATION

MESSAGES
FUTURE
EVENTS TIME EVENTS

TO 1 1 TO T1 TO TI TO 1 1 NODE 0

NODE 1

NODE 2

NODE 3

-
+

+

-D

NODES

6

NODES NODES
1,2,3 WAIT 0,2,3 WAIT 0,1,3 WAIT 0,1,2 WAIT

FOR NODE 0 FOR NODE 1 FOR NODE 2 FOR NODE 3
\

V

FIG. 7

U S . Patent Aug. 11, 1998 Sheet 5 of 10

TO Tl
CUT * r SHORT

FIN ISH ED ’ t FIRST

NODE 3 I:
NODES 0,2,3
DO NOT GO
PAST NODE

1 TIME

TO T I
+ CUT

SHORT
1
I

+‘ CUT
I SHORT
I
I

-1 FINISHED
1 FIRST
I
I
I +

NODES 0,1,3
DO NOT GO
PAST NODE

2 TIME

TO T1
CUT

I ’

NODES 0,1,2
DO NOT GO
PAST NODE
3 TIME

5,794,005

TO T1

rn 1’
I
I
I

NODES 0,1,2,3
GO TO THE

END OF THEIR
BUCKET

FIG. 8

LOCALLY SORTED BINARY TREE GLOBALLY SORTED
PROCESSED EVENTS MERGE EVENTS PROCESSED EVENTS

FIG. 9

US. Patent Aug. 11, 1998 Sheet 6 of 10 5,794,005

WALL
CLOCK

10 I 1 1 ~ 1 , , 1 , , , , , , , 1 , 1 ,

9 - DESIRED STAR =1

8 -

7 - -
- COULD NOT

DESIRED STAR = 00 -

-
-

0 1 2 3 4 5 6 7 8 9 10

FIG. 10 SIMULATION TIME

OPT1 M I STlC ROLL- BACK CONSERVATIVE TIME DRIVEN

SIMULATION
TIME

Ti+ 1 Ti+ 2 Ti EVENT

FIG. 11
34

34

34

34

PARALLEL
COMPUTER

U.S. Patent Aug. 11, 1998 Sheet 7 of 10

PROCESS EVENTS

5,794,005

<-54 READ RECEIVED MESSAGES
1

JI
TIME WARP

COMPUTE GVT

SEND NEW MESSAGES CORRESPONDING

56 READ RECEIVED ANTIMESSAGES
1

I

SEND NEW MESSAGE UNTIL UP TO N1 NEW
MESSAGES CORRESPONDING TO TIME STAMPS

EXCEEDING GVT HAVE WEN SENT
1

BREATHING TIME BUCKETS

I PROCESS EVENTS f-61

62 READ RECEIVED MESSAGES

I READ RECEIVED ANTIMESSAGES
1 I

64 HOLD NEW MESSAGES

I

-50

- 58

-60

-68

FIG. 13

U.S. Patent

0
?--

.-

Aug. 11, 1998 Sheet 8 of 10 5,794,005

IC

j E

00
0-

U

-B

CD
rc) .-

0
M

~ fY

(v
M

m

U.S. Patent Aug. 11, 1998 Sheet 9 of 10 5,794,005

PROCESSING A
SINGLE WENT

154
-

EXIT

THE STATE OF
NO THE SIMULATION

OBJECT CHANGED
BY THE: WENT

FIG, 15

168

CREATE THE OPERATION

PLACE A ROLLBACK
ITEM AT THE TOP OF

THE ROLLBACK QUEUE

:
ROLLBACK QUEUE
FOR THIS EVENT

ROLLBACK ITEM ...
ROLLBACK ITEM 6
ROLLBACK ITEM 5
ROLLBACK ITEM 4

+ROLLBACK E M 3
ROLLBACK iTEM 2
ROLLBACK ITEM 1

H

-166

-1 64

U.S. Patent Aug. 11, 1998 Sheet 10 of 10

r
\

SEND ANTIMESSAGES TO

EVENTS AND CLEAN-UP
ROLLBACK QUEUE

NO CANCEL GENERATED *

A

5,794,005

.) REPROCESS
WENT

b

+-178

FIG. I6

b.
CHECK IF SAME NO

L

SEND ANTIMESSAGES,
CLEAN-UP

ROLLBACK QUEUE,
AND REPROCESS EVENT

5.794.005
1

SYNCHRONOUS PARALLEL EMULATION
AND DECRETE EVENT SIMULATION

SIMULATION OBJECTS AND ACTIVE
EVENT OBJECTS

SYSTEM WITH SELF-CONTAINED

CROSS-REFERENCE TO RELAXED
APPLCIATION

This application is a continuation-in-part of application
Ser. No. 08D46.372 filed by Steinman on May 13, 1994.
abandoned. entitled “SYNCHRONOUS PARALLEL SYS-
TEM FOR EMULATION AND DISCRETE EVENT
SIMULATION” which is a continuation-in-part of applica-
tion Ser. No. 07B80.221 filed by Steinman on Jan. 21,1992
abandoned. entitled “SYNCHRONOUS PARALLEL SYS-
TEM FOR EMULATION AND DISCRETE EVENT
SIMULAITON.”

ORIGIN OF INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-5 17 (35 USC 202) in which the
contractor has elected not to retain title.

TECHNICAL FIELD

The invention relates to discrete event simulation of
objects using a plurality of synchronous parallel computers
in communication with each other so that the objects being
simulated may interact.

BACKGROUND AFtT

Discrete event simulation of objects on a single digital
processor is not very diflicult. In the standard approach, all
events associated with a simulated object are tagged with a
time index. inserted in an event queue, and maintained in
increasing time order by the event queue as events in the
simulation are scheduled at discrete points in time. Simula-
tion proceeds in the computer by processing the event from
the queue having the lowest time index. The resulting
simulation of events in sequence is thus defined by the time
indices.

Processing an event can affect the state variables of an
object and can schedule new events to occur in the future for
one or more simulated objects. This interaction of cause and
effect requires Ulat new events generated be tagged with time
indices greatex than or equal to the current simulation time
index. The generated new events are simply inserted into the
event queue in their proper time index sequence.

Discrete event simulation on parallel processors is nec-
essarily very different from the single processor approach
described above. (See D. A. Reed. “Applications: Distrib-
uted Simulation,” Multicomputer Networks: Message-Based
Parallel Processing, The MlT Press, Cambridge, Mass.. pp.
239-267. 1987.) While it is clear that real world objects may
interact concurrently in time. it is not always obvious how
to rigorously simulate them on parallel processors. The
event queue approach presents the problem of having each
processor of the parallel array continually determine
whether it should process the next event in its queue, or wait
because a new event with an earlier time index is arriving
from another processor. Moreover. the simulation program
would have to be optimistic that events tagged for simula-
tion at a later time index would not be dependent upon the
results of other events triggered by events simulated con-
servatively up to the time of the next event in the queue.

2
Various techniques have been proposed to solve this

problem. each with its respective strengths and weaknesses.
This background discussion will cover only the parallel
simulation techniques that are relevant to the understanding

The simplest time driven approach to parallel simulation
makes use of the causality principle as illustrated in J. S.
Steinman. “Multi-Node Test Bed: A Distributed Emulation
of Space Communications for the Strategic Defense

10 System.” Proceedings of the Tbenty-First Annual Pittsburgh
Conference on Modeling and Simulation. Pittsburgh. 1990.
The causality principle allows for events scheduled between
time 0 and time T to be processed conservatively in parallel
up to the event horizon at time T.

The event horizon for a cycle is defined to be the point in
time where an event to be processed has a later time index
than the earliest new event generated in the current cycle.
Simulation errors can occur if events are processed optimis-
tically beyond the event horizon. For this scheme. known as

2o the time-bucket approach, the minimum time delay T
between an event and any of its generated events must be
known in order to predict the event horizon. Parallel pro-
cessing can then take place in cycles of duration T. As long
as the minimum time interval between events and the events

25 that they generate is known. the simulation can proceed in
time cycles of duration T.

This time-bucket approach has the important property of
requmng very little overhead for synchronization. For
example. each processor in the Hypercube array of proces-

30 sors need only synchronize with all of the other processors
at the end of every cycle, after which all processors incre-
ment their simulation time in unison by the amount T and
proceed to simulate other scheduled events.

Despite the low synchronization overhead of the time-
bucket approach, there are some major drawbacks to that
approach.The cycle durationT must be large enough so that
each processor is able to process enough events to make
parallel simulation e5cient. However, the cycle duration T

4o must also be s m a l l enough to support the required simulation
fidelity. Another important problem is the balancing of the
work load. Because of the synchronous nature of the time-
bucket approach, when one processor has more work to do
than other processors in a cycle. the simulation will be

45 inefEicient. Because of these drawbacks. a more flexible
approach is needed.

Optimistic discrete event simulation approaches must
allow for event simulation to occur in error. but when one
does oaur. a roll-back algorithm is needed to undo the

50 erroneously simulated event. Various optimistic approaches
have been proposed (L. Sokol. D. Briscoe and A. Wieland.
“MTW: A Strategy for Scheduling Discrete Simulation
Events for Concurrent Execution.” Proceedings of the SCS
Distributed Simulation Conference. Vol. 19. No. 3. pp.

55 34-42,1988; K. Chandy and R. Sherman “Space Time and
Simulation.” Proceedings of the SCS Distributed Simulation
Conference. Vol. 21. No. 2, pp. 53-57, 1989.) By far the
most popular optimistic approach is the time-warp operating
system (D. Jefferson, ‘‘Virtual Time,” ACM Transactions on

60 Programming Languages and Systems. Vol. 7. No. 3 , pp.
4-25, 1985) in which simulation errors are handled by
the generation of antimessages which cause the simulation
to roll back to a time before the simulation error occurred.

Because some events can generate future events. and they
65 in turn can generate other future events. cascading of the

error may occur which complicates the roll-back algorithm.
Messages and state variables must be saved for each pro-

5 of the present invention.

l5

35

5.794.005
3 4

cessed event in order to be able to implement a rollback commands from the outside world (which schedules events
algorithm if it becomes necessary. within the parallel simulation). and to synchronize external

Traditional time-warp implementations have required a modules dynamically.
large amount of memory overhead. That memory overhead Breathing Time Warp is a new process for parallel
could be better used for the simulation data. As long as the 5 discrete-event simulation. It adaptively merges the best of
roll-back overhead is small compared to the average amount Breathing Time Buckets and Time Warp to solve the poten-
of time it takes to process an event. the time-warp approach tial shortcomings of each algorithm. Time Warp can be
will have high performance. However, larger data process- unstable because of potential antimessage explosions while
ing units typically execute programs faster. thereby increas- Breathing Time Buckets can be inefficient if the average
ing the occurrences of time warp. In that case. the memory 10 number of events processedper cycle is low. Breathing Time
overhead of time warp could reduce the overall simulation Warp has neither of these problems.
performance to an unacceptable level. Development of the Breathing Time Warp algorithm was

STAIXMENT OF THE INVENTION
motivated by the general observation that events close to
GVT (in terms of number of events. not time), tend to be

A new method has been developed for synchronous l5 Processed correctly while events far from GVT have a
parallel environment for emulation and discrete event simu- greater chance or being rolled back. Thus. it makes sense to
lation. Cenwal to the new method is a technique c&d aggressively send the generated messages from events Close
breathing time buckets (BTB) which uses some of the to GVT while not immediately releasing the messages
conservative techniques found in the prior-art time-bucket generated from events far from GvT- This approach then
synchronization. along with some of the o p ~ s t i c tech- 2o provides a much more stable environment for optimistic
niques of the prior-art time-warp approach. parallel discrete-event simulation.

An event is created by an input message generated A new approach for determining GVT uses two values.
internally by the same processor or externally by another NL and N2. to determine when to compute GVT. and how
processor. A system for routing messages from each proces- much to limit the optimist Of the simulation. This approach
sor to designated processors, including itself (hereinafta 25 (in conjunction with the incremental state-saving techniques
referred to as a “multirww” directs h e message to the used by SPEEDES) effectively eliminates the need for
processor that is intended to process the event. The events memowprotection algorithms such as the cancel-back algo-
are defined kough various virtual fundions by the rithms which are typically found in some advanced Time
during initialization. It is through these virtual functions that 3o
events are processed. Note that multiple messages for an The novel features that are considered characteristic of
object with the same time index will generate multiple this invention are set forth with particularity in the appended
events for that object, not a single event for multiple claims. The invention will best be understood from the
messages. The events are thus initialized by data contained following description when read in connection with the
within the messages. After initialization the messages are 35 accompanying drawings.
discarded. and each event is attached to its own simulation In addition to the Delta Exchange mechanism, the present
object. invention provides a Rollback Queue for incrementally

A processor optixnistically performs its calculations for saving the state of the object as it is modified by event
the event and generates messages to schedule future events processing. When an event changes the state of its simula-
to be generatedin the same processor or any other processor. 40 tion object. a rollback item is pushed onto the top of the
but the generated messages are not immediately released Rollback Queue and specific rollback items. which are C t t
Changes required in the variables of the object affected by objects. inherit from a base-class rollback item object. Also.
the event are calculated and stored. Immediately afterwards storing values. rolling back an event, or cleaning up the
the changes calculated are exchanged for the values of the Rollback Queue is accomplished through store. rollback and
affected variables of the object. If for any reason the 45 cleanup W u a l functions which are defined by the base-class
variables should not yet have been aected. such as because rollback item. Further. new types of rollback items can be
an event processed by another object generates a message easily added into the SPEEDES environment.
for the alTected object in its past. the event being generated The present invention also provides a new technique for
must be rolled back That is accomplished in the BTB supporting lazy cancellation, which allows events, which are
algorithm by exchanging back the computed changes for the 50 C t t objects in SPEEDES. to be processed out of order when
old values of the affected variables and canceling any each event does not effect another event. Lazy cancellation
messages generated but not yet released. In that manner, the is supported by SPEEDES with an object oriented approach
shortcomings of the prim-art time-bucket technique are because accidentally processed events for a simulation
overcome in most situations by permitting events to be object in the work order might not matter. For example. in
Optimistically processed, and if it results that a message 55 prior approaches. when a rolledback event is reprocessed.
should not have been processed, the processed event is the same answer might be produced. In other words. the
rolled back and any messages generated in the processing of event makes the same state changes to the simulation object
the event are discarded. while also generating the same events. Sending antimes-

External interactions are made possible by using a host sages (if Time Warp is used) only to later regenerate the
program connected to the parallel computers that services 60 same messages again for events that are rolled back having
communications between external user modules and the the same properties is wasteful. Also. reprocessing the event
parallel computers. A useful interactive capability is the if it makes the same changes to the state of its simulation
ability for a user to query or monitor the state of simulation object is wasteful and inefficient.
objects while the simulation is in progress. For this purpose, Lazy cancellation avoids the inefficiencies of the prior
the simulation system of parallel computers constitutes a 65 approaches because it is supported by SPEEDES as an
large data base of objects that can be accessed from a user object-oriented approach. The state of the simulation object
module. Further useful interactive capabilities are to issue is rolled forward using the state change made by the event

Systems.

S.793.00S
5

the first time it was processed without the need for memory
overhead. Because events are objects in SPEEDES. the
inputs from the simulation object that are required for
processing an event are saved in the data structures of the
event object.

Lazy cancellation is performed so that the event-
processing inputs are first saved from the simulation object
in the event object. and then. before reprocessing the event.
SPEEDES determines whether the input values of the simu-
lation object changed or if the input values would produce
a different result. If the input values are the same. the event
is rolled forward. otherwise. an antimessage is sent. This
approach is much more efficient than making byte-for-byte
comparisons of the old state of the simulation object with its
new states. which is done in the prior approaches.

The lazy cancellation approach of the present invention is
also more flexible. Events can store important input infor-
mation in their internal data structures to support sophisti-
cated optimization techniques as well. For example. the user
may enable lazy cancellation only for specific events, while
using aggressive or optimistic cancellation as the default for
all other cases.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating the object-based

architecuture at a single node of the invention.
FIG. 2 is a timing diagram illustrating three successive

cycles of operation of the invention and the event horizons
thereof.

FIG. 3 is a block diagram illustrating the architecture of
the main program of the invention.
FIG. 4 is a block diagram illustrating the operation of the

invention using a time warp protocol.
FIG. 5 is a block diagram illustrating the operation of the

embodiment corresponding to FIG. 4 whenever an antimes-
sage is transmitted.

FIG. 6 is a timing diagram illustrating the operation of a
preferred embodiment of the invention.

FIG. 7 is a timing diagram illustrating one method of
operating the embodiment corresponding to FIG. 6.

FIG. 8 is a timing diagram illustrating the preferred
method of operating the embodiment corresponding to FIG.
6.

FIG. 9 illustrates how processed events are globally
sorted in accordance with the invention.

FIG. 10 is a graph illustrating one aspect of the perfor-
mance of the invention.

FIG. 11 is a timing diagram illustrating two regimes for
responding to an earlier viewed event of the simulation.

FIG. 12 is a block diagram illustrating the host interactive
architecture of the invention.

FIG. 13 is a process flow diagram of the breathing time
warp process of the invention.

FIG. 14. is a block diagram illustrating an example of the
structure of incremental state saving capabilities i n
SPEEDES.

FIG. 15. is a flow diagram illustrating the operation of the
Rollback Queue.

FIG. 16. is a flow diagram illustrating the operation of
lazy cancellation.

DETAILED DEScRlpTION OF THE
INVENTION

The object-based architecture of the simulation process of
the invention carried out at each node is illustrated for a

5

10

15

20

25

30

35

40

45

50

55

60

65

6
single simulation object in FIG. 1. Discrete event simulation
of objects begins with some basic steps for a single
processor. such as a processor at a node of a Hypercube.
First an event object is initiated by an input message 10 for
a simulation object received via a multirouter 11 from the
same processor or another processor. Time tagged messages
received are queued in an event library 12. Multiple mes-
sages for a simulation object with the same time index will
generate multiple event objects for the simulation object.
All event objects are user-defined as to their inherent

capabilities from a base-class of generic simulation objects,
where the term “objects” refers to object oriented program-
ming techniques used to simulate physical objects assigned
to processors for simulation of events. such as missiles.
airplanes, tanks. etc.. for simulation of war games. for
example.

Event objects 14 are initialized by data contained within
the messages received. After an event object is initialized.
the message for it is discarded. Each event object is then
attached to its own simulation object by a pointer to the
simulation object E.

Processing an event object in a processor is done in
multiple steps that are written by the user into the simulation
program. In the first step, an event object optimistically
perf- its calculations and generates messages 13 to
schedule future events. However. the event object of the
input message 10 is not immediately executed, Le.. the state
of the simulation object. is not changed, and the messages
for future event objects are not immediately released.
Instead. the state changes and the generated messages are
stored in the event object 14. Only the changes of the
simulation object state variables are stored within the event
object 14.

In the second step. the state variable changes that were
computed in the first step are exchanged with the simulation
object 15 so that the event object then has the old state values
and the simulation object has the new values. For example,
the state variables may consist of 1000 bytes. If the event
requires only four bytes to be changed. only those four bytes
are saved and exchanged. If rollback is later required
another exchange restores the previous state of the simula-
tion object.

This feature, referred to as “delta exchange.” reduces
memoly used in optimistic simulations at the expense of
having to supply the exchange code in the simulation.
Performing a delta exchange involves negligible time. so
that rollback is carried out efficiently when needed without
the need of special-pqmse hardware.

The simulation program may include as part of delta
exchange. the step of each time writing out to files these
deltas. The simulation may then be rewound if rollback is
necessary through several pairs of steps resulting in a
reverse delta exchange for several events in sequence 16.
thus restoring the changes in reverse order from the files.

A delta exchange completes the first phase of carrying out
an event. but as just noted. although the state of the simu-
lation object is changed in the first phase. it can be rolled
back. In the second phase, fuaher processing is carried out.
such as cleaning up memory, or sending messages 13 out to
this andor other processors and to graphics for record or
display. This phase is carried out only after the event object
is known to be valid so that there is no possibilily of a
rollback being required. Consequently, it is usually per-
formed much later in time than the two steps in the first
phase, but always without changing the state variables of the
simulation object.

7
5.794.00s

8
SPEEDES Internal Structure

The invention is realized in a simulation system called
Synchronous Parallel Environment for Emulation and Dis-
crete Event Simulation (“SPEEDES”).

While other multiple-synchronization systems (or test
beds) have been developed. one reason for the success of
SPEEDES is its unique object-oriented design. To begin this
discussion. we first break event processing into some very
basic steps (see FIG. 1).
Creating an Event

An event is created by a message. Note that multiple
messages for an object with the same time stamp will

simulations are still efficient even when this extra step is
performed. Further. because the Delta Exchange mechanism
normally has low overhead. special-purpose hardware to
support rollback efficiently may not be necessary.

The Delta Exchange mechanism has the added benefit of
permitting fast rewind capabilities. Much like an efficient
text editor that saves only the keystrokes (i.e.. changes to the
text Ne). the Delta Exchange mechanism saves the changes
to the simulation objects. These changes (stored in events)

io can be written out to files. The simulation can be rewound
by restoring the changes in reverse order. This is like hitting
the undo button in a text editor. The rewind capability can be

5

generate multiple events, not a single event with multiple
messages. Events are separate objects in C-H and should not
be confused with simulation objects. User-defined events 15 Processing an Event: Phase 2
inherit capabilities from a base-class generic event object. In the third step, further processing is done for an event.
which defines various virtual functions. It is through these This usually involves cleaning up memory or sending exter-
virtual functions that events are processed. nal messages out to graphics. This step is performed only

An important optimization is in the use of free lists for after the event is known to be valid. in other words. when
memory management. SPEEDES manages old messages 20 there is no possibility for the event to be rolled back. This
and events in a free list and reuses them whenever possible. step is usually performed much later in time than the
This speeds up memory management and avoids the previous two steps. The simulation programmer should not
memory fragmentation problem. assume that the simulation object contains valid state infor-
Initializing an Event mation when processing in Phase 2. The processing done in

Events are initialized by data contained within the mes- 25 this step must not change the state variables of its simulation
sage through a user-supplied virtual initialization function. object.
After the event is initialized. the message is discarded into Managing the Event List
a free list. Each event is then attached to its own simulation One of the most time-consuming tasks in supporting
object (i.e.. the event object receives a pointer back to the discrete event simulations can be managing the event list.
simulation object). 30 Managing a sorted list of future events can cripple the
Processing an Event: Phase 1 performance of low-granularity simulation. Io parallel dis-

Processing an event is done in multiple steps that are all Crete event simulations. such management often leads to
supported with Ci-t virtual functions written by the user. In superlinear speedup. SPEEDES makes use of a new tech-
the first step. an event optimistically performs its calcula- nique for handling the event list.
tions and generates messages to schedule future events. 35 The basic idea of this new technique is that two lists are
However. the simulation object’s state must not change. In continually maintained. The primary list is sorted, while the
addition, messages that would generate future events are not secondary list is unsorted. As new events are scheduled. they
immediately released. are put into the secondary list. The earliest event scheduled

The event object itself stores changes to the simulation to occur in the secondary list is preserved. When the time to
object’s state and the generated messages. Only variables 40 process this event comes. the secondary list is sorted and
affected by the event are stored within the event object. then merged into the primary list. The time stamp of this
Thus. if a simulation object contains 50.000 bytes and an critical event is sometimes called the event horizon. How the
event requires changing one of those bytes. only that one invention processes event objects in successive cycles
byte is stored within the event. There is no need to save defined by an event horizon is illustrated in FIG. 2, which is
copies of all 50.000 bytes of the object in case of rollback 45 discussed in detail below with reference to the description of
Delta Exchange the Breathing Time Buckets simulation protocol. Basically,

In the second step, the values computed in Phase 1 are in FIG. 2 events 20 generated during one cycle of the
exchanged with the simulation object. This exchange is simulation become pending events 22 during the next cycle.
performed immediately after the first step. After an Each cycle only processes those pending events 22a which
exchange, the event has the old state values and the simu- XI do not occur beyond the event horizon 24 of that cycle.
lation object has the new values. ’ b o successive exchanges Those pending events 2% which occur beyond the event
(in the case of rollback) then restore the simulation object’s horizon are not processed during the current cycle.
state. This simple approach for managing the event list is faster

When an event is rolled back there are two possibilities than single-event insertions into linked lists. It can also
concerning messages that were generated by the Phase 1 55 outperform some of the more complicated data structures
processing. One is that the messages have already been such as splay trees and priority heaps, if enough events are
released. In this case. antimessages must be sent to cancel collected in the secondary queue on the average for each
those erroneous messages. The other is that the messages cycle.
have not been released yet. In this case, the messages are Event Queue Objects and Multiple Protocols
simply discarded In a SPEEDES simulation. the user does not supply the

The Delta Exchange mechanism greatly reduces memory main progrm The main program is provided by SPEEDES.
consumption in optimistic simulations. However. it has the which. during initialization. reads in a standard file to
drawback of forcing the user to supply the exchange code. configure the simulation. The user can select the synchro-
Errors could creep into the simulation if care is not taken in nization protocol by modifying this file.
this step. 65 SPEEDES supports multiple-synchronization protocols

Performing the Delta Exchange method normally by creating an appropriate event queue object. Each protocol
involves a negligible amount of time. Thus. sequential has its own specific event queue C-H object. which is

used for restarting the simulation after crashes. check-point
restarting. what if analysis. or playback.

60

5.794.00s
9

created during initialization. Each event queue object is then
responsible for performing its specific synchronization algo-
rithm for the simulation. Event queue objects must follow
the rules for event processing (Phase 1. Delta Exchange.
Phase 2).

In the creation of C+t objects that make use of
inheritance. the lower base-class objects are constructed
before the higher ones. Thus. when the main program crates
one of the event queues. the generic base-class event queue
object is constructed first. The constructor of this base-class
automatically calls the user code that creates all the simu-
lation objects and initializes them with their starting events.
This is how the user plugs his code into the SPEEDS
environment.

After initialization. the main program in SPEEDES loops
until the simulation is done. During each loop. four virtual
functions illustrated in FIG. 3 are called for the event queue
object:

1. PROCESS PHASE 1
2. SIMULN'IONTIME
3. PROCESS PHASE 2
4. EXTERNAL BLOCKING
Phase 1 and Delta Exchange event processing is per-

formed for events during the event queue PROCESS
PHASE 1 method. Many events are t y p i d y processed in
t h i s step. When it is determined that enough events have
been processed and that it is time to synchronize, the global
simulation time (for example. Global Virtual Time [GVT] in
Time Warp) is then determined in the SlhNJLAI'ION TIME
method. Cleanup. synchronous message sending, and further
event processing are done in the PROCESS PHASE 2
method. If the simulation expects the outside world to send
a message that must wive before the simulation can
continue. blocking is done in the EXTERNAL BLOCKING
method.
Message Sending

SPEEDES uses both synchronous and asynchronous mes-
sage sending approaches. Time Warp uses the asynchronous
style. while the other algorithms synchronously send their
messages.

There are two extremes for event processing and message
sending. In one extreme. events take very little cpu time to
be processed; message sending is the bottleneck Here.
synchronous message sending wins because it is faster. In
the other extreme, events take a very long time to be
processed; event processing is the bottleneck In this case,
message sending delays do not affect the simulation's per-
formance and it does not matter whether synchronous or
asynchronous approaches are used. However. somewhere
between these two extremes is a boundary where one
approach may be better than the other.
SPEEDES SIMULATION PRCYI'OCOLS

As illustrated in FIG. 3. the SPEEDES main program
interfaces through a generic event queue with any one of
several different protocols, including the well-known prc-
tocols of time warp event queue. time bucket event queue
and sequential event queue. This section briefly discusses
the well-known parallel simulation protocols supported by
SPEEDES. while the next section explains the new parallel
simulation approach. Breathing Time Buckets. in more
detail. Following the discussion of Breathing Time Buckets,
we describe some new protocols that look promising for
efficient parallel simulation.
Sequential Simulation

10
generates messages for his events. but they are not queued
up for transmission. Instead, they are turned into events
directly. The Delta Exchange mechanism is also used. The
combined overhead for message generation and Delta

5 Exchange has been observed to be less than 1% for low-
granularity events (i.e.. events in which the system overhead
dominates).
Time Bucket Synchronization

One of the simplest approaches to parallel simulation
LO makes use of the causality principle. As long as a minimum

time interval. T. between events and the events that they can
generate is known. the simulation can proceed in time cycles
of duration T. This approach is called Time Bucket Syn-
chronization. It has the important property of requiring very

15 little overhead for synchronization. Each node must syn-
chronize with all the other nodes at the end of every cycle,
after which all nodes increment their simulation time in
unison by the amount T.

Despite the low synchronization overhead. the Time
20 Bucket approach has some drawbacks. The cycle duration T

must be large enough for each node to process enough
events to make parallel simulation fidelity. Load balancing
over the small time interval T can also be a problem.

In most discrete event simulations. the time step T is
25 unknown or. even worse, has the value zero. Thus. simula-

tions that can run under t h e Bucket synchronization are a
subset of all parallel discrete event simulations.
Time Warp

The Time Warp algorithm has been heavily discussed in
30 the. literature. SPEEDES offers a unique set of data struc-

tures for managing the event processing in its version of
Time Warp.

When an event is processed, it may generate messages.
These messages are immediately handed to the TWOS-

35 MESS server object supported by SPEEDES. This object
assigns a unique ID to the outgoing messages and stores the
corresponding antimessages back in the event. Note that
antimessages are not complete copies of the original
message, but are very short messages used for bookkeeping.

Referring now to FIG. 4, when a message arrives at its
destination. an antimessage is created and stored in the
TWOSMESS hash table. The hash table uses the unique
message ID generated by the sender. An event is automati-

45 cally constructed from the message and is handed to the
Time Warp event queue object. This event is put in the
secondary queue if its time stamp is in the future of the
current simulation. Otherwise. the simulation rolls back

Rollback restores the state of the simulation object. which
50 means calling the Delta Exchange method for all the events

processed by that object in reverse order and generating
antimessages. Aggressive cancellation is used.

Referring now to FIG. 5. antimessages are stored in the
events and are simply handed to the TWOSMESS object.

55 When these antimessages arrive at their destinations. the
hash table already contains pointers to the events that they
created. Those events are then rolled back (if already
processed) and marked as not valid.

Periodically (typically every 3 seconds of wall-clock
60 time). the Global Virtual Time (GVT) is updated. The GVT

represents the time stamp of the earliest event unprocessed
in the simulation. One problem in determining the GVT is in
knowing whether messages are still floating about in the
system. This problem is solved by having each node keep

40 All of this is done transparently for the user.

When SPEEDES runs on one node. the sequential event 65 track of how -many messages it has sent and received. Fait
synchronous communications are used to determine when
the total number of messages sent equals the total number of

queue object is automatically created. AU the overhead for
message sending and rollback is removed. The user still

5.793.005
11 12

messages received. When this condition is true. no more hardware communication channels to the appropriate node
messages are in the system and the GVT can be determined. containing the destination object. When messages arrive at

After the GVT is known. cleanup is performed. The their destination nodes. they are fed into the event library.
memory for all processed events with time stamps less than which converts messages into events.
or equal to the GVT is handed back to the SPEEDES 5 These new events are not immediately inserted into the
memory management system (free lists). The hash tables are event queue. Rather. they are collected in a temporary queue
also cleaned up. as their antimessages are no longer needed. as described previously. When all the new events are finally
BREATHING TIME BUCKEI'S created. the temporary queue is sorted. using a merge sort

The original SPEEDES algorithm (Breathing Time algorithm that has mlog(m) as a worst-case sort time (for m
Buckets) is a new protocol or windowing parallel simulation io events). After the temporary queue of new events is sorted.
strategy with some unique properties. Instead of exploiting it is merged back into the local event queue.
lookahead on the message receiver's end or using preknown There is an obvious problem with what has been
or calculable delays. it uses optimistic processing with local described so far. Some of the nodes may have processed
rollback. However. unlike other optimistic windowing events that went beyond the GST (Le.. the true event
approaches. it never requires antimessages. Local rollback is 15 horizon). An event. which is attached to a locally simulated
not a unique concept either. However, the Breathing Time object. must be rolled back if any of the newly generated
Buckets algorithm allows full connectivity between the events affect the same object in its past. Rollback involves
simulation objects (often called logical processes). discarding the messages generated by the event (which have
Fundamental Concepts not yet been released because the time stamp of the event is

The essential synchronization concept for Breathing Time 20 greater than the GST) and exchanging state variables back
Buckets is the causality principle. Like the Time Bucket with the stimulated object. Thus. rollback overhead should
approach. the Breathing Time buckets approach processes remain s m a l l . Antimessages are never needed because bad
events in time cycles. However. these time cycles do not use messages (which would turn into bad events) are never
a constant time interval T. They adapt to the optimal width. released.
which is determined by the event horizon. Thus. in each 25 Asynchronous Broadcasts
cycle. the maximum number of causally independent events If the Breathing Time Buckets algorithm ended here. it
(ignoring locality) is processed. This means that no limiting would have a limited number of applications. Pathological
assumptions are made that restrict the simulation as there are situations could arise if the algorithm was not modified. For
in the Time Bucket approach. Deadlock can never occur. example. FIG. 7 shows how an unbalanced work load could
since at least one event is always processed in a cycle. 30 affect performance. The problem with Breathing Time Buck-

Refemng now to FIG. 6, the event horizon is defined as ets as presented so far is that all nodes wait for the slowest
the time stamp of the earliest new event generated in the node to finish. A modification to the basic algorithm is
current cycle (much like the event list management previ- needed to circumvent this problem.
ously described). Processing events beyond this boundary A simple mechanism to solve this problem incorporates
may cause time accidents. Thus. events processed beyond 35 an asynchronous broadcast mechanism that tells all the
the event horizon may have to be rolled back. The local nodes when a local event horizon is crossed and is illus-
event horizon for a node is defined as the time stamp of the trated in FIG. 8. When one node crosses its local boundary.
earliest new event generated by an event on that node. The it broadcasts this simulation time to all the other nodes.
global (or true) event horizon is the minimum of all local When a node receives one of theses broadcast messages, it
event horizons. as illustrated in FIG. 6. The event horizon 40 may determine that it has gone beyond the point of the other
then defines the next time step T. node's boundary; thus, it should stop processing. on the

To determine the global event horizon, optimistic event other hand. the node may not have reached that time yet, so
processing is used. However. messages are released only processing should continue. It is very likely that the first
after the true event horizon is determined, so antimessages node to cross its local event horizon (in wall-clock time) has
are never required. Rollback simply involves restoring the 45 a greater value for this boundary than another node. If this
object's state and discarding messages enonmusly gener- happens. a second node will broadcast its time as well.
ated. Thus, the Breathing Time Buckets algorithm eliminates Multiple broadcasts may occur within each cycle.
all the potential instabilities due to excessive rollback that It is important to get a proper view of the broadcast
are sometimes observed in Time Warp. This will be dem- mechanism. Runaway nodes that process beyond the Que
onstrated later in this specification. 50 event horizon while the rest of the nodes are waiting can ruin
Determining the Event Horizon the performance of the Breathing Time Buckets algorithm

Determining the event horizon on a single processor is not unless something is done. The proper view of the broadcast
very difficult. It is much more challenging to fmd in parallel. mechanism is that it aids in speeding up the processing by
For now. assume that each no& is allowed to process its stopping runaway nodes. The asynchronous broadcasts are
events until its local event horizon is crossed. At this point, 55 in no way required by Breathing Time Buckets to rigorously
all nodes have processed events up to their local event synchronize event processing. The broadcasts function in
horizon and have stopped at a synchronization point. the background and only aid in enhancing performance.

The next step is for the node to synchronously commu- Non-Blocking Sync
nicate its value for the local event horizon. The minimum of With the asynchronous broadcast mechanism designed to
all these is defined to be the global event horizon. In other 60 stop runaway nodes. the Breathing Time Buckets algorithm
words. the earliest time stamp of a message waiting to be becomes a viable solution to support general-purpose dis-
released is identified. The global event horizon is then used crete event simulations. However. there still is room for
to define the global simulation time (GST) of the system. improvement. It is wasteful for nodes that have crossed their

After the GST is defined. all events with time stamps less I d event horizon to sit idle waiting for other nodes to
than or equal to this time are made permanent. This means 65 complete their processing. Note that this problem always
that messages which were generated by events that had time arises in the world of synchronous parallel computing. It is
stamps less than or equal to the GST are routed through the important to evenly balance the work load on each node so

5,794.005
13

the time spent waiting for the slowest node to finish its job
is minimized. The Breathing Time Buckets algorithm. as
described so

far. suffers from this same “waiting” problem. An obser-
vant simulation expert might ask “Why do you insist on
stopping just because the event horizon has been crossed?”
In fact. there really is no reason to stop processing events
until all the nodes have crossed the horizon! Erroneously
processed events can always be rolled back without much
overhead (because no communications are involved).
Therefore. it does not hurt to continue processing events
beyond the horizon. It might pay to be optimistic and hope
that the processed events with time stamps greater than the
event horizon do not have to be rolled back. The trick then
is to efficiently find out when all the nodes have finished.

One way to support this needed mechanism would be
force each node to send a special message to a central
manager when it thinks that it has crossed the event horizon.
When the central manager receives this message from all
nodes. it broadcasts a message back to the nodes saying that
it is time to stop processing events for th is cycle. This
approach is used when running Breathing Time Buckets on
a network for Sun workstations over Ethernet. This mecha-
nism has the good characteristic of being portable. However.
it is not scalable to large machines.

Other ways to solve this problem exist. using scalable
asynchronous control messages. shared memory, or reduc-
tion networks, but a better solution would be to use a global
hardware line. The idea here is that when each node crosses
the event horizon. it sends a signal on a hardware global line.
When all the nodes have done this. an interrupt is simulta-
neously fired on each node and a dag is set telling us that all
nodes have crossed the event horizon.

While the Breathing Time Buckets algorithm does not
require global hardware lines for synchronization, making
use of the global line has been observed to enhance the
performance by as much as 15% over the asynchronous
control message approach.
Local Rollback

One further improvement can be made to the Breathing
Time Buckets algorithm. Events that are generated locally
@e.. messages that do not leave the node) do not have to
participate in the event horizon calculation. Rather. they can
be inserted into the event list and possibly be processed
within the same cycle. This capability is very important for
simulations in which events schedule future events for the
same object. A good example of this would be a preemptive
priority queueing network. Supporting this capability
involves more overhead, but it may be essential for a large
class of simulation applications.
INTERACTIVE3 SPEEDES

This section will discuss the dBculties of supporting
interactive simulations. We will then describe how
SPEEDES solves these problems.
Simulation Output

In an interactive parallel simulation involving humans,
information pertaining to events that have been processed is
released to the outside world. Humans can view these data
in various forms (graphics, printouts, etc.). Humans are then
allowed to interact with the simulation based on information
that was previously released.

When a simulation runs on a single computer, using a
sorted event queue, events are processed in their correct time
order. If the results of processed events were released to the
outside world. then they would naturally be viewed in their
correct time order. This is not true for parallel simulations.

In parallel simulations that operate in cycles, each node
has its own local event queue. Assume that m events are

14
processed globally for a particular cycle and that there are N
nodes. Then each node has m/N locally processed events
(assuming perfect balance). While these processed events
are maintained in their proper time order locally. further

5 steps are required to merge them into a single globally sorted
list. The steps to do this on a parallel computer are illustrated
in RG. 9 and are as follows:

The time cycle boundaries t, and t,,, are known. Assume
a flat distribution for the time stamps of the processed

10 events. Each node breaks up its processed event queue into
N sublists. each of length mlN2. Every sublist passes to a
different node k. where k4.1.2. . . . N-1. The lower time
boundary of each sublist residing on node k is t,+k
(t,+l-t,)/N. All events in each of the sublists on node 0 have

15 time stamps less than those on node 1. etc. At this point. each
node performs a local merge sort of its N sorted sublists
using a binary search tree. Merging the N sublists on each
node takes (m/N) log,N steps. Thus. the time for merging
these lists can written as:

20
T mer&&) log,N

It would appear that parallel simulations require an addi-
tional amount of work to send globally sorted event infor-
mation out to the external world. However. there is more to

imagine a simulation in which each event generates a
single new event. If m events are globally processed in
particular cycle. then each node will receive. on the average
(assuming perfect balance.). m/N new events. Thus. m/N
new events must be inserted back into each local event
queue. This can be accomplished by first soaing the m/N
events and them merging them back into the local event
queue.

Sorting m events for a simulation running on one node
35 takes m log,(m) steps. ~f perfect speedup is attained one

might naively expect it to take [m log2(m)]/N steps for N
nodes. However, each node’s performing the task of sorting

events only takes (m/N) log,(dN) steps. There is an
apparent superlinear speedup in maintaining the event
queue. The amount of time it takes to sort m events on N
nodes is better than a factor of N compared with the time on
one node. The time for maintaining the event queue can also
be written as:

25 consider.

30

40

7’ -fd‘O[%(m)-hN 45

When combining Tmerge and Tsort, the superlinear speedup
is exactly cancelled. There is no contradiction to the thm-
retical upper bound for parallel speedup. The best way to

50 understand the apparent superlinear speedup (which is
always present in parallel simulations that use local event
queues) is to realize that information is lost if the processed
events are not regathered into a single globally sccted list for
the purpose of output.

55 Simulation Tie Advancement Rate (STAR) Control
If humans are allowed to interact with a simulation while

it is in progress. then it is important for the simulation to
advance smoothly in time. In other words. the Simulation
Time Advancement Rate (STAR) should be as close to a

60 constant as possible, and equal to one if real-time interaction
is desired Interactive parallel simulations must be able to
control the advancement of simulation time with respect to
the wall clock.

One important principle in controlling the STAR is that it
65 can always be slowed down; it is always tougher to speed it

up. For example. if a simulation can run two times faster
than real time (from start to finish). then pauses can always

5.794.005
1s

be added to the simulation to slow it down to real time if
desired. as illustrated in the graph of FIG. 10. While the
average STAR may run two times faster than real time. the
instantaneous STAR at any given time can vary. At times.
the instantaneous STAR may be slower than real time. Three
important points must be made:

First. the parallel simulation algorithm should run as fast
as possible. For example. if the same simulation could run
with a STAR equal to ten. using a different approach. then
slowing it down to real time would be easier than when
using algorithm with a STAR equal to two. The first and
most important goal for any interactive parallel simulation
approach should be to run as fast as possible.

Second. a mechanism to smooth the STAR is needed. If
the simulation is allowed to progress significantly into the
future. the results of the simulation can be buffered. The
results can then be released to the external world smoothly
in time (i.e.. throttled by the wall clock). However. when the
outside world interacts with the simulation operating in this
manner. rollback may be required to bring the simulation
back to the time that was perceived by the user. Rollback due
to external interactions requires saving the state of all
simulated objects at least as far back in time as when the
interaction occurred If the simulation is allowed to progress
too far into the future, an enormous amount of memory will
be required for rollback state saving.

Another option for smoothing the STAR is to process
event sin large cycles and then. as a rule. not allow external
interactions to occur until the next cycle. If the cycles are
large enough. then the STAR will be smoothed. The cycles
must be throttled by the wall clock to maintain the desired
STAR. However. large cycles may force an undesirable time
granularity into the interactive simulation, and the user may
not be able to interact as tightly with the simulation as
desired. Furthermore. the information for each processed
event coming from the simulation should also be throttled by
the wall clock to avoid a choppy-looking simulation.
Third. regardless of whether or not the simulation keeps

up with the desired STAR, rigor should always be main-
tained. Simulation mors (or time accidents) resulting from
an attempt to control the =AR should never be allowed to
happen. Setting the desired STAR to infmity should have the
same meaning as letting the simulation run as fast as
possible.

If the simulation cannot keep pace with the desired STAR.
then there should be no pauses to throttle the simulation. If
the simulation operates in cycles. then it could possibly
catch up in the next cycle (and should be allowed to). A
resolution for the desired STAR should be specified to
determine acceptable performance (in other words. how far
the simulation can lag behind the desired STAR and st i l l be
within specs).
Human Interactions

In the past. it has been very dif€icult to support interactive
parallel discrete event simulations. Consider. as an example.
the Time Warp algorithm as implemented in SPEEDES. In
Time Warp. each node keeps track of its own simulation
time. Because of the optimistic event processing. there is no
certainty of correctness beyond the GVT. Therefore. Time
Warp can release to the outside world only those message
that have time stamps less than or equal to the GW. Note
that we assume that the outside world (e.g., graphics.
humans, and external programs) cannot be rolled back.

If only viewing the results of a simulation were desired.
there would be no problem. Output from the simulation
could be buffered and released only at GVT update bound-
aries. However, when the outside world tries to interact with
the simulation. the situation becomes more difficult.

16
Humans like to interact (see the COMMAND section)

with the parallel simulation based on the output that has been
received (see the QUERY and MONlTOR sections). The
earliest time the user can interact with the simulation is at the

5 GVT. Otherwise. the law governing external rollbacks
would be violated. The goal for interactive parallel simula-
tions is to allow the human to interact as tightly with the
simulation as possible.

In the SPEEDES implementation of Time Warp. an unex-
10 pected external message received from the outside world can

cause an object to roll back to the GVT. This allows the
tightest interactions. Because conservative algorithms (such
as Time Bucket synchronization) do not support rollback.
they do not permit the same tight interactive capabilities, as

15 illustrated in FIG. 11. This is one of the major drawbacks of
conservative algorithms.
EXTERNAL MODULES

Referring now to FIG. 12. interactive SPEEDES accom-
modates external interactions by using a host program 30 to

20 service communications between the central parallel simu-
lation 32 and the outside world. The host program allows
external modules 34 to establish connections to the central
parallel simulation using. for example. UNIX Berkeley
sockets.

One important characteristic of the SPEEDES approach is
that external modules (i.e.. external computer programs that
would like to be part of the simulation) are not required to
participate in any of the high-speed synchronization proto-
cols. Instead, a hybrid approach is used. This is extremely

30 important for interactive simulations over networks that
have high latencies. The high-speed cenlral simulation runs
on the parallel computer and provides control mechanisms
to the outside world.

External modules view the parallel simulation much as a
35 central controller views it. The external modules are still

event-driven. but they must not communicate too often with
the central simulation. Otherwise. the simulation will be
bogged down by the large comunication latencies.

Interactive SPEEDES does not make any assumptions
concerning the numbex of external modules or human users
participating in the simulation. In fact. the number can
change during the course of simulation. The connection
procedure simply involves establishing a communication
socket to the host.

25

QUERY
45

A very useful capability interactive SPEEDES supports is
the ability to QUERY the stat of simulation object while the
simulation is in progress. The simulation can be viewed as

5o a large database of object that change in time. The QUERY
function allows an external user to probe into the objects of
the simulation to detennine how they are performing.
MONlTOR

The MONITOR capability allows the state of a particular
55 simulated object to be monitored as its events occur. The

effect of every event for that object can be sent back to the
external monitoring module. This can be extremely useful as
an analysis tool for studying the behavior of various com-
ponents within the parallel simulation.

60 COMMAND
The COMMAND function supported by interactive

SPEEDES allows a user to send a command (or generate an
event) to a simulation object. This permits users to change
the simulation while it is in progress. Commands should

65 work in conjunction with the QUERY and MONlTOR
functions so the user can change the simulation based on
what is perceived.

5.793.005
17

EXTERNAL MODCiLE
The last interactive function SPEEDES supports is the

control of an EXTERNAL MODlrLE from within the
parallel simulation. It is assumed that external modules are
remote objects that tend to have long opaque periods
between communications. The are controlled by an object
simulated on the parallel computer. The external module
attaches itself to a simulation object and then is controlled by
that oqject.

External modules do not participate in the high-speed

18
efficient. Time Warp, on the other hand. sometimes exhibits
instabilities that can unleash an avalanche of antimessages.

Breathing Time Buckets has one drawback: it requires
cycles to process enough events to remain efficient.

5 However. an analytic model or analysis that predicts the
number of events processed on the average for each cycle
has been developed. This analysis shows that large simula-
tions with many objects and events perform more efficiently
with Breathing Time Buckets than small simulations. It also

io confirms the fact that lookahead. even in optimistic
synchronization algorithms supported internally within simulations. improves performance.
SPEEDES. Rather. they are given input messages with a The Time Warp algorithm has been heavily discussed in
start time. an end time. and their data to process. When the the literature. The main distinction between Time Warp and
external module has completed processing its data. a done Breathing Time Buckets i s that messages in Time Warp are
message is sent back to the controlling simulation object. 15 sent optimistically (i.e.. aggressively. or with risk). When an
This causes another message to be sent back to the external event is rolled back. all of the messages that it generated
module. and processing continues. must be canceled by sending antimessages. It is possible for

If the done message has not arrived before the appropriate simulations with excessive numbers of rollbacks to produce
simulation time. the parallel simulation (which is running an explosion of cascading antimessages. This "thrashing"
faster than the external module) waits. If the done message 20 phenomenon can result in unstable performance of Time
arrives early. the external module (which is running faster Warp.
than the parallel simulation) will have to wait for the One other distinction between Time Warp and Breathing
simulation to catch up before it receives its next message. Time Buckets is the way garbage collection is handled. I n
When an external module disconnects from the simulation Breathing Time Buckets, garbage collection is performed at
(whether on purpose or accidentally). this blocking mecha- 25 the end of each cycle while in Time Warp, there are no
nism is automatically removed natural cycle boundaries. Instead, a concept called Global

Time Warp and Breathing Time Buckets are two general- Virtual Time (GVT) is defined as the time tag of the
purpose optimistic synchronization strategies for supporting minimum unprocessed event (or message) in the system.
parallel discrete-event simulations. However. each one of Traditional approaches periodically (typically every three
these approaches has potential fatal shortcomings. Time XI seconds of wall-clock time) pause the simulation for the
Warp may exhibit rollback explosions that can cause an puIpose of globally determining GVT on all of the proces-
avalanche of antimessages. Breathing Time Buckets. on the sors. Garbage collection is then performed for all processed
other hand. may not be able to process enough events per events with time tags less than or equal to GVT.
synchronization cycle to remain efficient. NEW GVT PROCESS EMPLOYED IN BREAMDIG

developed in the Synchronous Parallel Environment for The present invention. Breathing Time Warp. overcomes
Emulation and Discrete-Event Simulation (SPEEDES) oper- the foregoing limitations. Breathing Time Warp in
ating system. This new strategy solves both of these prob- SPEEDES uses a unique GVT algorithm. which. in con-
lems by mixing the two algorithms together, resulting in the junction with incremental state-saving techniques that
best of both methods. 40 reduce memory consumption rates. effectively eliminates

This specification describes the implementation of the (for most cases) the possibility of memory consumption
Breathing Time Warp algorithm in SPEEDES, and then problems that can be caused by processing events too
shows how this new approach sometimes improves the optimistically. Complicated and expensive cancel-back
performance of parallel discrete-event simulations. algorithms. therefore, are not required. nor are they sup-
HISTORY OF TIME WARP AND BREATHING TIME 45 ported in SPEEDES.
BUCKEWS Breathing Time Warp in SPEEDES accepts two run-time

Synchronous Parallel Environment for Emulation and input parameters, N1 and N2. As nodes locally process their
Discrete-Event Simulation (SPEEDES) began as a simula- events. SPEEDES (on each node) keeps track of how many
tion environment that featured a new algorithm (Breathing events have been processed locally beyond GVT. When this
Time Buckets) for synchronizing parallel discrete-event 50 number exceeds N1 on a node (or there are no more local
simulations. As the environment matured. directly compar- events to process), the node calls its nonblocking sync
ing this algorithm with other synchronization strategies such function. and without blocking. continues to process events.
as Time Bucket Synchronization and Time Warp became When the last node makes its call to the nonblocking sync
desirable. The most straightfmard way to make those function, all of the nodes simultaneously stop their event
comparisons was to support the other algorithms within the 55 processing and GVT is globally determined.
SPEEDES environment. This provided a much more accu- In addition to this. another boundary. N2. is defined to be
rate capability for measuring different synchronization an upper limit for the number of events that are allowed to
approaches because when making comparisons, the same be processed beyond GVT. This effectually stops mnaway
simulation code is executed. Also. supporting multiple syn- nodes from consuming all of their available memory while
chronization strategies in a single environment such as 60 still remaining optimistic. Typical values for N1 and N2
SPEEDES results in a more powerful and flexible simulation used by SPEEDES are 500 and 2.500. respectively. These
system. numbers are tunable, user-defined parameters. Optimal val-

Some of the early benchmarks developed under ues for N1 and N2 are a function of the hardware and the
SPEEDES showed the potential problems of Breathing Time event granularity of the application. but they are not a
Buckets and Time Warp. However. these two algorithms 65 function of simulation time.
break down in different ways. Breathing Time Buckets is not Choosing N1 and N2 is typically not very difficult. N1 is
always able to process enough events per cycle to remain normally chosen to be large enough so that enough work is

A new invention, called Breathing Time Warp, has been 3s TIME WARP

5.794.005
19 20

done by the processors during each GVT cycle (a function
of the hardware and the average event processing work
load). N2 should be much larger than N1 so that optimistic
event processing is not inhibited. but N2 should not be so
large that all of the available memory on a processor can be 5 The Time Warp Phase
depleted. The Breathing Time Warp algorithm starts every cycle

One might observe the similarities of this approach with with the Time Warp algorithm. The first N1 events processed
the Moving Time Window strategy for limiting the amount beyond GVT have their messages sent out immediately. This
of optimism in Time Warp. However. unlike Moving Time means that the messages that are transmitted in this phase
Windows. the SPEEDES approach is independent of simu- IO might have to be canceled by antimessages. although. as it
lation time. It does not require knowledge of the intricate has already been mentioned. these messages most likely will
timing strategies in the event scheduling that is performed not require antimessages because the events that generated
within the simulation. It does. however. effectively solve (or them are probably valid since they are close to GVT. In a
at least reduce) the problem that overly optimistic simula- sense, this is the opposite of other risk-free approaches that
tions may encounter. namely. overconsumption of the avail- 15 hold onto messages until it is known that it is safe to process
able memory on a processor. The Moving Time Windows them.
approach. while successful in some applications, does not At the start of a processing cycle. each node will possibly
have these characteristics in the most general sense. have a number of events already processed beyond GVT.
MOTIVATION FOR BREATHING TIME WAFS’ The Breathing Time Warp algorithm goes through these

Time Warp. the conventional version. has the problem of 20 events and releases their messages if they have not yet been
sometimes being overly optimistic. For example. in simu- sent. Note that at most. N1 events will have their messages
lations where the event granularity is very low (Le.. com- released. If there are more than N1 optimistically processed
munications overhead is significant), eveq message that is events beyond GVT. the Breathing Time Buckets algorithm
sent or received wastes time in the simulation. For these switches on starting with the N1+1 event.
cases. it may be extremely important to only send the 25 Event processing is continued with the Time Warp strat-
messages that have a good chance of being valid. Another egy until N1 events have been processed beyond GVT.
way of saying this is. “We want to reduce the risk so that During this phase. there may be rollbacks and antimessages.
antimessage explosions never happen.” but when N1 events have been processed beyond GVT. the

Breathing Time Buckets. at the other extreme. only sends Breathing Time Buckets algorithm automatically switches
messages that are known to be valid It. therefore. can be 30 on.
viewed as an approach for providing risk-free Time Warp. The Breathing Time Buckets Phase
Nevertheless. Breathing Time Buckets may be too conser- In the Breathing Time Buckets phase. events are
vative in its attempt to eliminate the need for antimessages. processed, but their messages are not released They are
It may turn out for some applications that cycles in Breath- saved within the event. which in SPEEDES is a Ctt
ing Time Buckets do not process enough events to remain 35 software object. The minimum time tag of all unsent mes-
efficient. sages is monitored as an estimate of the event horizon

A basic observation of optimistic parallel simulations can according to the Breathing Time Buckets algorithm,
be made at t h i s point that is the motivating premise of the During the processing of events in the Breathing Time
Breathing Time Warp algorithm: Buckets phase, there may be messages and antimessages
Basic Premise 40 working their way through the hardware communications

The probability of an optimistically processed event king channels. They are received and handled appropriately. It is
rolled back tends to increase the furthex out (in tern of possible that some of the messages received correspond to
number of events) it is processed beyond GVT. In other events that should have been processed in the Time Warp
words, the further a node gets beyond GVT, the less Likely phase (Le., events that would have been within N1 events
its event processing is valid. This is especially true for 45 locally from GVT). If this happens, SPEEDES switches
runaway nodes that are way out h front of the simulation. back toTime Warp processing (i.e., with aggressive message
Another way of stating this is: Events close to GVT (in terms sending) for that event.
of numbers of events) tend to be processed correctly. espe- When the event horizon is crossed. all nodes stop their
cially if lookahead is available. processing and go through a GVT calculation. Note that the

With this basic premise as a motivation for designing 50 event horizon. at this point, might be different from GVT
optimistic. parallel. discrete-event simulations, it makes because it is possible for some of the event-generation
sense to release the messages generated from events that are messages to still be in transit at this time. These messages
close to GVT, but not to immediately release the messages must be flushed out of the system before GVT can be
generated by events that are far from GVT. This is the basic accurately &termined.
strategy of Breathing Time Warp.
BREATHINGTlME WARP

Time Warp), but then at some point makes a transition to
risk-free message-sending methods (Le.. Breathing Time
Buckets). There are multiple phases in the Breathing Time
Warp algorithm.

55 TheGVTPhase
One of the problems in determining GVT is ensuring that

The Breathing Time Warp process is a mixture of both
Time Warp and Breathing Time Buckets. It should be noted
that if there is a minimum time delay, T, between events and
the events that they generate (this is one way of describing
lookahead). then The Breathing Time Warp algorithm can
also be a mixture of Time Buckets. Events can be processed
conservatively up to GW+T so that state-saving overhead.
etc. can be eliminated for those events. However. this aspect
of the algorithm will not be discussed in this paper.

Each cycle in the Breathing Time Buckets algorithm starts
out by using aggressive message sending methods (i.e..

there are no messages remaining in the communications
hardware. If a message with a time tag earlier than all other
events is still in transit. GVT will be incorrect and simulation

60 errors may occur. Furthermore. it is a good idea to flush all
of the messages out of the communications hardware to
provide flow control. If this is not done, it is possible to
overtax the capabilities of the communications hardware,
cause errors. and possibly even cause crashes to occur in the

When a node in SPEEDES sends a message
asynchronously. a local counter. n-mess-sent. is incre-

65 system.

5.794005
21

mented. Additionally. when a node in SPEEDES receives an
asynchronously sent message. a local counter, n-mess-rec,
is incremented. During the GVT phase, each node reads
incoming messages while at the same time monitoring
(globally) whether n-mess-sent is equal to n-rness-rec.
In practice, achieving this may be difficult. Some sample
code (which has been simplified for this paper) for finding
GVT is given in Appendix B hereof.
The Garbage Collection Phase

The garbage collection phase of the Breathing Time Warp
algorithm follows immediately after the GVT phase. It is
sometimes also called the Phase 2 processing step in the
SPEEDES generic cycle and has been discussed in the
literature. During this phase. messages which have not yet
been released are synchronously sent from all of the pro-
cessed events with b e tags less than or equal to GVT.
Furthermore, an additional processing step is permitted for
each event (such as sending input/output to the outside
world). Then. all rollback-related mechanisms and state-
saving memory resources are returned to the SPEEDES
operating system.

One important note on how rollback is managed in
SPEEDES is that when an event is processed optimistically,
it is simultaneously inserted into two processed event lists.
One of the lists contains all of the locally processed events
on that node and is called Qproc. The size of the @roc list
is used to make comparisons with N1 and N2 (see discussion
above on Time Warp). The other list that the processed event
resides in is maintained within its own simulation object
(i.e.. the simulation object that was updated by the event). In
other words, each simulation object also contains a list of its
processed events.

Garbage collection is performed by going through the
Qpoc list. removing valid events. and then cleaning these
events out of their own object's processed list. Systems that
do not use a two-list approach (Le., one for all events
processed locally on the node, and another for each object
containing its processed events). require every simulation
object to be checked for cleanup, even if no events have been
processed for that object in the current GVT cycle. If a
simulation has many thousands of objects on each node. this
overhead can become quite expensive. Therefore, the
SPEEDES approach scales much better than other
approaches that do not use two processed event lists. but
rather have only processed events for each object. The
foregoing is summarized in FIG. 13. The preferred process
consists of a time warp step (block 50 of FIG. 13) and a
breathing time buckets step (block 60). The time warp step
of block 50 includes processing events (block 52). reading
received messages (block 54) and antimessages (block 56),
transmitting new messages generated by the processing
sub-step of block 52 and stopping such transmission before
N1 new messages corresponding to time stamps greater than
GVT have been transmitted (block 58). Thereafter. the
breathing time buckets step is performed (block 60). includ-
ing processing events (block 61). reading received messages
(block 62). reading received antimessages (block 63). while
refraining from transmitting new messages (block 64). A
new value of GVT is computed in the manner described
above (block 66) and then new messages corresponding to
time stamps less than GVT are transmitted (block 68). The
process then cycles back to the time warp step of block 50.
CHARACTERISTICS OF BREKI'HING TIME WARP

Breathing Time Warp takes on the characteristics of both
Breathing Time Buckets and Time Warp. Consider various
extremes for a simulation running under the Breathing Time
Warp algorithm.

22
Large Event Horizon

In the case where the event horizon is very large (Le..
many events can be processed each cycle). the Breathing
Time Warp algorithm behaves much like the Breathing Time

5 Buckets algorithm because most of the events are processed
in the Breathing Time Buckets phase. Performance studies
show that for simulations with large event horizons. the
Breathing Time Buckets algorithm performs as well as. or
better than. Time Warp because of the elimination of anti-

IO messages and because of faster synchronous message send-
ing. As a result. Breathing Time Warp adaptively becomes
Breathing Time Buckets for this case.
Small Event Horizon

In the case where the event horizon is very s m a l l (Le..
15 very few events are processed during each cycle). the

Breathing Time Warp algorithm behaves much like Time
Warp because most of the events are processed in the Time
Warp phase. Simulations with small event horizons should
not perform well using the Breathing Time Buckets

20 algorithm. but they may perform well using either Time
Warp or Breathing Time Warp. especially if the number of
objects in the simulation is large.

Theoretical studies and measured performance have
shown that simulations which have poor lookahead (Le..

25 small event horizons) in general do not perform as well as
simulations with a high degree of lookahead. Another way
of stating this is that without lookahead. Time Warp can
exhibit large numbers of rollbacks that may explode into an
avalanche of antimessages. Breathing Time Warp handles

30 the problem of avalanching antimessage explosions by not
releasing messages after N1 events have been processed
beyond GVT. This algorithm then improves on the pure
Time Warp algorithm in that it effectively solves the insta-
bility problems that are sometimes observed in Time Warp.

Test results confirmed that Breathing Time Warp can
improve the performance of parallel discrete-event simula-
tions. Measurements were made using a heterogeneous
network consisting of eight high-performance worlstations

40 linked together through Ethernet (a very difficult parallel
environment to work in). The communication overhead in
this environment was quite high compared to the processing
power of the workstations involved.
CONCLUSION

Breathing Time Warp is a new process for parallel
discrete-event simulation. It adaptively merges the best of
Breathing Time Buckets and Time Warp to solve the poten-
tial shortcomings of each algorithm. Time Warp can be
unstable because of potential antimessage explosions while

50 Breathing Time Buckets can be inefficient if the average
number of events processedper cycle is low. Breathing Time
Warp has neither of these problems.

Development of the Breathing Time Warp algorithm was
motivated by the general observation that events close to

55 GVT (in terms of number of events. not time) tend to be
processed correctly while events far from GVT have a
greater chance of being rolled back Thus. it makes sense to
aggressively send the generated messages from events close
to GVT while not immediately releasing the messages

60 generated from events far from GVT. This approach then
provides a much more stable environment for optimistic
parallel discrete-event simulation.

A new approach for determining GVT uses two values.
N1. and N2. to determine when to compute GVT. and how

65 much to limit the optimism of the simulation. This approach
(in conjunction with the incremental state-saving techniques
used by SPEEDES) effectively eliminates the need for

35 TESTRESULTS

45

5.791.005
23

mcmory-prokction algorithms such a5 the cancel-back algo-
rithms which are typically found in some advanced Time
Warp systems.

FIG. 14 illustrates an example of the structure of incre-
niental state saving capabilities in SPEEDES. The structure
of the incremental state saving 100 includes the Delta
Exchange mechanism 102. An inline EXCHANGE function
104 is defined that is overloaded in SPEEDES to make the
Delta Exchange niechanism 102 easier for the user. The
EXCHANGE tunction 104 accepts various types of argu-
ments that can be of different types. By using the
EXCHANGE function 104 overloading in C t t . values of
different types of arguments are easily and efficiently
exchanged.
ROLLBACK QUEUE

Although the Delta Exchange mechanism 102 is
extremely fast and efficient. a Rollback Queue 106 is also
included in SPEEDES’s incremental state saving system
because the Delta Exchange mechanism 102 is not ideal in
every situation. For instance. managing dynamic memory
allocations 108. adding or removing an item from a dynamic
data structure (such as a list or tree) contained within an
object 110. managing memory copies 112. and managing
methods inside the simulation object 114 that change values
of its internal state variables are some examples of when the
Delta Exchange mechanism 102 is not ideal.

FIG. 15 illustrates the operations of the Rollback Queue
106. The Rollback Queue is an incremental state saving
operation that is nearly transparent to the user. The Rollback
Queue incrementally saves the state of the object as it is
modified by event processing and allows the modification of
state variables in the simulation objects. The Rollback
Queue operations are done for each single event. A set of
rollback queue operations are defined that create rollback
queue items when invoked. These items are put into the
rollback queue for rollback support when necessary. Thus,
rollback information is automatically not saved during ini-
tialization or when processing events conservatively and not

The Rollback Queue saves the changes that occur when
an event modifies the state of its simulation object. Hence,
because events are rolled back on an event-by-event basis.
the Rollback Queue is encapsulated through a hidden base-
class in the event object. However, before each event is
processed. SPEEDES makes the Rollback Queue available
in the simulation object as well. providing a way for the
simulation object to alter its state with its own methods.

During the processing of a single event (150). the
SPEEDES first determines whether the event is done being
processed (152). If the event is done, SPEEDES exits (154)
from the Rollback Queue’s operations. Otherwise.
SPEEDES determines whether the state of the simulation
object was changed by the event (156). When an event
changes the state of its simulation object. the operation
specific rollback item is created (158) and then the state
change operation is performed (160). Next. a rollback item
is placed (162) onto the top of a particular single event’s
Rollback Queue 166. Specific rollback items 164. which are
CU objects. inherit from a base-class rollback item object.
such as “C-SIMOBJ.” A virtual function defined by the
base-class simulation object can be “terminate().”
SPEEDES automatically calls this virtual function at the end
of the simulation for every object manager and simulation
object. This gives each object an opportunity to output the
statistics that it might have accumulated during the simula-
tion.

The base-class rollback item defines a store. rollback and
clean-up virtual function. Storing values. rolling back an

optimistically.

24
event. or cleaning up the Rollback Queue is accomplished
through the store. rollback. and clean-up virtual functions
respectively. Also. new types of rollback items can be easily
added into the SPEEDES environment.

Storing values is accomplished by retrieving values first.
then calling the store virtual function to store the value.
Rolling back an event is accomplished by first removing
rollback items out of the Rollback Queue. then calling the
rollback virtual function to undo the state changes that were

IO done. Next, the rollback items are stored in reverse order in
a “qreverse” listing 168. This provides a rollforward
capability. which is used for lazy cancellation. which is
discussed below. Cleaning up the Rollback Queue is neces-
sary after an event is successfully processed. such as at

15 garbage collection time in Time Warp. This is accomplished
by first removing the rollback items out of the Rollback
Queue. then calling the clean-up virtual function to clean up
the Rollback Queue. In certain cases. some of the rollback
items do not require any work for clean-up. In these cases.

20 the virtual clean-up function is called. but no processing is
done.

Referring back to FIG. 14. simple assignments 114 are
used with the operation of the Rollback Queue 106 to create
new rollback items 116 due to the ability to overload

25 operators in C++. SPEEDES provides an assignment opera-
tor for simple variable assignments. Instead of using the
equal sign (“=”) for assignments. S P E E D S provides an
“RB=” operator for changing state variables inside simula-
tion objects while providing rollback capability.

The ‘RB=” assignment operator automatically creates a
new rollback item. saves assignment information, and then
places it onto the top of the Rollback Queue. When running
sequentially, or conservative protocols. the “RB” symbol
can be defined as null so that “RB =” reverts back to the

35 simple “=” assignment operator. thus removing all of the
rollback memory overhead.

In addition. another simple assignment 114 provides
special state variables 118 that can be used as local variables
inside an object. State variables 118 are used like a normal

40 variable since default conversions can be defined for an
object in Ctt-. Thus. when assignments are made to a state
variable, SPEEDES uses operator overloading to store roll-
back information in case the event is rolled back. For
example. STXI‘E-INT 120. STm-FLOKl‘ 122, STATE-

45 DOUBLE 124. and STKIEJQlNTER 126 can be provided
as state variables. These state variables are automatically
initialized to zero in their constructors.

The Rollback Queue also easily accommodates dynami-
cally creating or destroying memory 108. Using the normal

50 method 128, if an event creates memory. then upon rollback
this memory is deleted. Similarly. if an event deletes
memory, then upon rollback. the memory is freed again.
Thus. the memory is actually only deleted during clean-up.
For example. an event can delete a Ci+ object stored in a

55 simulation object. and then create a new object and save it
in the simulation object. An “‘RE%-new” function 130 and an
“RB-delete” function 132. for example. can be used to
accomplish this. Further, both the Delta Exchange mecha-
nism and the Rollback Queue can be utilized in the same

SPEEDES optimizes the performance of all dynamic
memory allocations by using “free lists” 133 for faster
memory management with for example, the RE%-new 130
and R B d e l e t e 132 functions. For instance. instead of

65 calling the FU-new 130 and RBdele te 132 functions.
“RE%-free-new” 134 and “IZE-free- delete” 136 are
called. When the free lists are used. memory blocks are

5

30

60 event.

5.794.005
25 26

never deleted. Instead, the memory blocks are saved in a list percent size. wherein size is the dimension of the
for later reuse when the memory is needed again. Free lists C-XQUEUE array. to determine which C-XQLJEUEi to
133 accelerate memory allocation and also reduce the prob- use to search for the item with the proper identification. The
lem of memory fragmentation. rollback supported operations provided by the C-XHASH

In addition. the RollbackQueue copies blocks of memory 5 object can be inserting an item into the C-XHASH and
112 into the state of the simulation object for certain removing an item with identification from the C-XHASH.
simulation applications where this is required. Memory In addition. other C-XHASH methods allow the construc-
copies are supported through. for example. an “RB- tor’s argument to be the hash size. the number of items in the
memory” 138 function. C-XHASH can find the item with the same identification.

Management of dynamic data structures 110 such as lists io a single C-XQUEUE can be formed. and a single
or trees contained within simulation objects is accomplished C-XQUEUE can be returned.
by the Exchange Queue. As part of its state. a simulation Also. the operators “+=” and “-=” are overloaded to add
object may contain a list of items. This list may grow or and remove items from the C-XHASH. In other words. the
shrink as events add or remove items to. or from. the list. xhash+=item and the xhash-item. wherein the hash is an
The Exchange Queue uses reversible operations. Rolling 15 C-XHASH object and the sq-item is a pointer to an
back an event that inserts an item into the Exchange Queue C S Q J I T M . The “-=” operator assumes that the C-SQ-
requires removing that item from the Exchange Queue to ITEM already has a pointer.
restore the state. Similarly. rolling back an event that The C-XPRIOmY Queue is based on a SPEEDES
removes an item from the Exchange Queue requires rein- Qheap priority queue data structure which is used in
serting that item into the Exchange Queue. Also, the 20 SPEEDES for its own event list management. The
&change Queue can be a doubly linked list based on the C - X P R I O ~ Y data structure uses the time-tag field in its
first-in, first-out (FIFO) property. list of CSQlTEM’s to always return the item with the

A “+=” operator can be overloaded for example to add an lowest timetag. Example basic rollback supported opera-
item to the Exchange Queue, and the “-=” operator can be tions for the C-XPIUOFUTY queue object are inserting the
overloaded to remove an item from the Exchange Queue. An 25 item into the CJPRIORITY. removing the item with the
event in SPEEDES can remove an item that is specified by lowest time-tag, taking no arguments by the constructor.
an integer identification from an Exchange Queue, delete it. rebrieving the earliest time in the list. and retrieving the
and then add a new item. The FIFO requirement can also be number of items in the list. Only the “+=” operator is
bypassed. Moreover, the order of the items in the Exchange overloaded to add a C-SQITEM to a C-XPRIORWY
Queue does not matter since items are removed based on 30 object.
their identification. Therefore. the Rollback Queue can accommodate various

SPEEDES manages, through the dynamic data structure types of state-changing requirements such as dynamic
management 110. lists of items in various data structures memory allocation. memory copies, methods in simulation
through. for example. “C_XQUEW 140, “C-XHASH” object that change the state of its internal data. and dynamic
142 and “C-XPRIOIU” 144 data structures. as well as 35 data structures such as the Exchange Queue. In addition. if
other 146 data structures. All items that are stored in these a user needs to schedule an event and then later cancel it. a
data structures must inherit from a base-class, such as cancel handle. or a Time Warp antimessage stub. can locate
‘‘CCSQ-ITEM’’ defined in a header file. Memory for these an event that needs to be canceled. A special mechanism is
items can also be managed by a free list tool. The provided in SPEJ3DES for users to create and destroy cancel
C-SQfTe has various methods for setting the item’s 40 handles. The SPEEDES rollback supported cancel handle
identification. returning the item’s identification, setting the utilities can be for example returning a new cancel handle
item’s time value and returning the item’s time value. and deleting a cancel handle.

The C-XQUEUE data structure is a linked list structure LAZY CANCELLAITON
that can be used either as a FIFO queue, or as a general list FIG. 16 illustrates lazy cancellation as supported by
of items. Items can be added or removed from the 45 SPEEDES. One of the important benefits derived by events
CLXQUCEUE while the rollback reverse operations are being Ci+ objects is that lazy cancellation can be very
managed. Basic rollback supported operations for the efficiently supported. The handling of lazy cancellation by
CLXQUEUE can be inserting an item at the end of the SPEEDES is unique. Lazy cancellation is supported by
queue. removing the top item from the queue. and removing SPEEDES with an object oriented approach because ami-
the item with identification from the queue. In addition. 50 dentally processed events for a simulation object in the work
other C-XQUEUE methods can be for example, taking no order might not matter. The utility of lazy cancellation
arguments by the constructor. identifying the number of requires the incremental state saving techniques of rollfor-
items i n the CXQUEUE. identifying the top item in the ward as well as rollback capabilities. Lazy cancellation has
C-XQUEUE, identifying the bottom item i n the the benefit of rolling the state of the simulation object
CXQUEUE. and finding the item with the same identifica- 55 forward using the state change made by the event the first
tion. time it was processed. thus requiring all of the incremental

Also. the operators “+=” and “-=” are overloaded to add state-saving techniques to be reversible.
and remove items from the C-XQUEUE. In other words, The object oriented approach of lazy cancellation sup-
the xqueue+=item and the xqueue-item, wherein the ported by SFEEDES solves problems experienced by pre-
xqueue is an C-XQUEUE object and the sq i t em is a 60 vious parallel discrete simulations. For example. when a
pointer to an C-SQ-I’EM. The “-=” operator assumes rolledback event is reprocessed. the same answer might be
that the CSQEJZM already has a pointer. produced. In other words, the event makes the same state

The C-XHASH object can be used in a similar manner changes to the simulation object while also generating the
as the C-XQUEUE. The C B A S H object is imple- same events. This allows for the possibility that a simulation
mented as an array of C-XQUEUE objects and uses modu- 65 will beat the critical path. The critical path determines the
lar arithmetic to hash on an integer identification. In other minimum time for a conservative discrete-event simulation
words. the C-XHASH uses the remainder identification to be completed (ignoring all memory overhead other than

5.794.005
27

event processing). It is not possible for conservative simu-
lations to beat the critical path because conservative simu-
lation requires events to be processed in their correct time
order.

Moreover, sending antimessages (if Time Warp is used)
only to later regenerate the same messages again for events
that are rolled back having the same properties is wasteful.
Also. reprocessing the event if it makes the same changes to
the state of its simulation object is wasteful.

Conventional lazy-cancellation approaches for determin-
ing if reprocessing a rolledback event will get the same
answer require saving the entire state of the simulation
object and then making a byte-for-byte memory comparison
with its previous state (ie.. when the event was first
processed) to the new state. If the results are identical. then.
obviously. processing the event will again give the same
answer. Another conventional approach avoids sending
unnecessary antimessages by comparing (after reprocessing
the event). byte-for-byte, the newly generated messages with
the old ones @om the first time the event was processed). If
they are identical. the new messages do not have to be sent.
However, if they are not identical. antimessages to cancel
the old messages are sent alone with the new messages that
have just been generated. However. these approaches are not
feasible in an incremental state-saving environment because
they require too much memory overhead.

In contrast. the object oriented approach of lazy cancel-
lation supported by SPEEDES instead rolls the state of the
simulation object forward using the state changes made by
the event the first time it was processed, thereby requiring all
of the incremental state-saving techniques to be reversible.
SPEEDES uses an object-oriented approach that very
quickly accomplishes the same as the conventional methods
without the overhead. The object oriented approach of lazy
cancellation supported by SF‘EEDES is also referred to as
lazy reevaluation.

Because events are objects in SPEEDES, the inputs kom
the simulation object that are required for processing an
event can be saved in the data structures of the event object.
Before reprocessing the event. and after the event has been
rolled back (170)- SPEEDES determines whether lazy can-
cellation has been enabled (172). If lazy cancellation has not
been enabled. antimessages are sent to cancel generated
events and the Rollback Queue is cleaned-up (173). Later.
when the event needs to be reprocessed (174), SF’EEDES
determines whether lazy cancellation has been enabled
(176). If lazy cancellation has not been enabled, the event is
reprocessed (178). Otherwise. a virtual function. “check
lazy”. is called (180). The check lazy virtual function, which
is supplied by the user. compares the previous inputs from
the simulation object still stored in the event object with the
new values in the simulation object. If the values are the

5

10

15

20

25

30

35

40

45

50

28
same or if the event would still get the same answer. then the
event is rolled forward (182). Otherwise. antimessages are
sent. the Rollback Queue is cleaned-up. and the event is
reprocessed (184). The virtual function can return a “I” if
they are the same or if it is determined that the event would
still get the same answer. The virtual function can return a
“ 0 otherwise.

After an event has been rolled back. SPEEDES examines
a flag stored in the event object to determine whether the
event is participating in lazy cancellation. This allows events
to participate on a selective basis in lazy cancellation. When
it is time to process that event again. SPEEDES determines
whether the event would have produced the same answer.

Thus. lazy cancellation as supported by SPEEDES is
performed so that the eventprocessing inputs are first saved
from the simulation object in the event object. Next. before
reprocessing the event. SPEEDES determines if the input
values of the simulation object changed or if the input values
would produce a different result. If the values are the same.
the event is rolled forward. otherwise. an antimessage is
sent. Therefore, the approach of the present invention is
much more efficient than making byte-for-byte comparisons
of the old state of the simulation object with its new states.
which is done in most other approaches.

I n addition. the lazy cancellation approach of the present
invention is more flexible. Events can store impoxtant input
information in their internal &ta structures to support
sophisticated optimization techniques as well. For example.
the user may enable lazy cancellation only for specific
events. while using aggressive cancellation as the default for
the rest.
PRINT STATEMENTS

During the course of processing events in a simulation.
information can be printed to the screen or to a file.
However. for more accurate print statements. events can
only release output after the event is committed to allow
only valid output information from the simulation. The print
utility supported by SPEEDES can be. for example.
RB-PRINT(). Also, a file can be printed to an opened file.
In addition. the string passed to the RB-PRINT() function
can be used multiple times in the same event since a separate
copy of the string is made by RB-PFUNT.

While the invention has been described in detail with
specific reference to preferred embodiments thereof. it is
understood that variations and moditications thereof may be
made without departing from the true spirit and scope of the
invention.

APPENDIX A

The following appendix is the listing of the C-language
computer code used to implement the invention using the
breathing time buckets protocol.

Xirrhrdc ”evtq.H”
#include “cyc1e.W

speedes-evtq object

~~ ~~

I! speedes-evtq C method file
#mclude <stdl0 h>
#mclude “Cms I€’
hclude “speedes-evtq H”

#Include “defunc W
Metine OPI’IMEE

Metine INFNITY 1 OeZO

C _ SPEEDES_EVTO cmtnrt an event owue obtect
class C-SF’EEDES_EVTQ : public C 3 V T Q (I

private:

29
5,794,005

-continued

protected:

C-CYCLE *cycle;
C-QUEUE *qext:

11 cycle synchnizing object
/I qwue of externally generated event

public:

CSPEEDES-EVTQ(j;
virtual void temp-pmess();

virtual void permprocess();
virtual void lindAvt();

kndif

tevent = evcnt->gettime-tag();
if (tevent r tearly) break;

if (!event->getarccesed()) {
event->@mp-pocessf);

event-xxchange();
event-)calculate-rmin();
event-xet-pcssed();

1
11. . . update tmin

tmin = event->gettmin();
if (tmin c localt) h a l t = tmin;
e-:
eveni = (C-EVENT *)evem->get-lii();

)

11. . . now do the rest of the events optimistically

if (!cycle-xhcck(localt. tevent)) {

deft = L i t e m s - Ltemp;

for (i = 0; i < nlefi; ii+) {

printf("EEDES3VTQ CreatedW'j;

cycle = new C-CYCLE(j,
qext = new C-QUEUE();

\

tenq-mxess - pmcess events phase 1

void C-SPEEDW-EVTQ::temp-pmess() {
int i;
int nleh;
double tblock:
double tmin;
double tearly;
double @vent;
CJVENT *event;
C-EVENT *ext-event;
cycle->start();
e t e m p = 0;
h a l t = tend;
tearly = gvt + O.!3+minstep;

I/ this starts tk cycle management

I/ all events with times less than
tearly can be processed conservatively
11 . . . if there is a minimum time step, we that information to run
faster
event = (C-EVENT *)top;
for (id; i a i t e m s ; ii-tj {

I1 . . . handle externally generated events

extevent = extemaleventftearly);

qext-aushbot(extevent);
if (ext-event->
gett im-tag() < Lccalt) locait = extevent-zgettime_tag();
if (cycle-xkk(localt, event->get_time-tag())) break

1

if (ext-event != NULL) {

n_temPtt;
event = (C3VENT *)even->getlink();

t

1
/I . , . c k k if blocking messages are expected to arrive

if (objects->geLblochg()) {
objects->update-block();
tbbck = objects->gettblock();
cyc le -~ tmin (tb lock) ;

1
cycle->stop(); 11 stop the c m n i cycle

1
tiub_gvt - f i d thc minimum global time for safe processing

if (!event->geLpmcesd()) {
void C_SPEEDES3VTQ::fi() {

I/ . . . cyc le -xkk(j manages asyduonous broadcasts and nowblocking syncs.
pvt = cycle->getnextgvt();
gbbally determined

I / the event borizon is

if (cycle-xkkflocalt, event->gettime_tag())) breal,
}

event->te.mp-process();
event-xxchange();
event-xalculate-trnin();
event-zsetqrocessed();

1
nnin = event->gettmin();
if (tmin c h a l t) localt = tmin:

permprocess - process events phase 2
event = (C-EVENT *) q p t o c - ~ p ~ t o p ();
ev!p-*lete-event(eveni);

void C-SPEEDES-EVTQ: :pPmW)
int size;
int i,len;

1
11 . . . get the incoming messages and turn them into fuhm cvents

while((message = multirouter-~etmess(size)) != NULL) {

5.794005
31

-continued
32

char *message;
C 3 V E h T 'event; if (header-xxt) {
C-HOLDER *holder;

I / external
C-HEADER 'header; message

t e w

header = (C-HEADER *)message;

lostuser-xznd-nEssage((CBMAIEADER * piiessage):

// . . . loop over all of the events that can he processed
event = (C 3 V E N T *)evtype->nlessage_even((nlessage j;

// internal
i iperni = 0:
n-rOll= 0; qproc-zpusLbt(event),

message tums into an event

t
multirouter->reset(); f
while (=items) { // . . . get messages that were gemrated locally on nly node and turn

them into events
// . . . pull out processed events, p rocess them further (garbage collection) and
collect thci generated messages len = qhd->length(j;

for (i=O; iden; i+) {
event = (C 3 V E N T *)pop-top();
if (gvt < event->gettime-tag(f) {

break; if (header-xxt) {

t
event->pcrreprccess();
event-xendmcss(qM);

holder = (CBOLDER *)qlnd->pop_top();
message = holder->getbuff();

pushtop(event); header = (C-HEADER *)message;

hosLuser-zscndslessage((CJM3IEADER *)message);
evtype->delete-ssage(holder);

// this only collects messages in the multirout event = (C-EVENT *)evtype-~ssage-event(message);

evtyp-xleleteslcssagesagt0loldcr);
object qpm->pushbot(event);

qproc-~usLbt(event) ; 1
if (event->gettim-tag() < tend) epe rm+;

1
t
I/ . . . sort all of the new events

qpI-=-=m 1;
/ I . . , send and receive messages synchronously (crystal muter on hypercubes) qproc-xoncat(qext);

multirouter-xnultirout();
// . . . attach these new events to thei appropriate objects

// . . . delete tbe alrcady processed event using free lists
len = qproc-slength();
event = (C 3 V E N T *kproc->ptop(); while (qprcc->length()) {

event->attachobject();
-U += event-srOlLback();
event = (CBVENT *)cvent->getlinL();

r
// , . . merge these mw events into tbe event queue
merge(qPr0c);

t

for (i=O; i < b , i+) {

// rollback objects with events in tbei past

40

APPENDIX B -continued

GVT = LVT
The following is a pseudo-code listing of a software

program employed in canying out the breathing time warp
process of the invention: 45 combine(LVT.MINDBL,sizeof(double).l); GVT=LVT

APPENDIX c
/I Determine GVT.
// loop until h r e are m Inole m s a g s in the system. The following is a pseudo-code listing of a software
WMe (1) I
// get all incoming lncssages and antimessages.
I /
I/ antimssages.

mssages();
antimessages(); // read all available antimessages THE DELTA EXCHANGE

program employed in k n y i n g out the &remental state
saving of the invention: note: receipt of these might genetate additional

I/ read all available messages

// asy~~hmnous messages are sen! through the twosmess
N object which keeps track of n-mess-sent and
// -ess_rec. We break out of the loop if ~ m c s s _ r a c
I / is equal to n-mess-sent

\ !

5s void EXCMGE(int &il, int Sri2) {
int temp;
temp = 11;
il = i2;
i2 = temp; if (twosmess-zchocL_mscount()j break;

i/ get the local virtual time (LVT) as the time tag
/ I of the next unprocessed event or unsent message
/ I on my no& (i.e., the event horizon).
LVT = get t ime-nextevent();
if (LVT > eventhorizon) LVT = eventhorizon;
// GVT is the global minjmum of L W on all nodes
// the combine function gets the minimum of all LVT's
// and returns the value in the same variable LW
combine (LS'T,MINDBL,sizeof(double), 1);

6o void EXCHAh'GE(d0Uble &dl, double &d2) {
double temp;
temp = dl;
dl = d2;
d2 = temp;

1
THE ROLLBACK QUEUE

65 // Rollback Item base class
// ._.__ Mvrits from C-M so that

5.794.005
33 34

-continued -continued

N C-RB-ITEMS can be put into a C-QUEUE object
class C-RBATEM: public C D M {

private:
protected

public:
void *ptr;

void set-ptifvoid +p) {pa = p;} / I set the pointer
virtual void store(it v) { ; } // virtual store variabie
virtual void store(float v) {;} // virtual store variable
virtual void store(doub1e v) {;} /I virtual store variable
virtual void store(void *vj { ;} // virtual store variable
virtual void cleanup(j { ;} / I virtual cleanup
virtual void rollback() { ;} // virtual rollback

//pointer to altered state variable

t
// ..,.. mUig back the Rollback Queue
int rollback()

C-RBLlTEM *a;
C-QUEUE qreverse;
while (RoUbackQwue->leqgth()) {

a = (C-RB-IIEM*)RollbacLQueue-~-top();
a-mUback();
qreverse.p&top(af; N save for lazy carrellation

t

t

void clean up() {

'Rollback Que.= = qreverse;
return Rollback-Queue->length(); // return n rollbacks

// clean up the Rollback Queue

C - R B J E M *a
while (RollbackQueue->length()) {

a = (C-RB-ll'EM *)RolIbacLQueu->pop_to21();
a-->cleanup();
delete (a);

1
SIMPLE ASSIGNMENTS
// Rollback Item for integer a s s i m n t s
clasr C-RB3TEMJNT: public C-RB_FTEM {

private:

protected:
public:

int oldvalue; I/ old valuc saved here

void setoldvalue(int v) {oldvalw = v,}
vhtual void store(int v) {*lint *) ptr = v;}
virtual void store(fl0at v) {*(it *) ptr = (inf)v;}
virmal void store(doub1e v) {*(it *) pa = (intjv;}
virmal void rollback() {

int -7

"OEdValue = yint *)pa;
*(i +)ptr = temp;

temp = oldvalue;

1
1
DYNAMIC MEMORY
N Rollback item for dynamic memry
class C-RB3EhCXEMORY: publii C-REUTEM {

private:

protected
public:

int flag; // flag for creatioddebtion

void se t f l ag (inf f) {flag = e }
virrual void cleanup() {

if (!kg) delete ptr;
1

if (flag) {

I e W

t

virtual void rollback() {

flag = 0;

flag = 1;

t
1
// allocate dynamic memory
void RB-new(void *obj) {

C-RBJIEM_MEMORY *a;
a = new C_RB3TEMJMWORY();
a-xetpqobj) ;
a-%et flag(1);
RollbackQueue->pushtop(a);

t

// delete dynamic mefnay
void RB-delete(void *obj) {

C-RB-lTEM-MEMORY *a;
a = new C-RB-ITEM-MEMORY(1,
a-xet-pm(ohj);
a->setflag(O);
RollbackQueue->pusl~top(a):

5

t
MEMORY COPIES

10 I/ Rollback Item for dynamic memory
class C-RB-TZEKMEMCPY public C-RE-lTEhl {

private:
char *oldvalue
int size;

// old value of buffer
N sue of the memory copy

protected:
15 public:

void setoldvalue(char *ovj {oldvalue = ov;}

virtual void cleanup() {
delete oldvalue;

void setsize(int sj {size = s;}

20

1
virtual void rollback() {

char "temp;
temp = rrew char[sizel:
=~PY(~P,Ph;si-=);
memcpy(ptr,oldvalue,size);
memcpy(oldvalue,temp,size):
delete temp;

25 }
}
// memory copy us& Rollback Queue
void RB-mmcpy(char *pl, char *p2, int size) {

C-RBJTEhLMEMCPY *a;
char *oldvalue;
a = new C-RB-I'IEM-hEhKPY();
a-%tptr(pl);
a-->sttsize(size);
oldvalue = new cmsizel ;
memcpy(o1d vdue,pl,size);
a-xetoldvaJue(obdva1ue);

memCpy(p1 ,p2,sW;

30

35 RollbackQueue->pushrop(a);

1
EXCHANGE QUEUE
// Rolltrack Item fa tbe Exchange Queue
class C-RBATEMXQUEUE: public C-RBJTEM {

private:
40 C-XQUEUE *xq N pointer to Exchange Queue

// flag for insertion or removal
Nkg for top or bot

int kg ;
int t o p 3 g ;

pmtccted:
public:

void setixq(C_XQUEUE *x) {xq = x;}
void setdag(int f) {flag = t}
void set-tq-flag(int fj {top-flag = f:}
virtual void rollback() {

45

50

55
t
flag = 1;

}
1

1
// add an item to the Exchanae Queue

5.794.00S
35

-continued

// ..._. tenlove an iten] fmni the Exchange Queue
void opzrator -= (C-XQUEUE &xq. C_XQ_ITEM *it) {

C-RXiTEhru[QLJEUE *a;
a = new C-RBJlXhLXQUEUE();
a->set-xq(&xq);
a->set-pa(it);
a-xet-ilag(0):
a->set-top-flag(l j;
RollbackQlleue->pushtop(a);
xq.remove(it);

}
ROLLBACK, AND LAZY CANCELLATION
// _.__. Event is processed
event->init-RollbaclQuew;
event->Phase I();
event-->exchange();
event-xendmessages();
// Event is rolled back
event-xxchange();
event->init-RolIback-Queue();
RollbackQlleue-mllback(j;
if (event->getlazy-flag()) {

event-->send -antimessages(j;

event-)set-lazy-processed();
k W

t
// ..._. Rollfoforwad or repmess an event
if (event->get-lmy-pessed() {

if (event-xhecklazy(j {
even->initRollbackQue();
Rollbaclr_Queue-z~ollback();N Roll fonvard
event-->exchange(j;

evcnt-xencI-antimessage$ j;
event->i&-Rollbac~Qwue();
event-xleanup_RollbacLQucue();
event->FhaseI();
even-->exchange();
event-xend-message$);

t e w

/ I Reprocess an event

t
}

~~~ ~ 

What is claimed is: 
1. In a system of interconnected processor nodes operat- 

ing in parallel to simulate mutual interactions of a set of 
discrete simulation objects distributed among said nodes as 
a sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 
defining messages addressed to respective ones of said 
nodes. a method of performing object-oriented simulation at 
each one of said nodes comprising: 

assigning passive self-contained simulation objects to 
each one of said nodes; 

responding to messages received at one node by gener- 
ating corresponding active event objects having user- 
defined inherent capabilities and individual time 
stamps and corresponding to respective events affect- 
ing one of said passive self-contained simulation 
objects of said one node; 

restricting said respective passive self-contained simula- 
tion objects to only providing and receiving informa- 
tion from said respective active event objects; 

requesting information and changing variables within a 
passive self-contained simulation object by said active 
event object; and 

producing corresponding messages specifying events 
resulting therefrom by said active event objects. 

2. A system of interconnected processor nodes operating 
in parallel to simulate mutual interactions of a set of discrete 
simulation objects distributed among said nodes as a 
sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 

36 
defining messages addressed to respective ones of said 
nodes. said system performing object-oriented simulation at 
each one of said nodes and comprising: 

means for assigning passive self-contained simulation 
objects to each one of said nodes; 

means for responding to messages received at one node 
by generating corresponding active event objects hav- 
ing user-defined inherent capabilities and individual 
time stamps and corresponding to respective events 
affecting one of said passive self-contained simulation 
objects of said one node; 

means for restricting said respective passive self- 
contained simulation objects to only providing and 
receiving information from said respective active event 

means for requesting information and changing variables 
within a passive self-contained simulation object by 
said active event object; and 

means for producing corresponding messages specifying 
events resulting therefrom by said active event objects. 

3. A system of interconnected processor nodes operating 
in parallel for simulating mutual interactions of a set of 
discrete simulation objects distributed among said nodes as 

25 a sequence of discrete events changing state variables of 
respective simulation objects so as to generate new event- 
defining messages addressed to respective ones of said 
nodes, said system performing object-oriented simulation at 
each one of said nodes and comprising: 

passive self-contained simulation objects assigned to each 
one of said nodes; and 

corresponding active event objects generated in response 
to messages received at one node. said active event 
objects user-defined inherent capabilities and having 
individual time stamps and corresponding to respective 
events affecting one of said passive self-contained 
simulation objects of said one node. wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 
produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 

4. A system of interconnected processor nodes operating 

a set of disaete simulation objects distributed among said 
nodes; 

a computer program operating on said system for simu- 
lating mutual interactions of said set of discrete simu- 
lation objects as a sequence of discrete events changing 
state variables of respective simulation objects so as to 
generate new event-defining messages addressed to 
respective ones of said nodes; 

wherein said computer program performs object-oriented 
simulation at each one of said nodes and comprises, 

passive self-contained simulation objects assigned to each 
one of said nodes. and 

corresponding active event objects generated in response 
to messages received at one node, said active event 
objects having user-defined inherent capabilities and 
individual time stamps and corresponding to respective 
events af€ecting one of said passive self-contained 
simulation objects of said one node, wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 

5 

lo 

l5 objects; 

20 

30 

35 

40 

45 

in parallel comprising: 

5o 

55 

60 

65 



5.794.00s 
37 

produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 5 

5. A computer-readable medium for causing a computer 
system of interconnected processor nodes operating in par- 
allel to function as a parallel processing system. comprising: 

a computer-readable storage medium: 
a computer program stored on said medium; 
a set of discrete simulation objects distributed among said 

nodes; 
wherein said computer program operates on said system 

for simulating mutual interactions of said set of discrete 15 
simulation objects as a sequence of discrete events 
changing state variables of respective simulation 
objects so as to generate new event-&fining messages 
addressed to respective ones of said nodes and wherein 

10 

38 
said computer program performs object-oriented simu- 
lation at each one of said nodes and comprises. 

passive self-contained simulation objects assigned to each 
one of said nodes. and 

corresponding active event objects generated in response 
to messages received at one node. said active event 
objects having user-defined inherent capabilities and 
individual time stamps and corresponding to respective 
events affecting one of said passive self-contained 
simulation objects of said one node. wherein said active 
event objects request information and change variables 
within a passive self-contained simulation object and 
produce corresponding messages specifying events 
resulting therefrom; 

wherein said respective passive self-contained simulation 
objects are restricted to only providing and receiving 
information from said respective active event objects. 

* * * * *  


