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Abstract

This paper describes a finite volume computational thermo-fluid dynamics method to

solve for Navier-Stokes equations in conjunction with energy equation and

thermodynamic equation of state in an unstructured coordinate system. The system of

equations have been solved by a simultaneous Newton-Raphson method and compared

with several benchmark solutions. Excellent agreements have been obtained in each case

and the method has been found to be significantly faster than conventional

Computational Fluid Dynamic(CFD) methods and therefore has the potential for

implementation in Multi-Disciplinary analysis and design optimization in fluid and

thermal systems. The paper also describes an algorithm of design optimization based on

Newton-Raphson method which has been recently tested in a turbomachinery application.
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Area (in 2)
Flow Coefficient

Diameter (in)
Gravitational Acceleration (ft/see 2)

Conversion Constant (= 32.174 lb-fi/lbf-sec 2)

Flow Resistance Coefficient (/Ibf-sec2/(lb-f_) 2 )

Non-dimensional Rotating Flow Resistance Coefficient

Length (in)

Mass Flow Rate (lb/sec)

Pressure (lbf/in 2)
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Momentum Source (Ibf)

Temperature (o F)
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Coordinate Direction
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Density (Ib/ft3)

Angle Between Branch Flow Velocity Vector and Gravity Vector (deg),

Angle Between Neighboring Branches for Computing Shear (deg)

Angular Velocity (rad/sec)

Absolute Roughness (in)

Relative Roughness

Viscosity (Ib/ft-sec)
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1.0 Introduction

Computational fluid dynamic methods have been extensively used to analyze a new

design or to investigate operational problems in Aerospace, Automobile, Nuclear and

Process Industries. Finite volume method [1] has been the most popular among the

available method to solve for multi-dimensional Navier-Stokes equations. Several

commercial CFD codes [2-6] are based on finite volume method. Most CFD models

require extensive computer resources to perform a single analysis. For example a typical

flow calculation in a compressor blade requires several hours in a supercomputer and

typical turnaround time is one week. Although there was a need, Multi-disciplinary

analysis and design optimization for fluid and thermal systems have not been found very

practical in industries.

The SIMPLE (Semi-Implicit Pressure Linked Equation) algorithm [7] has been widely

used in all finite volume based computer codes mentioned earlier. Although there are

several improvements to the original algorithm, SIMPLE is still based on successive

substitution method. Momentum and continuity equations are solved separately. A

pressure correction equation is derived from continuity equation using a linearized

momentum equation. Under-relaxation is often necessary to ensure convergence. It

slows down computational speed significantly. On the other hand simultaneous solution

of all governing equations eliminates the need for under-relaxation and convergence is

obtained much faster than any method using a successive substitution technique.

Moreover, most commercially available computer codes use a structured coordinate

system to define the flow configuration. In industrial applications majority of the flow

situations can not be easily modeled using a structured coordinate system. Therefore a

need exists for an efficient numerical algorithm for solving Navier-Stokes equation in an

unstructured co-ordinate system which can be utilized for multi-disciplinary design

optimization and analysis. The purpose of this paper is to describe the extension of the

Generalized Fluid System Simulation Program (GFSSP) [8], a network flow analysis

code to account for multidimensional flow effects. GFSSP discretizes an irregular flow

domain in nodes and branches. The scalar transport equations such as mass and energy

conservation equations are solved at the nodes where as the vector properties such as

momentum are solved in branches. GFSSP has been extensively applied in propulsive

flows [9-10] and it demonstrated a satisfactory numerical stability in wide range of flow

situations. In this paper an attempt has been made to extend GFSSP's solver to handle

multi-dimensional flow and demonstrate its use for a design problem.

2.0 Unstructured Finite Volume Grid

The unstructured finite volume grid network for GFSSP is shown in Figure 1, which

shows connectivity of five nodes with four branches. In this figure node-i is connected

with four neighboring nodes (J = 1 to 4). In structured coordinate systems the number of

neighboring nodes are restricted to 2, 4 and 6 for one, two and three dimensional systems
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respectively• On the other hand for an unstructured system, there is no such restriction on

the number of neighboring nodes. The index k represents fluid species•

Mixture

!

' i .

m..

tj Mixture

Ill..

Fluid (k=l) !

I' ",mji

1
I_l., = -m,,

j=4 I q II
J

Fluid (k=2)

Figure 1 : Schematic of Nodes and Branches for an Unstructured Finite Volume Grid

3.0 Conservation Equations

3.1 Mass Conservation Equation

The mass conservation equation for the ith node can be represented by:

n

fla.. = 0 (1)

j=l 1j

Equation 1 implies that the net mass flow from a given node must equate to zero. In other

words, the total mass flow rate into a node is equal to the total mass flow rate out of the

node.

3.2 Momentum Conservation Equation

The one dimensional form of momentum equation for every branch takes the following

form:

gc
Inertia Pressure

pgVc°s0 KfthijlrhijlA+P K'ZtmZAIr]-r])+S (2)
gc 2 gc

Gravity Friction Centrifugal Source

Equation

pressure,

equation.

2 represents the balance of fluid forces acting on a given branch. Inertia,

gravity, friction and centrifugal forces are considered in the conservation

In addition to five forces, a source term S has been provided in the equation to
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input pump characteristicsor to input power to pump in a given branch. If a pump is
locatedin a givenbranch,all otherforcesexceptpressurearesetto zero. Thesourceterm
S is setto zero in all othercases. Figure2 showsthe schematicof a branchcontrol
volume.

i

o

'l

R
I

v

g

R
J

Figure 2: Schematic of a Branch Control Volume Showing the Gravity and Rotation

Multi-dimensional conservation equations must account for the transport of mass,

momentum and energy into and out of the control volume from all directions in space.

Mass conservation equations (Equation 1) can account for such transport because each

internal node can be connected with multiple neighboring nodes located in space in any

arbitrary location (Figure 1). On the other hand, the momentum conservation equation

(Equation 2) is one dimensional. Multi-dimensional momentum transport can be

accounted for by incorporating two additional terms in the momentum equation. These

terms include: a) momentum transport due to shear, and b) momentum transport due to

the transverse component of velocity.

These two terms can be identified in the two-dimensional steady state Navier-Stokes

equation which can be expressed as:

¢0. _) o(ou.)O(ov.) @ ¢O uo u)
91.u_+V0y) = _+--0y = -_+9gx+P'_,_ -5-+0y 2)

(3)

The first term on the left hand side of Equation 3 corresponds to the current inertia term

described in Equation 2 The second term on the left hand side of Equation 3

corresponds to the transverse momentum exchange. The first term on the right hand side
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correspondsto thepressuretermin Equation2. Thesecondterm on theright handsideof
Equation3 correspondsto the gravity term. Thethird term on the right handside of the
equationis negligible(basedonanorderof magnitudeargument).The fourth term on the

right hand side represents momentum transport due to shear. This section discusses the

implementation of shear and transverse momentum transport into the momentum

equation of GFSSP.

3.3 Momentum Transport Due to Shear

Begin by examining the shear term (fourth term) of the Navier-Stokes Equation in more

detail. First, consider the shear as a force instead of a force per unit volume by

multiplying the volume by the shear term.

8 2u Au Au Au

la_-yV _ g_-(Ax)(Ay)(Az) = I't--AXAZAy = la _y A_h_r (4)

Figure 3 represents a set of nodes and branches for which shear forces are exchanged.

Let branch 12 represent the branch for which the shear force is to be calculated. Branches

N12 and S12 represent the parallel branches which will be used to calculate the shear

force on branch 12. Let YS be the distance between branches 12 and S12, and let YN be

the distance between branches 12 and N12. Let AS be the shearing area between

branches 12 and S 12, while AN is the shearing area between branches 12 and N 12.

A differencing scheme that can account for non-orthogonality in node structure was used.

Equation 5 represents the shear term for branch 12. The angle 0 represents the angle that

adjacent branches make with respect to the referenced branch.

g_AB_,ch 12 shear '_' _1, YN YS A (5)

Equation 5 can be generalized to n-number of parallel branches at any position around

branch 12 as shown in Equation 6.
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Figure 3: Branch and Node Schematic for Shear Exchange

u_ A Branch 12 shear _ i=l _d" Yi

(6)

Where the summation subscript i represents the i th parallel branch to branch 12.

Next, the shear interaction with a neighboring parallel wall should be addressed. Suppose

that adjacent to branch 12 is a wall that is approximately parallel to the branch. The angle

Own, represents the angle between branch 12 and the wall. The wall has a velocity vso_d.

The distance between the centerline of branch 12 and the wall is Ywa_and the shear area is

Aw_l. The expression for the shear effect of the wall on branch 12 is given in Equation 7.

U wall COS0 wall - Ul2
_t Awall (7)

Ywa_l

If there were multiple walls adjacent to branch 12, then Equation 7 could be generalized

into Equation 8.

-=--0UA Branch _ _-_(_t UwalliCOS0walli- UI2 Awalli) (8)
kt

O3j 12 -wallsh _ i=l Ywalli

Finally, combining the adjacent branch and the wall shear equations into one generalized

equation for the i th branch for which shear is to be calculated. Equation 9 represents the

actual laminar shear formulation incorporated into GFSSP, where i is the current branch,

np_ is the number of parallel branches to branch i, and nsi is the number of parallel solid
walls to branch i.

u,os0ju / Uwa COS0 a )_ "ABranchishear _ _ Yij Aij + k=l\ _ Ywallik Aik (9)
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3.4 Transverse Momentum Transport

The transverse momentum component of Equation 3 can be expressed in terms of a force

per unit volume

0pvu V - (pvA u) (A x)(A y)(A z) : (A x)(A z)(pvAu) = ri]t,a,,_Au (10)
Oy (A y)

Figure 4 represents a set of nodes and branches for which transverse momentum

exchange will take place. Let the branch 12 represent the current branch which will

receive transverse momentum from the surrounding branches. Branch S 12 represents an

adjacent parallel branch, while branches S1 and $2 represent the adjacent normal

branches.

] "1

<g)

Figure 4: Branch and Node Schematic for Transverse Momentum Exchange

Now, examine the formulation for calculating the transverse momentum term for branch

12. First, calculate the average mass flow rate for the adjacent normal branches:

1

rias = _-(riasl + rias2) (11)

Examining Figure 4, a positive transverse mass flow rate is defined as flow into the nodes

corresponding to the branch in question. Based on this definition of transverse mass flow

rate, calculate the transverse momentum term:

0pVUv20y _ (rhsu_2 - rilsUs_2) = rias(ut2 - us_2)
(12)

The parallel branch ($12) will contribute to the transverse momentum term of branch 12

when m_2>-0 (since a positive transverse flow rate begins at S12 and ends at 12), and

should have a negligible contribution when m,2 < 0 (i.e. transverse flow rate begins at 12
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and ends at S 12). Equation 13, below, is the upwinding representation of the transverse

momentum term for branch 12.

oovUv y u , (max0,m ) (13)

Equation 13 can be generalized for m-parallel branches around branch i, each with an

angle 0_j with respect to branch i, and n_j corresponding transverse connecting branches,

each transverse branch with an angle of 0_jk with respect to branch i. Equation 14

represents this generalized version of Equation 13.

. D t/10y V_ z )-'_Vufmax-_-'_{/m_ikC°S0_ik} '0 -(u_ic°s0_i(max0'_--j( lm_ikc°s0_]k
J=_L \ II k=1 =

Equation 14 represents the actual transverse momentum formulation put into GFSSP,

where i is the current branch for which transverse momentum is being calculated, m_ is

the number of parallel branches which will be used to calculate transverse momentum,

and r_j is the number of connecting transverse branches between the current branch (i),

and the j,h parallel branch.

4.0 Verification Results

In order to verify proper implementation of the shear and transverse momentum

components into GFSSP, two models were identified and developed. The two

verification models are: two dimensional Poiseuille flow and two dimensional shear

driven flow in a square cavity. The following sections describe the models and present

the results.

4.1 Poiseuille Flow Model

Consider the flow between two fixed flat plates shown below in Figure 5. The flow is

pressure driven and assumed to be fully developed. The length of the plates is 1000

inches, they are 1 inch apart, the fluid density is 12 lbm/fl 3, the viscosity is 1 lbm/(ftsec),

and the pressures at the upstream and downstream ends are 20 psi and 10 psi,

respectively. The analytical solution (Equation 15) for this situation can easily be derived

for laminar flow, and is provided below for comparative purposes. Figure 6 shows an

approximate velocity profile for this situation.
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]1 Uboltom surface = 0 Pdownstream= 10 psi
IIPupstream = 20 psi

Figure 5" Poiseulle Flow Physical Situation

Figure 6: Poiseulle Flow Velocity Profile

u = 0.005(y-y 2) (18)

A simple 3 node, 10 branch model (two sets of 5 parallel branches) was constructed to

model the physical situation described above. The model is shown schematically in

Figure 7.

Top Wall Top Wall

Bottom Wall Bottom Wall

Figure 7: GFSSP Poiseulle Flow Model

Each of the 10 branches (121-125,231-235) are 500 inches in length. It is assumed that

the shear area for each branch-branch & branch-wall was 500 in 2 and that the shear

distance was 0.2 inches between adjacent branches and 0.1 inch between walls and their

adjacent branches. The pressures at nodes 1 and 3 are 20 psi and 10 psi, respectively. A

constant density option was used and the corresponding density and viscosity used were

121bm/ft 3 and 1.0 lbm/(ftsec), respectively. Resistance option -02 was used in the initial
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flow field calculation (for the first Newton-Raphson iteration, after which the shear will

replace the friction factor calculation) for each of the branches. The bottom and top walls

are fixed.

Figure 8 below shows a comparison between the velocity profiles for the analytical

solution and the GFSSP 3 node, 10 branch (5 parallel branch) model. As can be seen in

Figure 8, the results of this crude GFSSP model compare vary favorably with the

analytical solution.

0.8 _'e"e*'e * _' * , • *_'**

o6

0.4 .,...,]a.

0.2 ] .°*'*'*°" _
4..O" __ ....

•-".._1[_ .,.*,-*"*"_ _ Analytical Solution
[ ....._ I --m-- GFSSP Solution

I

0 0.1 0.2 0.3 0.4 0.5 0.6

Velocity (ft/sec)

Figure 8: Poiseulle Flow Velocity Distribution

4.2 Shear Driven Flow in a Square Cavity

Consider a square cavity as shown below in Figure 9. The flow is induced by shear

interaction at the top wall. The length of each wall is 12 inches. The density of the fluid

is assumed constant at 1.00 lbm/ft 3, and the viscosity of the fluid is assumed to be 1.00

lbm/(ft'sec ). The bottom and side walls are fixed. The top wall is moving to the right at

constant speed of 100 ft/sec. The corresponding Reynolds number for this situation is Re

-- 100.

4.2.1 Benchmark Numerical Solution
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Due to the non-linearity of the governing differential equations, an analytical solution of

this situation is not available. Instead of an analytical solution, a well known numerical

solution by Odus Burggraf [9] was used as the benchmark solution. Burggraf used a

5 lx51 grid in his model of the square cavity.

100 tVsec

12inches

14 12 inches z[

Figure 9: Flow in a Shear Driven Square Cavity

4.2.2 GFSSP Driven Cavity Model

The GFSSP model of the driven cavity consists of 49 nodes (48 of which are internal)

and 84 branches. For numerical stability, one node (Node 1) was assigned to be a

boundary node with an arbitrary pressure of 100 psi. A unit depth (1 inch) was assumed

for the required areas. The model is shown schematically in Figure 10.

It was assumed that the shear area for each branch is 2.0 in 2. The shear distance between

adjacent branches is 1.71429 inches and the shear distance between walls and their

adjacent branches is 0.85714 inches. For transverse momentum, only adjacent parallel

branches were considered, and only connecting branches not associated with the

boundary node were used. A constant density option was used with corresponding

density and viscosity values of 1.0 lbm/ft 3 and 1.0 lbm/(ftsec), respectively. Resistance

Option 2 was used in the initial flow field calculation (for the first Newton-Raphson

iteration, after which the shear will replace the friction factor calculation) for all of the

11

Draft Paper for the 7 _h AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis & Optimization



branches. The bottom and side walls are fixed. The top walls are moving to the right at

100 ft/sec. All parallel angles are 0°, and all transverse angles are 90 °.

Side Wall

Side Wilt

I'op Wall ]op Will Top Wall Top Will lop Wall lop W.ll

Side V_'all

I SideWall

I S_d¢ Wall

Side Will

SideWall

Side Will

Bottom Wall Bottom Wall Bottom Will Bottom Will Be_ta'll Will BeSom Wall

Figure 10: GFSSP Flow in a Shear Driven Square Cavity Model

4.2.3 Results

Figure 11 shows a comparison between the benchmark numerical solution and GFSSP

7x7 node model velocity profiles along a vertical plane at the horizontal midpoint. As

can be seen in Figure 11, the results of this crude GFSSP model compare very favorably

with the benchmark numerical solution of Burggraf [11 ].
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m1 •

0.9I _ --_= -

_ 0.6 .

--_ 0.5 ,

0.4.

E SSP Prediction-- _4.-- GF (7x7 Grid)

i
4_LO. 2 _

1_% --B'-"Burggrafs, 51x51 Grid Prediction (1966)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Dimensionless Velocity

Figure 11 : Shear Driven Square Cavity Centerline Velocity Distribution

5.0 Design Mode

The design of a system is an iterative process, and all iterative schemes follow a 'guess

and correct' procedure. With an intelligent guess one can reduce the required number of

iterations and therefore can reduce the cost of the design of such system. In the past,

every engineering organization depended on a few experienced engineers who can make

such intelligent guesses by virtue of their long years of experience in a particular

discipline. Because of the changing nature of the economy and technological

developments, availability of such precious human resources are in decline. The future

design of engineering hardware will be based on a computer based iterative process

where an intelligent guess will no longer contribute to the economic aspect of the design.

All design decisions will be based on computer models.

5.1 Overview of the Design Mode Methodology

This section describes how GFSSP's analysis capability can be utilized for designing a

fluid system. Suppose we want to specify a number of design variables in the flow

circuit. These variables could be a) pressure at a given node(p,), b) flow rate in a

particular branch(mb) and c) temperature at a given node(T,). It is necessary to identify

the parameters that can be adjusted to attain the desired variables. Let us suppose these

parameters are a) area of a particular branch, Ax, b) Pressure at a given boundary node, Px,

and c) Heat load at a given node, Qx. It should be noted that the number of desired

variables must be equal to the number of identified parameters that can be adjusted during

the iterative scheme.
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Following are the seven steps

calculation:

The application of the Newton-Raphson Method involves the following 7 steps:

1. Develop the governing equations.

The equations are expressed in the following form:

FI(Pn'Ax'Px'Qx) = P,,- f(Ax'Px'Qx) = 0

F2(m b,Ax,px,Qx) = mb- f(Ax'Px'Qx) = 0

.F3(Tn,Ax,Px,Qx) = m b- f(Ax,px,Qx) = 0

of Newton-Raphson method proposed for design mode

(16)

2. Guess a solution for the equations.

Guess A x,Px, Qx as an initial solution for the governing equations

3. Calculate the residuals of each equation.

When the guessed solutions are substituted into Equation 16, the right hand side of the

equation is not zero. The non-zero value is the residual.

F,(p,, ,A_,P,,,Qx) = p,, - f (A,,,p,,,Q,,) = R,

Fz(m b ,A'_,p],Q]) = mb -- f (A;,p_,Q'_) = R2

F3(T,, Ax,P_,Q'_) T,, -f ( " " " =, " " = Ax,Px,Qx) R3

(17)

The intent of the solution scheme is to correct A',, px, Q_ with a set of corrections
! !

A'_,Px,Qx such that R 1,R2,R 3 are zero.

4. Develop a set of correction equations for all variables.

First construct the matrix of influence coefficients:
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OFj OF I OF 1

dA x Opx dQ_

Then construct the set of simultaneous equations for corrections:

(18)

dF l dF 1 dFj

dA x dpx OQ_

dF 2 dF 2 dF 2

dF 3 dF 3 OF 3

dA_ dp_ OQ_

P'x = R2

' R3

(19)

! !

5. Solve for A'_, p_, Q_ by solving the simultaneous equations.

6. Apply correction to each variable.

7. Iterate until the corrections become very small.

5.2 An Example of the Design Mode Methodology

5.2.1 Description

It is required to estimate the cross-sectional area of a pressure regulator to set the

downstream pressure at 55 psia. The pressure regulator is located 25" downstream in a

(1/4" OD, 0.18" ID) pipeline with a relative roughness of 0.00006. The pipeline is

connected with a 300 psia, 70 ° F nitrogen supply line. Nitrogen is vented to the

atmosphere at 14.7 psia and 70 ° F at 60" downstream of the pressure regulator. The

diameters and roughness are identical for both pipes. A flow restriction with a loss

coefficient (CL) of 0.6 is used to model the pressure regulator. Figure 12 schematically

shows the situation to be modeled.
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Tank

N2

p = 300 psia
T = 70°F

L = 25 in Ii

d = 0.18 in

_/d = 0.00006

L = 60 in ,_1

1

/
Atmosphere
p = 14.7 psia

Figure 12: Schematic of the Pressure Regulator System to be Modeled

5.2.2 GFSSP Model

The GFSSP model used to predict the pressure downstream of the pressure regulator is

shown in Figure 13. Node 1 represents the tank, node 2 represents a position just

upstream of the pressure regulator, node 3 represents a position just downstream of the

regulator, and node 4 represents the atmosphere. Branch 23 represents the regulator,

whereas branches 12 and 34 represent the pipes up- and downstream of the regulator. An

initial guess of the cross-sectional area of the pressure regulator is made and a predicted

pressure downstream of the regulator is calculated, which is likely to be different from

the desired pressure of 55 psia. The intent of this exercise is to adjust the area until the

desired pressure is achieved. The Design Mode Methodology, described in Section 5.1,

is used adjust the regulator area within a convergence criterion of 0.01 on the desired

pressure.

12 2 23 3 34

Figure 13: GFSSP Model of the Pressure Regulator System

5.2.3 Results

An initial guess of the pressure regulator cross-sectional area was made of 0.002 inches.

Using this area, GFSSP predicted the pressure at node 3 to be 27.2 psia (well below the

desired pressure of 55 psia). The Design Mode methodology, described in section 5.1,

was employed to predict a new area for branch 23, and then a new predicted pressure was

calculated for node 3. This process was repeated until the convergence criteria was met

(three iterations were required). Table 1 summarizes the cycle of guessed and predicted

values.
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Table 1: Summary of Guessed and Predicted values for Design Mode Example

Iteration A23 Guessed (in 2) P3 Predicted (psia) Converged? A23 New (in 2)

1 0.002 27.20 N 0.005658

2 0.005658 54.71 N 0.0057

3 0.0057 55.00 Y

This systematic iterative procedure to adjust certain variables to achieve a design goal has

also been demonstrated [12] in a turbomachinery application.

6.0 Conclusions

A finite volume based network analysis method was extended to perform multi-

dimensional flow calculations in an unstructured co-ordinate system. Two classical flow

problems were solved and results compared very well with benchmark analytical and

numerical solution. Simultaneous solution of mass and momentum conservation

equations was found more economical than conventional successive substitution

employed in conventional CFD methods. The simultaneous method of solving Navier-

Stokes equation make it more feasible to apply for multi-disciplinary analysis and design

optimization. A design algorithm based on Newton-Raphson method was described and

a simple application of the design method was demonstrated by solving a problem of

finding the required area of a pressure regulator in a compressible flow feed line.
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