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TRAJECTORY DESIGN STRATEGIES

THAT INCORPORATE

INVARIANT MANIFOLDS AND S3 /'INGBY

J. J. Guzm_Ln,* D. S. Cooley,_ K. C. Howell,_ and D. C. Folta§

Libration point orbits serve as excellent platforms for scientific investigations involving the
Sun as well as planetary environments. Trajectory design in support of such missions is increas-
ingly challenging as more complex missions are envisioned in the next few decades. Software
tools for trajectory design in this regime must be further developed to incorporate better un-
derstanding of the solution space and, thus, improve the efficiency and expand the capabilities
of current approaches. Only recently applied to trajectory design, dynamical systems theory
now offers new insights into the natural dynamics associated with the multi-body problem. The

goal of this effort is the blending of analysis from dynamical systems theory with the well es-
tablished NASA Goddard software program SWINGBY to enhance and expand the capabilities
for mission design. Basic knowledge concerning the solution space is improved as well.

INTRODUCTION

The trajectorydesign softwareprogram SWINGBY, developed by the Guidance, Navigation and

Control Center at NASA's Goddard Space FlightCenter, issuccessfullyused to design and support

spacecraftmissions. Of particularinteresthere are missions to the Sun-Earth collinearlibration

points.Orbits in the vicinityof librationpointsserve as excellentplatforms forscientificinvestiga-

tionsincludingsolareffectson planetary environments. However, as mission concepts become more

ambitious, increasinginnovationisnecessary in the design of the trajectory.Although SWINGBY

has been extremely useful,creativeand successfuldesign for librationpoint missions stillrelies

heavilyon the experience of the user. In thiswork, invariantmanifold theory and SWINGBY are

combined in an effortto improve the efficiencyof the trajectorydesign process. A wider range of

trajectoryoptionsisalso likelyto be availablein the futureas a result.

Design capabilities for libration point missions have significantly improved in recent years. The

success of SWINGBY for construction of trajectories in this regime is evidence of the improvement in

computational capabilities. However, conventional tools, including SWINGBY, do not currently in-

corporate any theoretical understanding of the multi-body problem and do not exploit the dynamical

relationships. Nonlinear dynamical systems theory (DST) offers new insights in multi-body regimes,
where qualitative information is necessary concerning sets of solutions and their evolution. The goal

of this effort is a blending of dynamical systems theory, that employs the dynamical relationships
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to constructthe solutionarcs,and SWINGBY, with itsstrength in numerical analysis.Dynamical

systems theory is,of course,a broad subjectarea. For applicationtospacecrafttrajectorydesign,it

ishelpfulto firstconsiderspecialsolutionsand invariantmanifolds,sincethisaspect of DST offers

immediate insights.An understanding of the solution space then forms a basis for computation

of a preliminarysolution;the end-to-end approximation can then be transferredto SWINGBY for

finaladjustments. Accomplishing thisobjectiverequiresan exchange of information between two

software packages. At Purdue, variousdynamical systems methodologies are included inan internal

software toolcalledGENERATOR. GENERATOR includesseveralprograms that generate differ-

ent types of solutionarcs,some based on dynamical systems theory;the user then collectsallthe

arcs together and differentially corrects the trajectory segments to produce a complete path in a
complex dynamical model. A two level iteration scheme is utilized whenever differential corrections

are required; this approach produces position continuity (first level), then velocity continuity (sec-
ond level). 1-4 SWINGBY, on the other hand, is an interactive tr/.sual tool that allows the user to

model launches and parking orbits, as well as design transfer trajectories utilizing various targeting
schemes, s SWINGBY is also an excellent tool for prelaunch analysis including trajectory design,

error analysis, launch window calculations and ephemeris generation. 6 SWINGBY has proven to be

an improvement over previous non-GUI (Graphical User Interface) programs. The goal here is a
procedure to use the tools in combination for mutual benefit.

INVARIANT MANIFOLDS

The geometrical theory of dynamical systems is based in phase space and begins with special
solutions that include equilibrium paints, periodic orbits, and quasi-periodic motions. Then, curved

spaces (differentialmanifolds) are introduced as the geometrical model for the phase space of de-

pendent variables.An invariantmanifold isdefinedas an m-dimensional surfacesuch that an orbit

startingon the surfaceremains on the surfacethroughout itsdynamical evolution.So, an invariant

manifold isa set of orbitsthat form a surface.Invariantmanifolds, in particularstable,unstable,

and centermanifolds,are key components inthe analysisof the phase space. Bounded motions (in-

cludingperiodicorbits)existin the centermanifold,as wellas transitionsfrom one type ofbounded

motion to another. Sets oforbitsthat approach or depart an invariantmanifold asymptoticallyare

also invariantmanifolds (under certainconditions)and these are the stableand unstable manifolds,

respectively.

In the context of the three body problem, the libration points, halo orbits, and the tori on which

Lissajous trajectories are confined are themselves invariant manifolds. First, consider a collinear

libration point, that is, an equilibrium solution in terms of the rotating coordinates in the three-

body problem. The libration point itself has a one-dimensional stable manifold, a one dimensional
unstable manifold, and a four dimensional center manifold. As has been described in more detail

in Ref. 7, there exist periodic and quasi-periodic motions in this center manifold. Two types of

periodic motion are of interest here, i.e., the planar Lyapunov orbits as well as the nearly vertical
(out of plane) orbits. The familiar periodic halo orbits result from a bifucartion along the planar

family of Lyapunov orbits as the amplitude increases. Also in the center subspace are quasi-periodic

solutions related to both the planar and the vertical periodic orbits. These three-dimensional, quasi-

periodic solutions are those that have typically been denoted as Lissajous trajectories. Although

not of interest here, a second type of quasi-periodic solution is the motion on tori that envelop the
periodic halo orbits.

The periodic halo orbits, as defined in the circular restricted problem, are used as a reference

solution for investigating the phase space in this analysis. It is possible to exploit the hyperbolic

nature of these orbits by using the associated stable and unstable manifolds to generate transfer

trajectoriesas well as generaltrajectoryarcs inthis region of space. (The resultscan also be ex-

tended to more complex dynamical models.4,s)Developing expressionsforthese nonlinear surfaces
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isa formidable task,one that isunnecessary in the context of theirrole in this particulardesign

process.Rather, the computation of the stableand unstable manifolds associatedwith a particular

halo orbitisaccomplished numericallyin a straightforwardmanner. The procedure isbased on the

availabilityof the monodromy matrix (the variationalor state transitionmatrix afterone period

of the motion) associatedwith the halo orbit. This matrix essentiallyservesto definea discrete

linearmap of a fixedpoint in some arbitraryPoincar_ section.As with any discretemapping of a

fixedpoint,the characteristicsof the localgeometry ofthe phase space can be determined from the

eigenvaluesand eigenvectorsof the monodromy matrix. These are characteristicsnot only of the

fixedpoint,but of the halo orbit itself.

The localapproximation ofthe stable(unstable)manifolds involvescalculatingthe eigenvectors

ofthe monodromy matrix that are associatedwith the stable (unstable)eigenvalues.This approxi-

mation can be propagated toany pointalongthe halo orbitusing the statetransitionmatrix. Recall

that the eigenvaluesof a periodic halo orbitare known to be of the followingform:9

At>I , A2----(I/AI)<I , A3=),4=I ,

As--A_ , and [As]:[,ks[=1 ,

where As and AS are complex conjugates.Stable (and unstable) eigauspaces,E s (E U) are spanned

by the eigenvectorswhose eigenvalueshave modulus lessthan one (modulus greaterthan one). There

existlocalstable and unstable manifolds, Wl_ and wtUoc,tangent to the eigenspacesat the fixed

point and of the same dimension.I°,11Thus, fora fixedpoint ,_'//definedalong the halo orbit,the

one-dimensional stable(unstable)manifold isapproximated by the eigenvectorassociatedwith the

eigenvalue A2 (At). First,consider the stablemanifold. Recall that a periodic orbitappears as

one fixedpoint in a Poincar_ map; thus,the halo orbit isidentifiedas ,_/_ in the two dimensional

representationin Figure I. Let Y w° denote a six-dimensionalvector that iscoincidentwith the

stableeigenvectorand isscaledsuch that the elements corresponding to positionin the phase space

have been normalized. This vector servesas the localapproximation to the stablemanifold (wS).

Remove the fixedpoint ,_'/_from the stablemanifold and there remain two half-manifolds,WS+and

W s- . Each half-manifoldisitselfa manifold consistingof a singletrajectory.Now, considersome

point )fo that liesexactlyon W $+. Integratingforward and backward in time from XooP+roduces
W $÷. Of course, the stable manifold approaches the fixedpoint asymptotically,so W _ reaches

,_H only ininfinitetime. Nevertheless,conceptually,calculatinga halfmanifold iscomposed ofthe
.... S'_ .

followingtwo steps:locatingor approxlmatmg a point on W , and numerically integratingfrom

thispoint.

To numerically generate the stable manifold, an algorithm originally developed for second order

systems has been employed, t2 The algorithm, however, does not possess any inherent limit to the

Figure 1
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Stable and Unstable Manifolds Associated with a Fixed Point )_H
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orderof the system and has been used successfully here. Near the fixed point J_'_/, the half-manifold

WS+is determined, to first order, by the stable eigenvector IyW° . The next step is then to globalize

the stable manifold. This can be accomplished by numerically integrating backwards in time. It also

requires an initial state that is on WS+but not on the halo orbit. To determine such an initial state,

the position of the spacecraft is displaced from the halo in the direction of lyW° by some distance
ds such that the new initial state, denoted as Bow° , is calculated as

w" = +d, FW" (1)

Higher order expressionsfor_'oW° are availablebut not necessary.The magnitude of the scalard,

should be small enough to avoid violatingthe linearestimate,yet not so small that the time of

flightbecomes too largedue to the asymptotic nature of the stablemanifold. This investigationis

conducted with a nominal value of 200 km ford, sincethisapplicationisin the Sun-Earth system.

A suitablevalueof d, should be determined foreach application.Note that a similarprocedure can

be used to apprc0cimateand generate the unstable manifold. One additionalobservationisnotable.

The stableand unstable manifolds for any fixedpoint along a halo orbitare one-dimensional and

this factimpliesthat the stable/unstablemanifolds for the entirehalo orbitare two-dimeusional.

This isan important concept when consideringdesign options.

APPLICATION TO MISSION DESIGN

Trajectory design has traditionally been initiated with a baseline mission concept rooted in the

two-body problem and conics. For libration point missions, however, a baseline concept derived

from solutions to the three-body problem is required. Since no such general solution is available,
the goal is to use dynamical systems theory to numerically explore the types of trajectory arcs that

exist in the solution space. Then, various arcs can be "patched" together for preliminary design; the

end-to-end solution is ultimately computed using a model that incorporates ephemeris data as well
as other appropriate forces (e.g., solar radiation pressure).

Force Models

The dynamical model that isadopted to representthe forceson the spacecraftincludesthe grav-

itationalinfluencesof the Sun, Moon and Earth. (Additionalgravitationalbodies can certainlybe

added. This subset,however, includesthe dominant gravitationalinfluencesand isa convenient set

for thisdiscussionand demonstration.) All planetary,solar,and lunar statesare obtained from the

GSFC Solar Lunar and Planetary (SLP) files.The SLP filesdescribe positionsand velocitiesfor

nine solarsystem bodies (excludingMercury) inthe form ofChebyshev polynomial coefficientsat 12

day intervals. These files are based on the Jet Propulsion Laboratory's Definitive Ephemeris (DE)
118 and 200 files.13

Solar radiation pressure is also included in the differential equations. It is modeled as follows: TM

- F,M
F tsu-3 n.spacecraft 7"sun spacecraft r3 rsun-sp acecraft

sun-spacecraft

(2)

where ._Iisthe spacecraftmass, rsu_-spac_craftisthe vector from the Sun to the spacecraft,and the

scalarvariableFj isused to representallother predetermined constants in the model. The scalar

quantity Fa includesinformationregarding the characteristicsofthe spacecraftand certainphysical

constants. For instance,the parameter k representsthe absorptivityof the spacecraftsurfaceover

the range 0 < k < 2; ,4isthe effectivecrosssectionalarea; c isthe speed of light;So isthe solar

lightfluxat 1 A.U. from the Sun; Do isthe nominal distance associatedwith So; and _ isthe angle

of incidencewhich can be calculated(forSun radiatingradiallyoutward) as follows
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rs. n-spacecraft /
(3)

where fiisthe unit vector normal to the incidentarea. In this study, the solarradiationpressure

model willbe simplifiedby assuming that the forceisalways normal to the surface,i.e.,_ = 0. In

terms of the spacecraftengine,only impulsive maneuvers are considered. Of course,the analysis

must be consistentacrossallanalysistools.

Nominal Baseline "lYaJectory

Assume a missionconcept that involvesdeparture from a circularEarth parking orbitand trans-

feralong a directpath to arrivein a halo or Llssajoustrajectoryassociatedwith an Lt libration

point,defined in terms of a Sun-Earth/Moon baryoenter system. Thus, the baselinetrajectoryis

composed of two segments: (a) the Earth-to-halo transfer, and (b) the Lissajous trajectory. The

design strategy is based on computing the halo/Llssajous trajectory first, since this type of orbit

enables the flow (the stable/unstable manifolds) in the region between the Earth and L1 to be

represented relatively straightforwardly in configuration space using the invariant manifolds. An
appropriate Lissajous orbit, i.e., one that meets the science and communications requirements, is

computed using GENERATOR. 1 A Lissajous trajectory is quasi-periodic; howeverl two revolutions

along the path can be assumed as a nearly periodic orbit for construction of a monodromy matrix.

The transfer design process then consists of identifying the subspace (or surface) that flows from the
vicinity of the Earth to the Llssajous trajectory by computation of the associated stable manifold.

Using the stable manifold to construct the transfer trajectory from Earth implies an asymptotic

approach to the "periodic" orbit and, even in actual practice, may result in no insertion maneuver.

So, rather than a targeting problem to reach a specified insertion point on the halo orbit, the transfer
design problem becomes one of insertion onto the stable manifold, directly from an Earth parking

orbit, if possible. The flight time along such a path is actually very reasonable.

Unfortunately, not every halo/Lissajous orbit possesses stable manifolds that pass at the precise

altitude of a specified Earth parking orbit. However, the stable/unstable manifolds control the be-
havior of all nearby solutions in this region of the phase space. Thus, the behavior of the manifolds

provides insight into optimal transfers and serves as an excellent first approximation in a differential

corrections scheme. 3 Of course, altitude is not the only launch constraint. Once an appropriate ini-

tial transfer path is available, a series of patch points (_control points") are automatically inserted.

A two-level iteration scheme then shifts positions and times to satisfy constraints on launch altitude,
launch date, and launch inclination as well as placement of the transfer trajectory insertion point

as close to perigee as possible. 15 Note that this process for computation of the transfer leaves the

Lissajous trajectory intact. This is extremely difficult to accomplish solely in SWINGBY (as it is

currently structured).

After the transferisproduced, itissuccessfullytransferredto SWINGBY. Note that, in this

process,the transferpath emerges without a random search.Thus, thiscriticalinitialapproximation

isextremely important for the design of more complex missions (that might includephasing loops

and/or gravityassists),sincetransferringtothe nominal Lissajousorbitis,ingeneral,a challengefor

the trajectoryanalysts.I_Once a suitabletrajectoryassociatedwith a particularLissajoustrajectory

isidentified,SWINGBY can be furtherutilizedforfinaladjustments, maneuver erroranalysis,and

exploration of changes in the mission specifications.Understanding both the traditionaldesign

methodology and invariantmanifold theory demonstrates that a toolthat integratesmanifold theory

into the mission design process isvery beneficial.Furthermore, likeSWINGBY, this tool must

possessan excellentgraphicaluser interface.
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Implementat Ion Issues

For comparison and data exchange between GENERATOR and SVVINGBY, it isimperative

that a consistentmatch existsin the followingaspects: Coordinate Systems, Time Standards, and

Integrators.To accomplish thistask,SWINGBY isassumed as the referenceand GENERATOR is

modified to meet the conditionsin the referenceas closelyas possible.

Coordinate Systems. To perform the integrations, the geocentric inertial (GCI) frame is used. This

frame is defined with an origin at the Earth's center and an equatorial reference plane. For visual-

ization, the Sun-Earth Rotating (SER) and the Rotating Libration Point (RLP) frames also prove
to be invaluable. The SER frame uses an origin at the Earth and an ecliptic reference plane. The

RLP frame also defines an origin at the moving libration point (L1 or L2) and, like the SER frame,
uses an ecliptic reference plane.

Time Standards. Julian days, in atomic time standard, are assumed to advance the integration. The
Julian Date system numbers days continuously, without division of years and months. 17 The atomic
time standard is defined in terms of the oscillations of the cesium atom at mean sea level s

Integrators. For the numerical integration scheme, a Runge-Kutta-Verner 8(9) integrator is incor-
porated. This Runge-Kutta integrator is, of course, based on the Verner methodology. Is The Verner

formulas provide an estimate of the local truncation errors that allow the development of an adap-

tive step size control scheme, s It is important to note that, when performing differential corrections,
GENERATOR also integrates the 36 first order scalar differential equations from the state transition

matrix that is associated with the equations of motion governing the position and velocity states.

As a result, a total of _$ equations are simultaneously integrated. Therefore, for adequate error

control, the scaling of the variables is very important.

EXAMPLES

Given setsof mission specifications,two sample trajectoriesare computed below. The blended

procedure isemployed to demonstrate itsimplementation. The resultscan be compared to known

solutions,ifavailable.For the followingexamples, itisassumed that communication requirements

impose minimum and maximum anglesof3 and 32 degrees,respectively,between the Sun/Earth line

and the Earth-Vehicle vector (SEV angle) during the transferfrom the Earth parking orbitto the

vicinityofthe librationpoint. The parking orbitisspecifiedas circularwith a 28.5degree inclination

(Earth equatorial)and an altitudeof 185 kin. (Deep Space Network coverage and shadowing/eclipse

constraintswillnot be considered at thistime.)

SOHO Mission

On December 2, 1995, the Solar Heliospheric Observatory (SOHO) spacecraft was launched. Built

by the European Space Agency to study the Sun, SOHO is part of the International Solar-Terrestrial
Physics (ISTP) program. 19 To meet the science requirements, SOHO requires an uninterrupted view

of the Sun and the minimization of the background noise due to particle flux. A halo/Lissajous orbit

similar to the libration point (L1) orbit utilized for the ISEE-3 mission 2° is assumed. The science
and communications requirements generate the following Lissajous amplitude constraints: Az --

206,448 kin, A_ -- 666,672 kin, and Az = 120,000 kin. A Class I (northern) Lissajous, obtained 1
numerically with the appropriate amplitude characteristics, appears in Figure 2.

Given this Lissajous orbit, a transfer trajectory is sought. Initially, a limited set of points is

selected along some specified part of the Lissajous trajectory; this specific region along the orbit in

Figure 2 is identified as all the points in the shorter arc defined by the symbols "x _. It is already

known that the manifolds associated with these points will pass close to the Earth. This particular

region along the nominal path is designated as the "Earth Access region".3,9 Each point in the

586



Earth Access region can be defined as a fixed point ._H and the corresponding one-dimensional sta-

ble manifold giobalized. Together, these one-dimensional manifolds form a two-dimensional surface
associated with this region of the nominal orbit. The projection of this surface onto configuration

space appears in Figure 3. (Note that the manifolds in Figure 3 pass closest to the Earth as compared
to those associated with any other region along the nominal orbit; altitude is the only characteristic

used in determining this region.) From this invariant subspace, the one trajectory that passes closest
to the Earth is selected as the initial guess for the transfer path. Some of the notable characteristics

of this approximation are listed in Table 1 and a plot appears in Figure 4. Note in Figure 4 that the

constraint on the SEV angle is met.

Given the initial guess and utilizing continuation, the transfer is differentially corrected to meet

the requirements on the other constraints. This correction process can occur in GENERATOR or
SWINGBY, although the methodology differs between the two algorithms; numerical data corre-

sponding to the final solution that appears in Table 1 is from GENERATOR. ( A plot of the final

solution is indistinguishable from Figure 4.) Although there is no guarantee that this result rep-

resents an optimal solution, all constraints have been met and the solution process is automated.

This transfer compares most favorably with the transfer solution actually used by SOHO. From this

point, the solution is input directly into SWINGBY and appears in Figure 5. SWINGBY can now
be used for further analysis including visualization, launch and maneuver error investigations, as

well as midcourse corrections. Data can still be exchanged and news transfers computed as needed.

Table 1

SOHO EXAMPLE: TRANSFER TRAJECTORY DESIGN

Initial Approximation

Transfer Trajectory Insertion Date 12/03/95

Closest Approach (Altitude) 5,311 km
Inclination 15.58 degrees

Final Transfer Trajectory

Transfer Trajectory Insertion Date

Closest Approach (Altitude)
Inclination

Ascending Node

Argument of Perigee
Transfer Insertion Cost

Lissajous Insertion Cost

Time of Flight s

12/02/95
185 km

28.5 degrees
292.63 degrees

145.77 degrees

3193.9 m/s

33.8 m/s
204.7 days

aThe time of flight is calculated as follows: from transfer

trajectory insertion until the point along the path such that

the vehicle is within 200 km of the nominal Liasaious. This

point is indicated in Figure 4 with a symbol '*'
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NGST Mission

The Next Generation Space Telescope (NGST), 21 part of the NASA Origins Program, is designed

to be the successor to the Hubble Space Telescope. Since for NGST the majority of the observations

by the instruments aboard the spacecraft will be in the infrared part of the spectrum, it is impor-

tant that the telescope be kept at low temperatures. To accomplish this, an orbit far from Earth
and its reflected sunlight is desirable. There are several orbits that are satisfactory from a thermal

point of view, and, in this study, an orbit in the vicinity of the L2 point is considered. Based on

this information, the following Lissajous amplitudes 21 are incorporated: A_ - 294,224 kin, A_ -

800,000 kin, and Az - 131,000 kin. A Class I (northern) Lissajons, obtained numerically, with the

appropriate amplitude characteristics appears in Figure 6; note that the trajectory is 2.36 years in
duration.

Again, given this Lissajous orbit, a transfer trajectory is sought. Using invariant manifold theory,

several transfer paths can be computed; a surface is projected onto configuration space and the three-

dimensional plot appears in Figure 7. Again, this particular section of the surface is associated with

the _Earth Access region" along the L2 libration point orbit. 4,9 An interesting observation is apparent

as motion proceeds along the center of the surface. The smoothness of the surface is interrupted

because a few of the trajectories pass close to the Moon upon Earth departure. Lunar gravity

was not incorporated into the approximation for the manifolds; but no special consideration was

involved to avoid the Moon either. This information concerning the lunar influence can probably

be exploited with further development of the methodology. From information available in Figure 7,

the one trajectory that passes closest to the Earth is identified and used as the initial guess for the
transfer path. Some of the notable characteristics of this approximation are listed in Table 2 and a

plot appears in Figure 8.

Table 2

NGST EXAMPLE: TRANSFER TRAJECTORY DESIGN

InitialApproximation

Transfer Trajectory InsertionDate 09/30/2007

ClosestApproach (altitude) -2,520.6km

Inclination 30.1 degrees

Final Transfer Trajectory

Transfer Trajectory Insertion Date
Closest Approach (altitude)
Inclination

Ascending Node

Argument of Perigee
Transfer Insertion Cost

Lissajous Insertion Cost

Time of Flight b

10/01/200 
185 km

28.5 degrees

342.65 degrees

210.74 degrees

3195.1 m/s

15.4 m/s

210.8 days

bThe time of flight is calculated as follows: from transfer

trajectory insertion until the point along the path such that

the vehicle is within 200 km of the nominal Lissajous. This

point is indicated in Figure 8 with a symbol '*'
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Note from Table 2 that thisparticularapproximation passesbelow the Earth'ssurface.The larger

sizeofthisLissajousorbit,as compared to the SOHO example, reducesthe Earth passage distance.

Furthermore, note inFigure 8 that the constrainton the SEV angle isnot met. Given the initial

guess,the transferisdifferentiallycorrectedto meet the requirements on allthe constraintsexcept

the SEV angle.Inthiscase,afterthisprocess,the SEV constraintismet. The SEV constraintcould

certainlybe added to the differentialcorrectionprocess,although ithas not yet been incorporated.

The finalsolutionas seen in Figure 9 isfrom GENERATOR. From thispoint,the solutionisinput

directlyintoSWINGBY and appears inFigure 10. Similarto the previous example, SWINGBY can

now be used forfurthervisualization,analysisof launch and maneuver errors,midcourse corrections,

and other investigations.

CONCLUDING REMARKS

The primary goal ofthis effortisthe blending of analysisfrom dynamical systems theory with

the well establishedNASA Goddard software program SWINGBY to enhance and expand the ca-

pabilitiesfor mission design. Dynamical systems theory provides a qualitativeand quantitative

understanding of the phase space that facilitatesthe mission design. SWINGBY can then utilize

thisinformation to visualizeand complete the end-to-end mission analysis. Combination of these

two toolsproves to be an important step towards the next generationof mission design software.
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