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ABSTRACT: The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a

desired response engineering quantity for a structure with non-deterministic parameters. The method uses

measured data from modal testing of the structure as the input random variables, rather than more "primitive"

quantites like geometry or material variation. This modal information is much more comprehensive and easily

measured than the "primitive" information. The probabilistic analysis is carried out using either response surface

reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a

simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the

method to a realistic three-substructure system are examined, and free and forced response analyses are

performed. The results from using the method are promising, especially when the lack of alternatives for

obtaining quantitative output for probabilistic structures is considered.

1 INTRODUCTION

Accounting for the statistical geometric and material
variability of structures in analysis has been a topic of
considerable research for the last 30 years. The
determination of quantifiable measures of statistical
probability of a desired response variable, such as
natural frequency, maximum displacement, or stress,
to replace experience-based "safety factors" has been
a primary goal of this research. There are several
problems associated with its satisfactory application
to realistic structures, though. The first problem is
accurate definition of the input random variables. The
random variability of the material characteristics is
generally available, but the variation in the geometry
of a complex structure, such as a hollowed-out
turbine blade, is virtually impossible to define
accurately. The second problem for analysis is the
large size of the finite element models frequently used
to simulate these structures. Substructuring reduction
techniques are required to decrease the size of many
structural systems just to perform a single,
deterministic analysis. Finally, a significant problem
in the analysis of probabilistic structures is the
accurate generation of the Cumulative Distribution
Function (CDF) necessary to obtain the probability
of the desired response variable. Monte Carlo (MC)
simulations can be performed to calculate probability
distributions of the desired output, but several
thousand runs are required for accurate results.

This research applies a methodology
previously developed by the authors, called
"probabilistic dynamic synthesis" (PDS) to solve
these problems. The PDS method uses dynamic
characteristics of substructures measured from modal

test as the input random variables rather than
"primitive" random variables such as material and
geometric variability. These characteristics, which
are the free-free eigenvalues, eigenvectors, and
residual flexibility, are readily measured and for
many substructures, a reasonable sample set of
theses measurements can be obtained. This yariability
accurately accounts for the entire random variability
of the substructure. Using the residual flexibility
method of component mode synthesis (CMS), these
dynamic characteristics are used to generate sample
models of the substructures which are coupled to

form sample system models, which are considerably
smaller than an unreduced finite element model.

Finally, these sample models are used to obtain the
CDF of the response variable by either applying
Monte Carlo simulation or by generating datapoints
for use in the response surface reliability method,
which saves a substantial amount of computer time.

The previous work by the authors verified the
feasibility of the PDS method on a simple seven
degree-of-freedom spring-mass system. In this
paper, we examine the extensive issues involved with

applying the method to a realistically modeled three
substructure system. Both free response and forced
response analyses are performed. The goal of the
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free-responseanalysisis to quantify a +/- 30. band
aboutthemediannatural frequency,comparedto the
somewhatarbitrary+/- 5% bandpresentlyput on the
deterministic solution. The goal of the forced
responseanalysisis to quantify a + 30"valuefor the
maximum response of a dof on the structure,
comparedwith the completely experience-based
"factor of safety" presently put on the maximum
respondingdof in a deterministicanalysis. These
resultsare presentedby comparinga CDF obtained
using a Monte Carlo simulation of the "baseline"
model, in which "primitive" random variablesare
used,with aCDFusingthePDSmethod.While there
is considerableroom for improvement,theseresults
arepromising, especiallywhen existingoptions for
designof realisticstructuresareconsidered.Finally,
potential sourcesof error and avenuesof further
researcharepresented.

2 PROBABILISTIC BACKGROUND

The researchdescribedin this paper employs the
responsesurface reliability method approach of
probabilisticstructuralmechanicsfor determiningthe
statisticalstructuralresponsecharacteristics.A more
extensive review of the reliability methods is
presentedin the previouswork by the authors. To
briefly review this technique,considera limit state
function g(X) = Y(X) - y, where X is a vector of
rv's, Y(X) is definedas the performancefunction,
andy is specificvalue.Comell (1969), andHasover
& Lind (1974) developedtheFirst OrderReliability
Method (FORM) by dividing the X spaceinto two
parts, g < O (Y < y) and g > O (Y > y), and
approximatingg as a first order Taylor series
expandedaboutthemeanof eachrv.

If X is transformed to independent standard
normalrv's U, then this first order approximation
allows the multi-dimensional probability density
function (PDF) to be represented by a one
dimensional GaussianPDF (Fig. 1). Therefore,
P(Y< y) = _(13), where_(.) is theGaussianCDF
function found in handbooks, and [3 is shortest
distancefrom the g=O curve to theorigin, locatedat
the Most Probable Point (MPP). This greatly
simplies the calculationof probability values for a
givenlimit state.

The reliability methodwas expandedby Rackwitz
(1976) to multi-dimensionalproblemsfor which the
limit statecurveg=Ois anexplicit, nonlinearfunction
of therv's,which makesthedeterminationof 13much
more difficult. The methodmakesuse of Lagrange
techniquesin an iterative algorithm to find 13.
Rackwitz& Feissler(1978)andChen& Lind (1983)
continued the development of this method by
examining how to develop an "equivalentnormal
distribution" for rv's with non-normaldistributions.
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Figure 1 Joint probability density surface

The application of FORM and its extensions
for non-explicit limit state functions, as is the case for
large structural finite element models, requires the use
of numerical differentiation to obtain a first order

approximation of the performance function Y(X)? A
CDF can be constructed from this first order

approximation using the technique described above or
directly from the first order approximatons of the
mean and standard deviation if the distribution is

assumed to be Gaussian. A practical second order
approach was developed by Wu & Wirshing (1987),
who improved the accuracy of probability levels
obtained by FORM for non-explicit limit states by
using a partial second order expansion called the
Advanced FORM (AFORM). Initially, the FORM is

performed and MPP's obtained. The limit state is
then expanded about each MPP using only the first
order and the pure (no mixed variable terms) second
order terms of the Taylor series expansion. The first

and second order terms are then "linearized" using a
change of variable, and the MPP search algorithm
used in FORM is applied. A CDF can also be
generated directly from this partial second order
approximation if a lognormal distribution is assumed.
Wu also developed the Advanced Mean Value (AMV)
method, a procedure for updating the FORM or
AFORM solution by using the original, exact solution
for g. All of these reliability methods have been
implemented into a new probabistic finite-element
computer code developed by Southwest Research
Institute, NESSUS (Wu, 1991).

3 SYSTEM DESCRIgI'ION

In order to examine the applicability of the PDS
method for a realistic design problem, a structural
system had to be chosen that met several criteria.
First, the structure had to be modeled using standard

methodology. This was satisfied by using the most
widely used commercial finite element code,
NASTRAN. Next, since tying CMS together with
probabilistic methods is an important goal of this
research, the size of the model had to be large enough
to be able to realize a substantial reduction xn

computer time due to dynamic reduction. This



Figure2 ThreeSubstructuresystem

requirementis satisfiedby using a structuralsystem
composedof a "disk," which is madeup of 630
quad4plate elementsand constrainedat the center,
and two "blades," which areeachcomposedof 24
quad4plateelements(Fig. 2). To pavethe way for
future mistunedbladed-diskanalysis, the disk was
assumed,to be deterministicand the blades non-
deterministic. For ease of analysis, the standard
assumptionthatin-plane translationandrotationsare
smallhasbeenapplied. Finally, thestructurehad to
possessa "generic" level of randomnessnot easily
definedby asinglevariationin amaterialor geometric
property. A single rv would not be ableto capture
variations in mode shapesthat are independentof
variationsof natural frequency, for instance. To
achievethisgoal, eachbladewasseparatedinto three
sections,with two of thesectionshavinga thickness
set to be an independentprimitive randomvariable.
In addition, thedensityof eachbladeacrossall three
sectionswas definedas an independent rv, thus
giving each blade threeindependentrv's.

4 MONTECARLOBASELINEANALYSIS

A MonteCarloanalysisof theoriginalsystemwith its
primitive randomvariableswas chosen to be a
baselinefor comparisionwith PDS. In addition,MC
analysiswas requiredto simulatethe modal testing
phaseof thePDSmethodologyto obtainthestatistics
of the dynamic rv's. Probabilistic analysis of
structureswith this levelof detailandrandomnesshas
not beenreportedin the literature,evenusing MC,
andis oneof theuniqueaspectsof this research.The
codeNESSUShasa new interfacewith NASTRAN
which managesthe simulation,bothby creatingthe
random vector set for the given input random
variables, which can be any defined NASTRAN
property(geometricor material)andby automatically
submittingthejobs.

5 PROBABILISTICDYNAMIC SYNTHESIS

The PDS methodologymakes use of the residual
flexibility methodof CMS. This methodhasbeen
developed by MacNeil (1971), Craig & Chang
(1981),andMartinezet al. (1984). The essentialidea
in CMSis thatsubstructuremodesare truncatedsince
their highermodeswill nothavea majoreffecton the
system modes. The residual flexibility method
incorporatesthe effects of the higher modes by
determiningtheir flexibility. A sidebenefit is that all
the elementsof the systemstiffness matrix can be
obtainedfrom test and that the massmatrix can be
closely approximatedby a unity maaix in the non-
boundarypartition. Sinceall the information can be
obtainedfrom test, all theprobabilisticinformation
can be incorporatedinto the system matrices for
responseanalysis.

The first stepof theprobabilisticdynamicsynthesis
(PDS) methodis to divide the modelof a structure
into substructuresm= a,b....p, and the degreesof
freedom(dof's)into intemalandboundarylocations.
Eachsubstructureis representedby n samples,each
of which is modally tested in a free interface
condition. For this research, this testing step is
simulatedby aMC analysisof the structureusing the
definedprimitive rv's. For substructurem,samplei,
the test will yield eigenvalues {_,}m.i and
eigenvectors[_]"_'i. The eigenvectorshave to be
consistentfrom onesampleto the next, requiring an
interfacingFORTRAN code to assigna consistent
sign to the mode shapes for each sample and
obtaining a consistent set of rigid-body modes
(parallelto the coordinatesystemaxes)for the two
free-free modes, which is achievedby using the
SUPORT card with the modified Householder
methodin NASTRAN. In addition, the boundary
partition of the residualflexibiliry matrix [Gbb]m'.
are obtained from the measuredboundary drive
point frequencyresponsefunctions of the boundary
coordinates (Bookout, 1995). Here, the residual
flexibility is analyticallycalculatedby subtractingthe
flexibility for theretainedmodesfrom thetotalsystem
flexibility (inverseof the stiffness matrix) for the
constrained substructure. For the free-free
substructures,the system is unconstrainedso the
stiffnessmatrix will be singular. The "inertia-relief
method, initially developedby Craig (1981) , is
thereforeusedto obtaintheresidualflexibility.

For use in the PDS method,only the kept (non-
truncated)eigenvalues,the boundarycoordinatesof
thekepteigenvectors,andtheboundarypartionof the
residualflexibility matrix areneeded. Thesevalues
canbe combinedinto a singlevector{x }m._,defined
as

o,'



whert_ k is the number of kept modes. If the entire
sample of substructure m is tested, {x }m can therefore
be defined as a vector composed of elements that are
each a random variable with measured mean and

standard deviation. An important assumption is made
that these rv's are normally distributed. This
assumption is very useful and somewhat accurate,
and the error it does introduce can be addressed,

which will be discussed later in this paper. This
vector is now transformed to {x'} m, a vector of
standard normally distributed rv's, using the
measured mean and standard deviation of each rv.

In addition, there will be some degree of
correlation between each of the random variables,
which can be calculated from the measured data. This

information is placed in a correlation matrix [C] m
relating each element with every other element. For
the FORM analysis, a set of independent random
variables {u}" is required. This can be accomplished
by making an orthogonal transformation of {x'}"
with the eigenvectors of the correlation matrix to
uncouple the {x' } coordinates, thereby creating {u }'.
This can be expressed for substructures m =a,b .... p
as

{x'}m= {u} (2)

It becomes evident at this time that the size of the

dynamic rv set is intractable for a realistic problem.
For this case, which has only two probabilistic
substructures and where 20 modes are retained (out
of a possible 108) per substructure, the number of
dynamic rv's is 802. Several assumptions are
therefore made to drastically reduce the number of
dynamic rv's. The first is to assume that the limit
state function is insensitive to the variation in the
rotational dot's in the modes. This reduced the size of

eigenvector rv's from 240 to 80 per substructure. The
second is to assume the limit state is insensitive to not

only the rotational doffs, but also to the off-diagonal
terms in the boundary residual flexibility matrix,
which reduces the size of that contribution from 144

to 4 per substructure. These assumptions do not
remove these variables from the formulation of the

substructure stiffness matrices; instead, it allows the
use of the mean value of those variables (or median,

as will be discussed later).
In addition, a substantial reduction in the number

of independent rv's is achieved by eliminating
"artificial" rv's. These were first found by calculating

the correlation matrix of the independent rv's [C]..
Since the elements of [C] u are uncorrelated, it was
expected to be an identity matrix. The result was
somewhat different; for the rows/columns of [C]_ that
corresponded to eigenvalues on the order of one, the
diagonal term was equal to 1.0 and the other elements
in the associated row/column were very small.

However, many of the eigenvalues turned out to be
very small and the analogous rows and columns in
[C]u were not diagonal; the diagonal values were 1.0
but the other terms in the row/column were all on the

order of one (between zero and one) instead of being

close to zero. This can be explained by realizing that

the actual number of independent rv's in the system is
equal to the original number of independent primitive
rv's, not the number of dynamic rv's. Therefore, the

rv's associated with the small )',c values are actually
insignificant and the magnitudes of these values are
mainly due to numerical roundoff. The high off-
diagonal values in the new correlation matrix in these
rows/columns therefore indicates a large amount of
correlation between these numerical artifact "rv's".
The above result can be used to further decrease the

size of the rv set {u}. A sum of the eigenvalues of the
original correlation matrix is calculated, and any
eigenvalue less than 3% of the sum is deemed
insignificant and the associated rv in {u} neglected.
The value of 3% was reached by starting at 5% and

decreasing the cutoff value (thereby including more
rv's) until the final result stabilized. This reduced the

eigenvalue set from 101 to i 1. It is unclear why this
value did not actually reduce to three, which is the
number of primitive rv's per blade, but nevertheless,
this reduction greatly facilitated the analysis.

To numerically generate a first order Taylor
series representation of the limit state, each
independent random variable is varied individually by

some percentage of its standard deviation _, which is

equal to the square root of the corresponding
eigenvalue of the correlation matrix, while the other
rv's are kept constant at their mean values. For higher
order methods, each independent rv is varied by two
different amounts to allow a quadratic curve fit.
Matrix [u] is created by varying each of its elements
by +/- 0.3 of a standard deviation, which for that rv is
the square root of the correlation matrix eigenvalue.
The number of rows in [u] is equal to the
number of probabilistic substructures times the
reduced number of independent rv's, and the
number of columns is equal to this number times two
plus one additional column for the mean value set, as
shown below. The superscripts refer to the number
of the probabilistic substructure, and the subscript
refers to the number of the independent rv.

[u] =
-.3%, .3eu,' 0 0 0 i]

0 0 ".. 0 0 (3)

0 0 0 -.3_o_ .3(yl

Each column in [u] is then transformed to the set of
correlated standard normal r.v.'s {x}' using the

transpose of [_]c, and then into the original r.v.'s

{x} using the standard normal transformation. The

new vectors {X}, [_], and [Gbb] are pulled out from

{x} and placed in substructure mass and stiffness
matrices according to the residual flexibility
formulation:
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where A" is a diagonal matrix of the kept eigenvalues

{_}k For the purposes of this study, the third

natural frequency of the combined system was
selected as the response value of interest, so the
system matrix is then compiled and an eigensolution
performed to obtain this value for each column of [u].
The columns of [u] along with the associated

response value are then input into the NESSUS code
where the AFORM partial quadratic method can be
applied. By simply changing the first variation in the
above approximation to a value very close to zero
times the standard deviation, the three points can
also be used to create a FORM linear approximation.

After initial examination of the results

compared with the MC baseline, a subtle but

important error was found in the application of the
transformation to standard normal variables. For the

MC baseline solution, the results are obtained by
creating a normal distribution about the mean values
of the primitive rv's; this distribution is symmetric, so
the median is equal to the mean. Since the finite

element solution is slightly nonlinear as a function of
the input rv's, though, the mean of the solution will
not equal the median, but the median solution will

result from using the mean (equal to median)
primitive rv's.

As PDS is implemented for these analytical
simulations, though, there is an intermediate step that
introduces error. Symmetric Gaussian MC
distributions are created about the means of the

dynamic rv's, but these rv's are actually not purely
Gaussian, since a slightly nonlinear eigensolution has
been performed to obtain them, and the means will
not equal the medians. This results in a skew of the
entire CDF curve since the method assumes that the

dynamic rv's do in fact follow a symmetric
distribution. The error can be substantially
corrected by simply ensuring that the median
primitive values are carried through the procedure to
generate "the median results. This is accomplished by

using the medians i of the calculated dynamic rv's
as the "mean" in the transformation to standard
normal coordinates:

(x)={x' }_+ i (5)

This change drastically improved the results in both
the mean and standard deviation of the results since it

moves the expansion of the limit state about a more
accurate location.

A parallel application of the PDS method is to
apply the dynamic rv's using the MC approach rather
than the reliability approach. The MC should provide
more accurate answers, while the reliability method
will be more computationally efficient. This technique

is performed by u_ing the statistical data obtained

using the modal testing simulation to create normally
distributedsamples for each column in [u] rather than
creating "lg4,i_lcases" for the Taylor series.

6 RESULTS

The PDS FORM and PDS MC results for the CDF of

the system third natural frequency are compared with
the MC baseline in Figure 3 and Table 1. The higher
order reliability methods were also applied to this
problem, but they did not show any improvement
over the linear case; this may be due to the very small
nonlinearity of the limit state. From a design problem
approach, the errors as seen on the table for the .01
and.99 CDF levels are less than 2%, so the values
could be used with confidence. From a theoretical

standpoint, the curves do not line up extremely well;
this is indicated by the error in the standard deviation
of about 20%. Potential sources of error include the

following: 1) transformation error of the statistics of

the original primitive rv's due to inaccuracy of the
MC simulation of the dynamic rv's (possibly
insufficient number of samples), 2) transformation
error in the statistics and recorrelation of the rv's due

to their assumed normality, 3) error due to truncation
of the number of independent rv's, 4) truncation error
due to using the RF formulation of CMS, and 5)
programming error.

It is interesting to compare computational
times at this point. All the analyses were performed
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Figure 3 Two bladed-disk mode 3 natural frequency
comparing Monte Carlo with PDS

Table I. Percent Errors for Free Resonse Solution

Parameter PDS FORM (%) PDS Monte Carlo(%) ,

Median 0.18 0.03

Std. Dev. 28.91 19.97

.01 CDF Value -1.3 1.36

.99 CDF Value 0.69 -1.79



on a CRAY T-90 supercomputer. The MC baseline
analysis tbok 2527 CPU seconds and 20.3 hours of
wallclock time to run. PDS MC took 389.5 seconds

of CPU time and 1112.3 seconds (18.5 minutes)
wallclock time, a drastic reduction enabled by the
continuous generation, storage, and analysis of
modally reduced system matrices rather than the
complete model generation and analysis necessary for
each of the MC baseline samples. The FORM method
took only 20.1 seconds of CPU and 64.2 seconds of
wallclock to create the datapoints for input to
NESSUS, and about 30 seconds wallclock to run

NESSUS to perform the FORM solution. This
further reduction is due to the substantial decrease in

the number of solutions generated. As anticipated,
both the use of CMS and probabilistic methods
drastically decreased the amount of time necessary to
run the analysis, which, especially for a more detailed
model, could be a pre-requisite for use in design.

7 FORCED RESPONSE

The use of PDS was now expanded to forced
response. In particular, a frequency response solution
of the system was derived since this type of excitation
would prove most applicable to the bladed-disk
problem. For forced response, the dof's of a
substructure are partitioned into three sections, x o,
which are internal dofs with no extemal load applied,
x i, internal dot's with an external load applied, and
x b, boundary dof's which may or may not have
extemal load applied. The residual flexibility
transformation matrix from the original set of
coordinate to the generalized set is therefore:

{Xo] [_, - G,_,_obG___ b 0 G,,,__G___] [qo]
X i = 0 *i- Gn_._ilpG r-_l]- b_*b 0.o._,_0_'._./t.,_

xb 0 0 I ]LxbJ

=[T] {q} (6)

The transformed mass and stiffness matrices will be

identical to those obtained for the free response
shown in equations(4). To determine the right-hand
side of the forced response equation of motion,
the transformation matrix and the original load vector
are both carded throughout the analysis until the
generalized force is needed, at which time the matrix
multiplication is carried out. To actually perform the
forced response analysis, the coupled system above is
transformed to an uncoupled system using a set of

truncated mass normalized system eigenvectors [_]t

resulting from a free response solution of equation
(5.6.3), as shown below.

{q} ,=[_1, {q]= (7)

The uncoupled system is in the form

[I]{/i}_ +[C]{cl}2 +[A]{q}2 = [_]_'[T]r{f} (8)

where [A]a is the diagonal matrix of the eigenvalues

of the transfonned system. The standard (viscous)
assumption of constant modal damping of 0.5% is
used for [C]. The input force is phased with the third
structural mode in a two nodal diameter shape to
simulate bladed-disk excitation. There are standard

techniques available for obtaining the frequency

response solution for this set of uncoupled single-dof
systems. Because of the sertes of linear
transformations performed on the solution, though, a
complex quantity for the solution is desired rather
than one in terms of magnitude and phase, as is
commonly derived in texts on the subject and which
cannot be easily transformed. This complex vector
{q}2 can now be transformed back to the original
coordinates {x} using equations (6) and (7):

{x}=[T][_], {q}2 (9)

The absolute values of this complex vector are then
calculated to obtain the physical response values.

As seen above, applying PDS for the forced
response solution requires more information from the
modal data and the residual flexibility matrices. This
increases the number of dynamic rv's necessary to
solve the problem, which increases the complexity of
the problem in several aspects. To minimize this
number, it is important to decide a-priori which
internal dot's will either have external load applied or
require a displacement recovery. Although the entire
modal matrix and residual flexibility matrix are
calculated, only those partitions of the modal matrix
and the residual flexibility matrix, along with the

boundary dof's, are stored. In addition, only the
correlations with these additional dot's are generated.

To address the design problem defined earlier,
the response variable for the forced response analysis
was chosen to be the maximum response for all dof's
in the structure. Initially, the excitation was applied at
only a single frequency, but this was changed to a
wide excitation bandwidth since the maximum

response occurs at the damped natural frequency of
the mode shape being excited, and this mode shape
can occur over a range of frequencies for a
probabilistic structure. It is assumed that the actual
excitation mechanism could also vary in frequency by
this amount, which is generally the case in engine
turbomachinery, for instance. Using the maximum
over some frequency range also helps to reduce the
extreme variability in response which can be observed
at any particular excitation frequency (Ginsberg &
Pham 1995), which would introduce substantial
nonlinearities in the response limit state surface. A
range of +/- 10 hz about the deterministic natural
frequency of 458 hz was used in this case. This value
is probably inadequate, since the free response case
shows that the actual range is between 438 hz and
472 hz, so this may be a source of error in the final
results.

The Monte Carlo baseline frequency response
solution required extensive alteration of the
MSCPOST subroutine within the NESSUS code. It



was also extremelycomputer intensive,so only a
limited samplesizewas run. The PDS procedure
usingboth theMC and reliability approachesfor the
frequencyresponseproblem is similar to the free
responseproblem. The main additions are the
subroutinesnecessaryfor calculationof the different
[T] matricesfor each substructureand the solution
algorithm for the complex frequency response.
Becausethevalueof the largestrespondingdof is no
longerat a frequencyknown a-priori (sincethe third
naturalfrequencyandthirdnaturalmodewill vary for
eachstatisticalsample),a sortingalgorithmto find the
maximumvaluewasusedthat scannedthe response
valuesfor all theselecteddof's for all thefrequencies
in thebandwidthchosen. The dof's selectedwere
those at the blade tips, which were assumedto
containthe maximumrespondingdof for the entire
structurewith thechosenexcitation.This valuewas
then used as the NESSUS responsevariable, and
inputalongwith thecorrespondingloadset.PDSMC
and FORM caseswere run as well as a normal
distributionusing the linear approximatemeanand
standarddeviation. The PDS quadratic AFORM
methodusingthemedianswasalsoattempted,but the
AFORMalgorithmin NESSUS/FPIneverconverged
to a solution, which is a problemwith the technique
(Wu, 199i).

The CDF results for the PDS methodsare
plotted along with a 1000 sample MC baseline
simulationin Figure4 andTable2. The MC baseline
CDFis extremelyunsymmetric,sothis clearlycauses
aproblemfor thereliability methods. It is alsonoted
thatthereis fair agreementbetweenthe MC baseline
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Figure 4. Two bladed-disk maximum frequency response

Table 2. Percent Errors for Forced Response Solution

Parameter PDS FORM (%) PDS Monte Carlo(%)
Median 5.23 -6.37

Std. Dev. 24.33 25.06

.99 CDF Value 11.53 9.56

result and that obtained from M_ using dynamic rv's.
The errors for the design point at .99 are still around
10% for both PDS methods, though, which is within
reason especially when one considers that at present,
there are no alternative methods for obtaining this
maximum value. As with the free-response analysis,
the significant error in the standard deviation and the
lack of coincidence of the curves indicated visually
signifies that there is still error present in the
methods. An additional source of error in the

reliability methods for this analysis is the extent to
which the maximum responding dof does not have a
smooth dependence on the rv's. Possible
discontinuities in this dependence would cause errors

in the response surface generation created using
numerical differentiation. An examination of the run

times yields similar results as the free response case,
with the MC baseline taking 27.3 hours of wall-clock
time, the PDS MC taking 18.5 minutes wail-clock,
and the PDS FORM taking about 90 seconds.

8 CONCLUSIONS

A probabilistic dynamic synthesis method has been

applied to the analysis of a realistic three-substructure
system. The new technique uses modal test data from
a sample set of substructures to generate a set of
dynamic random variables which fully describe the
probabilistic variation in the structures. The residual
flexibility method of component mode synthesis is
then used to generate probabilistic mass and stiffness
matrices which can be used to obtained any desired
response variable. Probabilistic analysis is performed
using these stochastic systems by applying both the
traditional Monte Carlo technique and new reliability
methods. Solutions for both free and forced response
of the realistic system were obtained, and the results
compare favorably with a baseline Monte Carlo
analysis. This PDS technique was therefore applied to
the solution of a mistuned bladed-disk, which will be

reported in a future paper.
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