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TECHNICAL MEMORANDUM

HIGH PERFORMANCE, ROBUST CONTROL OF FLEXIBLE SPACE STRUCTURES

(MSFC Center Director's Discretionary Fund Final Report, Project No. 96-23)

1. INTRODUCTION

Where there is no vision, the people perish, Proverbs 29:18.

Throughout history, mankind's ambition has fueled a drive to explore. The last four decades

in particular have seen a great expansion of technology brought about by the space program. Along

with advances in technology comes the opportunity to expand our understanding of the universe which

demands even greater advances in technology. To realize ambitious technical goals requires increasingly

sophisticated spacecraft systems. One technology area that is especially challenging is pointing control

systems for flexible space structures. Applications include space telescopes and interferometers, Earth-

observing spacecraft, communications spacecraft, and military spacecraft such as space-based lasers

and tracking systems. Control systems for flexible space structures must meet stringent performance

requirements while being robust to model uncertainties. The topic of this dissertation is robust control

system design for flexible space structures (FSS's) that achieve high performance on orbit.

1.1 Challenges of Flexible Space Structure Control

Vibration control of flexible spacecraft has motivated intense research in modern and robust

control theory. In general, FSS's possess several pathologies that compound the difficulty of controller

design. Light-weight, low-stiffness structures coupled with stringent pointing requirements result in

numerous closely spaced, lightly damped vibrational modes within the controller bandwidth. A primary

difficulty with control of FSS's is that accurate models of the on-orbit system are not typically available

a priori. Successful implementation of a high-performance, on-orbit pointing control system requires

integration of system identification and control system design in a form that facilitates iterative redesign,

or "tuning," of the control system.

Recent experience with the Hubble Space Telescope (HST) serves to illustrate the need for on-

orbit system identification and controller tuning. 2 After initial deployment, the HST experienced severe

pointing disturbances due to thermal excitation of the solar arrays and the performance degradation was

attributed to model errors. On-orbit test data were used to update the control design model for controller

redesign. Incremental control augmentation in the form of forward path and inner loop feedback filters

was employed with each subsequent retune phase exhibiting increasing levels of performance. However,

this redesign effort took considerable time and a very substantial investment of manpower. Considerable

savings could have been gained by a more efficient methodology for on-orbit control system redesign.



For manyspacecraft,to obtainhigh-performancepointingcontrolonorbit requiresclosed-loop
systemidentificationandcontrollerrefinementto improveperformance.A methodicalprocessfor
on-orbit tuningfor flexiblespacecraftmustconsistof five steps:( I ) Empirical or analyticalmodel
developmentfor initial controldesign:(2) low authoritycontroldesignfor robuststability; (3)closed-
loopsystemidentificationto improveknowledgeof theon-orbitplantdynamics:(4) controllerrefine-
mentto increasecontrolauthorityandimproveperformance;and(5) performanceassessment.
Steps(3)-(5)may be iterateduntil thedesiredcontrollerperformanceisobtained.

Closed-loopsystemidentification(step3) issignificantfor anumberof reasons.Typically,
spacecraftcannotbe testedonorbit in theopen-loopmanner.Also, open-loopmodelingerrorsarenot
necessarilyindicativeof closed-looprobustnessor performance.3 Forcontrol systemturfingwith flexible
spacecraft,theplant modelshouldbeobtainedfrom closed-loopexcitationin theorbitalenvironment.
A newprocedurefor closed-loopsystemidentificationis alsopresentedwhichtunestheparameters
of anopen-loop(statespace)controldesignmodelto bette,"characterizetheon-orbitdynamics.

Recentadvancementsin thefield of robustmultivariablecontrol haveprovideda fruitful para-
digm for on-orbitcontroller(step4) tuningwherethecompetingissuesof performanceandstability
areexplicitly addressed.Mixed H 2 �Ha control theory is well suited to on-orbit controller tuning since

the technique generates a set of controllers that trade between robustness and performance. The control

formulation is such that the controller parameters are tuned to account for plant changes or varying

performance requirements. Successive implementation of these controllers allows the compensator

to be selected which achieves maximum performance in the presence of model errors. In this research

effort, a homotopy algorithm was developed for synthesis of fixed-order, mixed H 2 / Hoo compensators.

1.2 Contributions

It is the goal of this dissertation to develop a control design and system identification procedure

that achieves high performance while providing robust stability guarantees. Contributions of this

research effort include the following:

I. This dissertation will present a homotopy algorithm for fixed order, mixed H 2 /Ha

compensator synthesis.

2. To successfully implement this homotopy algorithm required the development of a new

algorithm for numerical optimization that is robust to ill-conditioned and indefinite Hessians. The utility

of this new optimization algorithm is demonstrated by examples in appendix A.

3. Examples are given that illustrate the significance of mixed-norm design for nominal perfor-

mance and robust stability. Included is a control design exercise for an experimental flexible space

structure that includes open-loop system identification for control design model development.

4. A new method for system identification from closed-loop response data is presented for

multi-input, multi-output systems in canonical form. Examples are given to demonstrate the closed-loop

system identification and controller redesign process.



This disse,'tationis structuredasfollows. 111section2, a brief surveyof thedevelopmentsin
controldesignandsystemidentificationwhichrelateto controller tuningwill bepresented.Special
attentionisgivento fixed-ordercontroldesignfor bothrobustnessandperformance.Emphasisisalso
placedon recentdevelopmentsin closed-loopsystemidentification.Theapproachesto controldesign
for nominalperformance,robustperformance,andnominalperformance/robuststability arehighlighted
in section3.Theformulationof thefixed-ordermixed H 2/Hoocontrol design method is also given.

Homotopy methods are introduced in section 4 and a homotopy algorithm developed to synthesize

mixed H 2/Hoocontrollers is presented. Section 5 presents mixed-norm control design examples.

The new closed-loop system identification procedure is given in section 6 with examples. Conclusions

and recommendations are provided in section 7 and appendix A is included to present the details of the

numerical optimization procedure developed for ill-conditioned and indefinite Hessians.



2. BACKGROUND

2.1 Fixed-Order Control Design For Stability and Performance

Recent years have seen significant advances in modern control theory with H 2 and Hoo methods

gaining widespread recognition and application. Early work in multivariable control synthesis utilized a

quadratic cost functional to minimize the H2 norm of a system response to white noise inputs. While the

H 2 procedure is well suited to design for qominal performance in terms of root-mean-square (RMS)

quantities such as minimizing line-of-sight errors or control energy, it is well known that stability and

perfornmnce cannot be guaranteed in the presence of model uncertainties. Robustness is addressed in

H_ control theory which guarantees stability and pe,'formance (when defined by an H_ norm measure)

in the presence of unstructured uncertainty models, albeit often resulting in overly conservative designs.

/t -analysis and p-synthesis methods have ,'educed the conservatism of H_ methods by accounting

for the structure in the uncertainty and performance specifications. 4-6

A significant disadvantage of these modern control techniques is that the resulting compensator

is the same order as the generalized plant, which is often larger than the original plant due to the inclu-

sion of frequency-dependent weights to achieve the desired performance and robustness characteristics.

The consequential large controller order can be indirectly alleviated by reducing the order of the control-

let or alternatively by reducing the order of the design plant. In either case, indirect methods are subopti-

mal in performance and do not guarantee closed-loop stability. However. direct methods may be em-

ployed which impose constraints on controller order or architecture in the optimization procedure

and hence provide stability and performance guarantees. In an optimization-based synthesis procedure.

necessary conditions are formulated for the constrained closed-loop system that ensure internal stability.

The Optimal Projection method of Hyland and Bernstein is an H 2 procedure whereby order

constraints are imposed on the controller and the necessary conditions for minimizing a quadratic cost

functional with respect to the fixed-order controller are derived. 7 The resulting necessary conditions

consist of two modified Riccati equations and two modified Lyapunov equations coupled by an oblique

projection matrix. However. solution of the necessary conditions for realistic large-order systems is a

difficult task. Homotopy methods have been employed to solve the optimal projection equations. 8

As a means of providing robust stability with RMS-type performance, the mixed H 2 /H_

methodology has been developed. Much work has been done with variations of the mixed H._ / Ha

problem (for a summary see reference 9). The earliest refereed work was done by Bernstein and Haddad

who extended the Optimal Projection approach to (linear-quadratic-Gaussian) LQG control with an H 2

norm constraint. 1 Their formulation minimized an overbound on the H 2 norm from a disturbance input

to one output while satisfying an H,_ norm overbound from the same disturbance input to a second

output. This approach is potentially conservative as a result of minimizing an overbound on the H 2

norm. This approach was extended to the general mixed H 2/H_o problem which can be specialized to

4



both full- andfixed-orderpure H 2 and pure Hoo controllers.10 Reference 11 further extended the mixed

H 2 / H_ formulation of reference 1 by fully accounting for singularities in the problem formulation.

Rotea and Khargonekar formulated the general mixed H 2 /H_ problem with independent inputs and

outputs for the two transfer functions and minimized the actual H 2 norm based on full state feedback. 12

Ridgely extended the formulation to output feedback including the fixed-order case with either regular

or singular H_ constraints 9 and provided a numerical solution. 13Another approach to the general

mixed H 2 /H_ problem was developed by Sweriduk and Calise 14 who used a differential game formu-

lation with a conjugate gradient algorithm to obtain fixed-order controllers. In this dissertation, a nu-

merical solution of this formulation using a homotopy algorithm is developed and presented in section 4.

Based on the formulation of reference !, homotopy algorithms have also been recently developed for

both discrete time and continuous time mixed H 2/H_ design. 15.16

Ridgely et al. shows the mixed H 2 /Ha problem to be a strictly convex optimization problem

with a unique solution when the controller is of the order equal to or larger than the underlying H 2

problem. 9 The solution is shown to lie on the boundary of the infinity norm constraint when active

(for y < _ where p is the Ho+ norm when the optimal H 2 controller is used) and is just the H 2 con-

troller when y _>_. For controllers with order less than the underlying H 2 problem, the possibility of

local minima in the unconstrained H 2 problem (Optimal Projection) exists and the solution of the mixed

H 2 / H_ problem may or may not lie on the boundary of the Ho+ norm constraint. As will be shown

in the next section, Sweriduk and Calise 14 begin with the fixed-order H_ cost functional and append

the fixed-order H 2 cost functional. Reference 9 takes the converse approach by appending the H_ norm

constraint to the H 2 cost functional. As a consequence, the formulation in reference 9 can handle both

regular and singular H_ constraints and can be specialized to the H 2 problem. Conversely, the refer-

ence 14 formulation can handle both regular and singular H 2 constraints and can be specialized to the

Hoo problem. However, the ability to handle singular constraints on either cost exists as long as one

of the cost constraints is regular. Whereas the reference 14 formulation assumes that the plant dynamics

(A matrix) of the two transfer functions are the same, reference 9 allows different dynamics in the two

separate underlying Hoo and H 2 problems. Using the canonical compensator with a static gain output

formulation presented in section 3, the reference 14 formulation requires the simultaneous solution

of five coupled nonlinear matrix equations. Reference 9 presents the necessary conditions in the form

of seven coupled, nonlinear matrix equations.

2.2 Closed-Loop System Identification and Control Design

Implicit in the design of high-performance control systems is the availability of an accurate

model of the system to be controlled. Although system identification and control design are both critical

aspects of high-performance model based control design, the theoretical foundations of these two disci-

plines have developed distinctly. Developments in system identification have been directed toward

obtaining accurate nominal models with bounds on the associated uncertainty. Recognizing the depen-

dence on accurate nominal design models, robust control theory has been developed to accommodate

modeling errors. Recently, attention has been drawn to the fact that the issues of system identification

and control design must be treated as mutually dependent. In reference 3, Skelton points out that since

the magnitude and spectrum of excitation forces are controller-dependent, an appropriate model



for controldesigncannotbedeterminedindependent of the controller. The point is made that the validity

of the model is dictated by the controller instead of the opposite, as is usually assumed. Since the model

that is most appropriate depends on the control design, the open-loop response of a model is not suffi-

cient to indicate the fidelity of the model for control design. Additionally, robust performance requires

an accurate model of the plant in the controller crossover frequency range, 17 indicating that the amount

of model error that can be tolerated is frequency- and controller-dependent. Hence. the issues of model

identification and model-based control design must be treated as a joint problem suggesting an iterative
solution.3. 18,

Closed-loop system identification (i.e., identification of the open-loop plant given closed-loop

response data and knowledge of the compensator dynamics) is currently a field of active research.

Most of the methods that identify state space models of the open-loop plant are based on identifying

the closed-loop Markov pa,ameters from frequency response functions and then extracting the open-loop

Markov parameters. A discrete time state space realization is then obtained from these identified Markov

parameters. An approach to iterative closed-loop system identification and controller redesign is given

by Liu and Skelton where a state space model is estimated using the q-Markov Cover algorithm and

a controller is designed using the Output Variance Constraint algorithm.19 q-Markov Cover theory

describes all realizations of a linear system which match the first q-Markov parameters and covariance

parameters of the true system generated by pulse responses. First, the entire closed-loop system is

estimated and then. using knowledge of the compensator dynamics, the plant is extracted. However, the

identified open-loop plant has dimension equal to the controller dimension plus the dimension of the

identified closed-loop plant. Model order reduction is used to remove the superfluous states. A similar

approach is taken in reference 20 where Phan et al. formulate a method which first obtains the closed-

loop Markov parameters and then the open-loop Markov parameters are recovered. A discrete time state

space realization is then obtained from the Markov parameters. Other related approaches are given
in references 21 and 22.

To provide synergism, an iterative process should match the system identification objectives

with the control design objectives. Reference 18 presents an iterative algorithm for frequency-response

identification from closed-loop data and robust control design. The identification phase is control-

oriented with the objective of providing robust performance by closely approximating the achieved

closed-loop performance. The interplay between identification and control design is formalized

by specifying a performance metric (norm) for model-based optimal control design and an identification

cost function that minimizes the difference in the achieved performance and nominal design perfor-

mance as defined by the same metric. Many algorithms have been developed based on this general

framework which utilize different performance norms and identification algorithms. An excellent survey

of this topic is given in reference 23. Most of the work cited therein has been done in the context

of single-input, single-output (SISO) systems.

A classical approach to parameter estimation which has been extended to closed-loop system

identification is the prediction error approach. 24 This optimization method estimates the parameters

of a linear system by minimizing the squared sum of the errors between the actual measurements

and the predicted measurements. Zang, Bitmead, and Gevers present an iterative prediction error

6



identificationandcontroldesignalgorithmbasedon the H 2 norm. 25 The control objective is used

to frequency-weight the identification cost functional and the resulting prediction error specl,'um is used

to frequency-weight the control design. In this manner the control is penalized heavily where the SISO

transfer function model fit is poor and the model is weighted to fit best in the regions most critical

to performance. Another approach utilizes the dual Youla parameterization of all plants stabilized

by a given controller. This approach was introduced by Hansen and Franklin 26 and further elaborated

by Hansen et al. in reference 27 as applied to closed-loop experiment design. Schrama applied the dual

Youla parameterization to closed-loop system identification in refe,'ences 28 and 29 as did Anderson

and Kosut in reference 30. A related method directed toward identification of the coprime factors

of the plant was introduced by Schrama iq reference 28 and was further elaborated in references 29

and 31.

In this dissertation the prediction error method is extended to closed-loop identification for

multivariable systems. Building on a method developed for estimation of the parameters of an open-loop

system in canonical form from open-loop data, a new procedure for closed-loop system identification

is developed and demonstrated in section 6.



3. APPROACHES TO CONTROL DESIGN FOR FLEXIBLE SPACE STRUCTURES

H 2 methods are often used when designing control systems to reduce the vibration response

of a flexible structure. While H 2 design gives good nominal performance, the controllers are highly

tuned to the design model and errors in the design model are not accounted for, typically inducing

instability at higher levels of control authority. As a result, the actual performance achievable is limited

with H 2 designs. To achieve high levels of performance in the actual system, robustness to model errors

must be taken into account in the design process as is clone in the Hoo control design theory. In the

following sections, a brief introduction to H 2, Hoo, I.l -synthesis, and mixed H 2/,u control theory

is given followed by the problem formulation for fixed-order control design.

3.1 Control Design for Stability and Performance

The generalized plant of a standard control problem is given by

.i = A.v + B 1w + B2u (1)

: = Cix+Dl2u (2)

v=C 2x+D 21w+D221t , (3)

where x _ R" is the state vector, w _ R nw is the disturbance vector, u _ R n'' is the control vector,

- _ R n: is the performance vector, and v _ R 'ty is the measurement vector. The following is assumed:

• (A, B 1, C 1) is stabilizable and detectable

• DI2 has full column rank

• D21 has full row rank.

A general compensator for this system is

-vc = Acxc + Bey (4)

u = C c x c , (5)

where x c _ R nc is the state vector of the controller, the dimension of which can be specified. Closing

the loop using negative feedback yields the closed-loop system dynamics

x = A.¥ +/Jw (6)



where

z =C2 , (7)

(8)

A - B 2 C c ]= BcC2 Ac -BcDg_C c

Bc D21

(9)

(10)

C'=[C 1 -DI2C c ] . (11)

The set of all internally stabilizing compensators is defined as

S,. = {(Ac,Bc,C c ) "f_ is asymptotically stable} (12)

3.1.1 Nominal Performance Design

For an H 2 problem, the objective is to minimize the H 2 norm of the closed-loop transfer

function from disturbance inputs to performance outputs

Tzw = sl - [_ , (i 3)

where the disturbances are confined to the set of signals with bounded power and fixed spectra. If the

disturbance is modeled as white noise, the objective is

S _ t ---->oo

where E{*} is the expectation operator. The cost can be expressed as

J(Ac,Bc,Cc):tr{QBBT}:tr{PCTC} , (15)

where

AP + PA T + BBT =0

ATQ+Qf% +cTc= 0 .

(16)

(17)



i,,hecoo,ro,, bi,i,yg, mmi ,°of' i,,heob,erv, bi,i,y of/ A,,equiva-
\ ! \ /

lent cost functional also arises for the case of impulsive inputs.

Another approach to design for nominal performance employs the H,_ norm, which can be

interpreted as the gain of the system and is the worst-case amplification over all inputs w(t) of bounded

energy L2 signals. From a frequency domain perspective, the H_ norm is defined as the maximum

singular value of T(s) over all frequencies, i.e.,

IIT_-,.II = sup{ff(T_-w( jco))} . (18)
co

where _ denotes the maximum singular value. H_ control design theory, based on references 32

and 33, involves defining (possibly frequency-dependent) weights on the inputs and outputs such that

the performance objectives are satisfied by minimizing IIv:,, Because the He, norm is defined with

respect to the peak magnitude of the transfer matrix frequency response and the H 2 norm is defined

by an integral square quantity (in time or frequency by Parseval's Theorem), the respective closed-loop

systems may have considerably different characteristics. Depending on the performance objectives, one

design procedure may be preferable to the other. When performance is specified by RMS measures, H 2

design typically yields better nominal performance. The significant benefit of H_ theory is that robust-

ness to unstructured model errors is explicitly factored into the design process.

3.1.2 Robust Stability and Robust Performance

In addition to nominal performance, robust stability is an important design consideration. Robust

stability requires the closed-loop system to remain stable for bounded model errors. The uncertainty may

be modeled in many forms such as multiplicative, inverse multiplicative, additive, parametric, etc., and

may be located at various points in the loop. By absorbing all of the scalings and weights into the plant,

P, the robust stability problem may be formulated as the linear fractional transformation (LFT) in

figure i. The uncertainties are scaled so that A 6 is the set of all stable perturbations, A, such that

II xll -< '_- Assuming that K(s) internally stabilizes the closed-loop for A = 0, then a sufficient condition

for robust stability for all plants in the set formed by A _ A_ is that 34, 35

L l- /19)

Thus, like the nominal performance problem, robust stability is characterized by the Ho_ norm

of a transfer function.

It is the ability to formulate the performance problem as a robust stability problem that enables

design for robust performance in the Hoo setting. Consider the LFT of an uncertain plant in figure 2

with inputs and outputs defined for performance and an uncertainty model. The conditions for robust

performance are:

1. Robust stability (equation (19))

2. Performance maintained for all A e A6.

10



¥

Figure 1.LFT for robuststabilityanalysis.

A

ILl MI
I

Figure 2. LFT for robust performance design.

Closing the loop from z 2 to w 2 through a fictitious uncertainty block Ap recasts the robust performance

problem as a robust stability problem, shown in figure 2, where the blocks are scaled to one.

A sufficient condition for robust performance is that

1 (20)IIT(K)IL<

Define _A_,5to be the set of all stable, bounded, unstructured perturbations A such that IIAIL< 6. When

A _ A__6. equation (20) is necessary and sufficient to ensure robust stability. Designing for robust perfor-

mance using Ap as in figure 2 introduces a block diagonal structure to A__which results in equation (20)

being only sufficient and possibly overly conservative. This conservatism is relaxed in the p -analysis

and p -synthesis procedures by accounting for the block diagonal structure in A. The structured singu-

lar value, /_, is the inverse of the smallest destabilizing perturbation of a transfer function matrix and is

defined as:

1

I'l(Tzw('J¢°)) = min{_(A(jo;)): A _ A6,det[1 - T_-w(jco)A(j¢o)] = 0}

(21)

11



Thestructuredsingularvalueis usedto definethe ,u-measure.whichalthoughnot anorm. isgivenby

Hence,thesufficientconditionfor robustperforrnancein equation(20) becomes the necessary
and sufficient condition

1
T(.jw)

(22)

(23)

Although the structured singular value cannot be directly computed, an upper bound can be computed as

(24)

where D = diag[djlj] has the same structure as A and dj are scalar, positive, real functions of fre-

quency. An iterative scheme is used to solve this optimization problem. In the first step, an Hoo controller

is designed and in the second step, the D-scales are optimized for this controller in accordance with

equation (24). A curve-fitting step is used to determine stable, minimum phase rational transfer function

fits (in magnitude) to the optimum D-scales. In the next iteration, these D-scales are incorporated into

the generalized plant and the control design is repeated, followed again by D-scaling. This iterative

process continues until the upper bound in equation (24) cannot be reduced significantly.

3.1.3 Robust Stability and Nominal Performance Design

Although ,u -synthesis provides stability and performance in the presence of model errors, the

performance is defined by an Hoo norm measure. The mixed H 2 /Hoo design procedure has been devel-

oped to provide robust stability and nominal (H 2) performance by minimizing the H 2 norm for one set

of inputs/outputs while satisfying an Hoo norm overbound for another set of inputs/outputs. With refer-

ence to figure 2, the objective is to satisfy

rn_n T__2w2 2 (25)

subject to

T-., _ <y . (26)

This problem has been solved for controllers of fixed dimension in references 9, 14, and 36-38.

The formulation of reference 14 is presented in the next section and a numerical homotopy

algorithm for this formulation of the mixed H 2 / Hoo control design problem is presented in section 4.

The homotopy algorithm is a two-parameter iterative scheme which effectively trades between robust

stability and nominal performance by varying the overbound on the Hoo norm, 7", and the weight

on the H 2 cost, A. For a given 7', A is increased until the Hoo norm constraint becomes an active

equality constraint (at which point the H 2 norm can no longer be reduced), or until the H 2 norm ceases
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to decrease. The set of controllers where the Ho_ norm is equal to the overbound are called the boundary

solutions. This set provides an explicit tradeoff between nominal performance and robust stability. By

incorporating the D-scales from /.t -synthesis into the H_ subproblem, the structure of the uncertainty

block may be accounted for, resulting in a fixed-order mixed H 2//.t design procedure. Recent develop-

ments in robust control theory that avoid this multiplier-controller iteration process include the use of

absolute stability theory such as Popov analysis. 37-4° This approach provides a means for simultaneous

optimization of a fixed-architecture controller and a fixed-structure multiplier that accounts for both

complex and real-structured uncertainty. A homotopy algorithm was developed for syqthesis of robust

controllers with fixed-structure multipliers. 41

The conflicting demands of designing for robustness and performance may be explicitly ad-

dressed in the mixed H 2 / Hoo design setting. The utility of mixed-norm design is exploited by separat-

ing performance and robustness using the H 2 subproblem to design for nominal performance and using

the Hoo subproblem to achieve robust stability. In figure 2 the inputs and outputs associated with the

uncertainty model comprise w I and z 1, w2 is associated with disturbance excitations and measurement

noise, and z 2 is associated with performance outputs. In this manner, the set of boundary controllers

explicitly trade off nominal performance with levels of robustness to uncertainty. As illustrated in

figure 3, this set of controllers includes, at one extreme, the lowest authority controller which provides

maximum robustness and minimum performance and, at the other extreme, a maximum performance

controller with the minimum stability margins. Hence, this paradigm is well suited for tuning a control-

ler on orbit by incrementally increasing control authority.

/'/2 Norm

Maximum Robustness

_1_j" MinimUlaPxieii_iiilrmance

Minimum Robustness

Tuning __. _

H_ Norm

Figure 3. Performance versus robustness trade.

Another significant aspect of this approach is that each controller in the set may be successively

implemented to determine the point at which achieved performance begins to deviate from nominal

performance. At that point, the maximum achievable performance with robust stability for a given

design model is achieved. The same implementation strategy could be applied to H 2 and /_ control
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design.However,mixed-normdesigntendsto allow higherperformancelevelsto beattainedfor agiven
boundedmodelerrorby designingfor robuststability.SinceH 2 design does no1 account for model

errors, the sensitivity to model errors typically results in achieving lower levels of performance than

the mixed-norm designs. On the other hand, J./ designs are not optimized for H 2 performance and

although robust stability is given, the performance is not comparable to H 2 nominal performance

design. These issues are illustrated by design examples in section 5.

In the following section, the problem formulation and necessary conditions for fixed-order

H 2, H_, and mixed H 2/Hoo control design are presented. Section 4 presents the homotopy algorithm

for fixed-order, mixed-norm synthesis.

3.2 Fixed-Order Control Design Formulation

In order to obtain the H 2-optimal compensator, the Lagrangian is formed by augmenting the cost

functional, equation (15), with the constraint, equation (17), yielding

L(Q.L,Ac,Bc.Cc)= tr{Q/_/_ T +(f_TQ+Qf_+cTc)L} , (27)

where L is a symmetric matrix of Lagrange multipliers. Matrix gradients are taken to determine the first

order necessary conditions:

OL _L _L _L _L

o_2 o, -_ o, Oa,. o, 3Bc O, _. :0 (28)

Hence, computing an H 2-optimal controller of fixed-order nc < n for the general controller structure

given in equations (4)-(5) requires the simultaneous solution of five coupled equations. This is not

only computationally expensive, but is also further complicated by the fact that the problem is over-

parametrized with such a compensator.

To optimize the controller for a specified controller state dimension, a "controller form" architec-

ture is imposed on the compensator dynamics. 42 This minimal realization avoids the problem of over

parametrization and is a canonical form under mild conditions. 43 The internal structure of the compensa-

tor is prespecified by assigning a set of feedback invariant indices, v i . In controller canonical form,

the compensator is defined as

.i-c = p°x c + N°uc - NOv (29)

uc = -Px c (30)

u = -Hx c , (31 )
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wherex c e R "c and uc _ R "v P and H are free-parameter matrices, and p0 and N °•. are fixed matrices

of zeros and ones determined by the choice of controllability indices. Similarly, a compensator in ob-

server canonical form can be constructed. In this paper only the controller canonical form is employed,

which imposes the lower bound nc > nv on the order of the compensator.

By augmenting the generalized plant of equations ( I )-(3) with the compensator of equations

(29)-(3 ! ), the system may be written as

A 01_NOc2 pO .T+ _NOD 21 w+ _NOD22 NO fi

= A-2 + B-lw + B-2f/ (32)

:=[C 1 012+[D12 0]fi=C-l.f+D12fi, (33)

_=[0 112=C2.g , (34)

where the augmented control input is

- = -G7
fi= p

(35)

['1= . (36)
l/c

Equations (32)-(35) define a static gain output feedback problem where the compensator is represented

by a minimal number of free parameters in the design matrix, G. The closed-loop system is given by

._ = (A - B2GC 2 )._ + Blw= A7 +/}w (37)

- = (C 1 - DI2GC 2).i== d._' • (38)

Minimizing the H 2 norm of T_-w = C(sl- ._)-1/) utilizes the same Lagrangian as given in equation (27),

but now T, is only a function of three parameter matrices, i.e., l_(Q, L,G). Thus, the resulting first order

necessary conditions are

O� AL + LAT + B[_ T 0 (39)
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at..= ATQ + QA + ¢Td = 0
&

(40)

0G - - - (41)

Controller canonical forms can also be used to solve the Ha problem. The objective is now

to minimize the norm of the transfer function from disturbance inputs w to performance outputs -

given by

rlT__.IL= sup11_.,112_supIIT_-.II_
.,_L_ Ilwb_ Ilwll2-q -"

(42)

From reference 14, the optimization problem is to find

;,¢{II_../G)LG_G}_y:_:. (43)

where G= {G e _(,,,+,.,.)x,,../] is stable}. A more practical design objective is to find a G that ensures

IIh..IL<-_'forsome_'>_,*.Thisoptimization problem may be formulated as a min-max problem

using the cost functional

=#Lo(_,2j.),,} (44)

where the expectation operator, E{*}, is taken over a distribution of initial conditions with zero mean

and variance BBT. In the min-max problem, the minimizing player acts first, so the loop is closed

around G and the disturbance w* which maximizes J7 is determined. Then the control G which

minimizes .17(w*,G ) is determined, resulting in the upper value

JY= min max J (45)

G is restricted to the set of admissible controllers defined by @ = IG e 91(,,+,,y)x,,c.

,_ is stable and lit__.,L <_,1.

For any G _ C,_,, a unique worst-case disturbance exists and is a feedback of states given by

-") ~T
"'=7 "B Qoox , (46)
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where Q,_ is the positive semidefinite solution of the Riccati equation

--'_ ~ ~ T
ATQoo + Qooft + _T_ + 7, "QooBB Qoo = 0 . (47)

Substituting the worst-case disturbance from equation (46) into equation (44), the performance index

becomes

,Iy(G) = E{ f(T s:T (cT c - y-2Qoj3[3T Qoo )._dt } (48)

The objective of minimizing IIT__.,ILusing a fixed-order controller can be formulated

G_g

subject to equation (47). Using the Lagrange multiplier matrix L, the Lagrangian is

(49)

-_ - -T
L(Q_,L,G)= tr{Qoo/_/_ T +(ATQoo +Q_oA +()T() +7 "QooBB Qoo)L} (50)

Matrix gradients are taken to determine the first order necessary conditions for an Hoo suboptimal fixed-

order compensator gain G:

(51)

__ = -'_ - -TOL ATQoo + Q_A + r_Tc + y -QooBB Qoo= 0
OL

(52)

(53)

As in the H 2 problem, three coupled equations have to be solved to obtain a fixed-order compensator

which satisfies the constraint liT_-w o_ < Y-

This formulation minimizes an upper bound on the H 2 cost which corresponds to an entropy

controller. 44 Although this controller guarantees an Hoo norm constraint, as written it is not a pure Hoo

controller in the sense of reference 33, but can be specialized to the pure Ho_ controller, l°
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Fixed-orderHoo design has also been extended to fixed-order ,u -synthesis. 36-38, 45-47 The

approach taken in reference 36 differs from that of references 45-47 by using optimized fixed-structure

multipliers instead of multiplier-controller iteration and is based on the earlier developments in refer-

ences 37 and 38. Because Ho_ controller design is a subproblem when designing for robust performance

with structured uncertainty, the fixed-order technique just introduced has the potential to constrain the

order of the controller which is normally subject to significant increases in the/.t -synthesis procedure.

The mixed H 2/H_ problem can be approached in a simila," fashion. 14 In this case. the general-

ized plant has additional inputs and outputs with dynamics given by

.{ = A.v + Bpwp + Bin' + B2u (54)

zp = Cpx + DlpU (55)

- = ClX+ D 12u (56)

v = C2.v+ D2pw p + D21w + D22u , (57)

where wp e R,,wp and zp _ R nzp are the inputs and outputs defining the H 2 subproblem, and u,e R my

and - e R"-are the inputs and outputs defining the Hoo subproblem. It is assumed that (A, B 2,C 2)

is stabilizable and detectable. Using the controller canonical form for the compensator, the augmented

system for the mixed problem is

v : x.r + a,,. ,, + e2u (58)

z = Cl.-f + DI2_- (60)

m

V = C2._ (6 I)

i7 = -G_ , (62)

where

I Bp ]

U,,=[Cp 01. o--],,=[o.,, 0]. (63)
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The other expressions are the same as in equations (32)-(35). Consequently, the closed-loop system

is given by

= ,_.V+ Bpwp + Bw (64)

(65)

-=(g,-_,_cc2)v=cv . (66)

In order to formulate the performance index of the mixed problem, the Lagrangian for the H 2 problem

is adjoined to the Lagrangian for the H_ problem in equation (50) by a scalar weight, 2,"

-T- +(_TQoo+Qoo_+_T_L = tr QooB[?,T + ,L_Cp Cp

-o --T (AX+ xAT +BI, Bp)L,,} .+_/ -Q_BB Q_)L + - -T (67)

Note that the H 2 portion of the mixed-norm Lagrangian uses the dual form of the cost and constraint

in equations (15) and (I 6). This problem was first formulated in reference 10. The weight, A,, on the H 2

norm allows a tradeoff between performance ( H 2 norm) and robustness ( H_ norm). The first order

necessary conditions are

c)L (/_+ ;/_2BBTQoo)L + L(,_+ _,} ._T _T
cgQoo- )' -BB Qoo) + _BT = 0 {68}

-- _ --'} ~ ~TcgL /_TQoo + Q_oA + _T_ + }/ -QooBB Qoo = 0
OL

(69)

c}L f_T Lp + Lp,4 -r --- = + 2Cp Cp = 0 (70)
cgX

cgL _ ,itX + X/_T + - -V = 0
c}Lp BpBp

(71)

__= _ DI2
oY;

oc2- - ]el: o.
(72)

In section 4, a homotopy method is presented to synthesize fixed-order H 2, H_, and mixed

H 2 / Hoo controllers.
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4. HOMOTOPY ALGORITHM FOR MIXED H2/H_ CONTROL DESIGN

Using the formulation and necessary conditions of the fixed-order mixed H 2 / Hoo control design

problem in section 3, this section presents a homotopy algorithm for synthesis of fixed-order mixed

H 2 / H,_ controllers. Fixed-order H 2 and H_ controllers are obtained in the same manner, but for the

sake of brevity only the mixed-norm algorithm is presented here. A complete development of the H 2

and Hoo algorithms is given in reference 48. The approach and algorithms developed here are patterned

after references 49 and 50. Before embarking on the homotopy algorithm for mixed-norm design,

an introduction to homotopy methods is presented.

4.1 Homotopy Methods

Homotopy methods offer an attractive alternative to more standard approaches of optimal con-

troller synthesis such as sequential and conjugate gradient methods. The basic philosophy of homotopy

methods is to deform a problem which is relatively easily solved into the problem for which
a solution is desired.

Homotopy (or continuation) methods, arising from algebraic and differential topology, embed

a given problem in a parameterized family of problems. More specifically, consider sets (9 and Y _ _1_

and a mapping F ® --_ Y. where solutions of the problem,

F(0)= 0 (73)

are,,desired with 0 E ® and F(O) _ Y. The homotopy function is defined by the mapping

H:O x [0, I] _ _,t such that

H(OI,1):F(O) , (74)

and there exists a known (or easily calculated) solution, 00, such that

H(00,0 ) = 0 . (75)

The homotopy function is a continuously differentiable function given by

H(0(a),a)=0, a_[0,1] (76)

The existence of a continously differentiable homotopy function is assumed, although in many cases

such as output feedback optimal control design, a continuously differentiable homotopy function

2O



mayin factnotexist.Also, to beprecise,theapproachusedhereinisacontinuationalgorithm,which
differs from homotopyalgorithmsin thatthezerocurveof ahomotopyalgorithmisparameterized
by thearc length.

Thusthehomotopybeginswith a simpleproblemwith aknownsolution,equation(75),which
isdeformedbycontinuouslyvaryingtheparameteruntil thesolutionof theoriginalproblem,equation
(73). isobtained.51Thepowerof homotopymethodsis thatminimizationis notstronglydependenton
startingsolution,butdependson local,smallvariationsin thesolution.Theoretically,thesemethods
aregloballyconvergentfor a widerangeof complexoptimizationproblems,but in actuality,finite
wordlengthcomputationoften introducesnumericalill-conditioning,resultingin difficulties with con-
vergence.In light of thesenumericallimitations,ajudiciouschoiceof the initial problemandtheassoci-
atedinitial stabilizingcompensatorisnecessaryfor convergenceandefficientcomputation.However.
theability to selectan initial problemwith a simplesolutionrendershomotopymethodsmorewidely
applicablethansequentialor gradient-basedmethods,whichhaveastringentrequirementfor an initial
stabilizingsolution.A new procedure for numerical optimization when the Hessian is ill-conditioned

or indefinite is presented in appendix A.

Both discrete and continuous methods are used to solve the homotopy. Discrete methods simply

partition the interval [0, I ] to obtain a finite chain of problems:

H(O.o_,,)=O. O=ao<a I<L <c_ N=I (77)

Starting with a known solution at a,_ ,the solution for H(0,o'n+ 1) is computed by a local iteration

scheme. Continuous methods involve integration of Davidenko's differential equation, which is obtained

by differentiating equation (76) with respect to o_, yielding

(78)

Given 0(0)= 00' this initial value problem may be numerically integrated to obtain the solution at a= 1

if the solution exists and is uniquely defined.

In the next section, a continuous homotopy algorithm is presented for fixed-order mixed H 2 / Ho_

compensator design. The set of homotopy algorithms for synthesizing fixed-order H 2, Hoo, and mixed

H 2 / Hoo compensators has been organized into a MATLAB TM toolbox called Fixed-Order Compensation

of Uncertain Systems (FOCUS).

4.2 Homotopy Algorithm

This section describes the continuous homotopy algorithm for mixed H 2 / Hoo control design.

In essence, a mixed discrete and continuous approach is employed where Davidenko's differential
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equation,equation(78), is integratedalongthehomotopypathandat discretepointsalongthetrajectory,
a localoptimizationis usedto removeintegrationerror.Theoptimizationschemeis apartitionedNew-
toll searchmethoddevelopedfor this applicationandpresentedin appendixA. Localoptimizationat
discretepointsalongthehomotopytrajectoryallowsacrudeintegrationprocedurewith largestepsizes
to beemployedfor efficiently trackingthesolutioncurve.Thisapproachis implementedin thefollowing
algorithm:

1.Find initial solution(a=0).

2. Advanceo_ :

al, k = O_0 + Aa0, k

3. Predict O:

O(O_l,k ) = 0(_0) + AO_o,kO'(aO),

where

O'(°_)- dO -do_(OH) -t oH-_Oa

4. Check prediction error:

a. If error less than tolerance, continue.

b. If not, 0.5Ao_o, k ---+Aa0,k+ 1 .

c. Increment k and repeat steps 2-4.

5. Correct with partitioned Newton method to compute local minimum.

6. If ¢7 = I, stop. Otherwise, go to step 2.

Various approaches may be taken when selecting the deformation, but the general procedure

applied in this effort is outlined as follows:

• Synthesize a low authority H 2 (full order) compensator

• Reduce the compensator to desired order and transform to canonical form 42

• Set ?,large enough so that the H 2 and Hoo compensators are approximately equivalent

• Use homotopy to deform the initial low authority, reduced-order H 2 compensator

into a full authority reduced-order H 2 compensator (H 2 homotopy)

• Deform the full authority H 2 compensator into a nearly optimal H_ compensator

with 7 approaching its infimum ( H,_ homotopy)

• At discrete values of _, fix 1' and deform the compensator into the mixed H 2/Hoo

compensator by varying _ (mixed H 2 IH_ homotopy).
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This procedurewaschosenbecauseit hasbeeqobservednumericallythatorderreductiontech-
niquestendto work bestfor low authorityLQG controllers.49.52A canonicalfolln is imposedon the
compensatorstructureto minimizethenumberof freeparameters,which in somecasescanalsolead
to numericalill-conditioning.A balancingtransformationwhich doesnotaffectthecontrollercharacteris-
tics relaxesthestrict structureill thepO and N ° matrices in equation (29) and improves the conditioning

of the problem.

The procedure outlined above separates the compensator synthesis into distinct phases. The initial

reduced-order full authority compensator is synthesized using the H 2 homotopy, which is then deformed

into the reduced-order H_ compensator. During the Ha phase, the scalar H 2 norm weight _ is fixed

(as are the plant matrices) and only the Hoo norm overbound T is varied. At discrete values, y is fixed

and _ is varied to perform the H 2 norm minimization. Thus, the procedure alternates between the Hoo

and H_,norm minimization. A similar approach was introduced in reference 15.

During the homotopy, both the predicted and corrected gains are checked to ensure closed-loop

stability. After each correction step, the cost gradient is checked to verify descent. During the H_

homotopy, the solvability of the Riccati equation using predicted or corrected gains must also be checked.

If any of these conditions are violated, the prediction step size is decreased and the prediction phase is

repeated. This process continues until the homotopy is completed or until the prediction step size is

decreased below a prespecified tolerance.

The following section details the derivations employed in the homotopy algorithm for mixed

H 2 / H_o design.

4.3 Mixed H2/H_ Development

The homotopy function as well as the gradient and Hessian matrices are determined from the first

order necessary conditions for an optimal mixed H 2 / Hoo compensator given by equations (68)-(72).

Define 0 be a vector comprised of the free compensator parameters

0 = vec(G) , (79)

where G is the output feedback gain matrix defined in equation (35). The gradient of the cost is

OL , ( OL )
.r/o): (80)

where Ol./,OG is given by equation (72).
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The homotopyfunctionis definedas

H(O,_)- _L(O'a) , ( aL(O,o_)]
_o -,,,c_ -g-d _:° (81)

Note that L is now a function of the homotopy parameter a since the system matrices are now functions

of _. The gradient of the homotopy function is

= ]

4.3.1 Computation of Hessian

The derivative of the Nxi vector valued homotopy function, H T (0)=[hl(O),h2(O),L ,hN(O)],

with respect to the N free parameter vector 0 is the NxN Hessian matrix given by

where

=FOH 3H L 0H
VoH

LO01 302 c)O N

_o, Loo_j.

= vec 2 DITDI2G(J)c2 -L, 2 _oo )'.t-2

"LUl pUl ptJ " 2 .

(82)

(83)

(84)

(85)

(86)

and using equation (72),
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The derivatives with respect to 0 are denoted

(,)(i) _ 8(,)
80j

For Oj = gi/,

(87)

G(j)_ 3G _ Eik , (88)

00i

which is a matrix of zeros except for a one in the (i, k) element.

To obtain expressions for L (j), O(oj), L_ ), and X (j), differentiate equations (68)-(71)

with respect to Oj to obtain

"t . T

0--(a+,-,__Q_)_Q_;_+Q_;_(_+,-_-_Qo_)

(90)

' ' T ',(i)]O= _T_) + L_j)_ + _(.I)TLp + Lp_(,,) + _(epep) ' (91)

0 SL¥(J)+x(i)A T +[A(i)x+x,71 (i)T '- -T'_(J)]= +(BpBp) (92)

Derivatives of the closed-loop matrices are obtained from equations (64)-(66) and are given by

_(.i ) = _ -_.,G( J )c, (93)

(/_/_T)(J) = 0, (/_p/3;)(J) = 0 (94)
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(95)

(96)

4.3.2 Computation of H a

Similarly, the derivative of the homotopy function with respect to the homotopy parameter, a,
is the Nxl vector

and

(97)

(98)

,,J4 I:[(_,_,:oc2-_c,- _;o_),__
\d_ L

(99)

= vec{2[(_TDI2GC2 + DiT_I2GC2 - D1Tc1 - -B2TO._)LCf

(100)
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where

a(,)
o3ot (101)

B

Implicit in these equations is the assumption that only the system matrices D 12 and D 1/, and the

parameters 51,and 7' are functions ofa. In general, the homotopy can be performed with any/all system

matrices deformed.

The derivative terms in equation (100) depend on the deformation undertaken in the specified

problem, i.e., the initial and final problem. Suppose that the deformation of the matrix _ 12 is prescibed

to be

D12(a ) = D/2.0(a ) + a(Dl 2,/,(o_)- D12,0(a)) , (102)

where the 0 andfsubscripts indicate the initial and final system matrices, respectively. It follows that

_12 = D12,./'-D-12,0 • (103)

The derivatives of other plant matrices and the parameters /q, and 7' are determined accordingly.

To obtain expressions for the derivatives of L. Qoo, Lp, and X with respect to or, equations (68)-(71 )

are differentiated, resulting in the following:

"_--T x. "/- "_--T _T
0 = (.,_ + T-"BB Qo_)L + L[A + y-'BB Qoo) +(FL + LF T) 104)

0 (f_ + "_- -T \T •

" " LT- "T : " -T- )0 = ATLp + Lpfi, + .,_TLp + Lpft + )tel, el, + .,2t,CpCp + ACpCp

105)

106)

where

- -T - -T)0 = _ + )(A T + _tX + XA T + Bp BI, + gp Bp , 107)

(108)
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and from equations (64)-(66)

(109)

(110)

(111)

(i12)

C = C I -D12GC 2 -DI2GC 2 (113)

where from equations (58)-(61 ), the augmented matrix derivatives reduce to

A = _NO(C2,f _ C2,0)
(I 141)

Bp,f - Bp, 0 ]
_ = I NO [D

L- ( 2P,f-D2p,°)]
(115)

_. )]B1 = -N° (D2 l,f - D21.0
(116)

F B2,,/, - B2, 0 _]-B2 =L_NO(D22,u _ D22,o)
(117)

Cp =[Cp,f -Cp, o O] (118)

Ci = [Ci,f- Cl,o O] (119)

C2=[0 O] (120)

D--lp =[Dlp,f - Dip,O O] (121)
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-_I2=[DI2,t'-DI2.0 O] . (122)

Thepresenceof thezerosubblockssignificantlyenhancesthecomputationalefficiencyof this
approach.Whenimplementingtheproceduredescribedatthebeginningof thissection,theaboveequa-
tionsmaybe furtherspecialized.In the initial H 2 homotopy procedure, the initial and final plant matri-

ces are the same and the homo!opy is performed only on the measurement and process noise intensities,

DI2 and D21. Hence A, B 2, C I , and C 2 are identically zero. For the mixed H 2/Ho_homotopy, the Hoo

and H 2 homotopies are performed distinctly, which simplifies the computations significantly since the

plant matrices remain fixed and only ?' or A, are varied at one time.
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5. DESIGN EXAMPLES

5.1 Example 1: Flexible Four-Disk Example

To demonstrate the homotopy algorithm applied to optimal controller synthesis, the four-disk

example originally described in reference 53 and more recently by numerous others 49 will be used.

The four-disk model used in the example problem was derived from a laboratory experiment and repre-

sents an apparatus developed for testing of pointing control systems for FSS's with noncolocated sensors

and actuators. Four disks are rigidly attached to a flexible axial shaft with control torque applied to

selected disks and the angular displacement of selected disks measured. The plant parameters are taken
from reference I.

The seminal paper dealing with mixed H 2 / Ha design addressed the case where w= wp iq
equation (58) with results from the four-disk problem given for the full order case.l In this section, the

one input, two output case will be repeated with the FOCUS algorithm as well as a two input, two output

case with full- and fixed-order compensators to demonstrate the capabilities of the homotopy algorithm.

Table 1 presents a comparisoq of the results from the FOCUS algorithm and the results published

in reference I. In table 1, the "BH" subscript indicates results from reference 1 and the "F" subscript

indicates results from FOCUS. Gaps in the columns of table 1 denoted "BH" correspond to values of )'

for which results were not published. The absence of data generated by FOCUS for )f = 2 and 1.5 is due

to the fact that ?' is larger than the maximum _ norm as described in the next section. A key distinction

between the formulations of the mixed H 2 /Ho_ optimization problem used herein and that of

reference I is that while their formulation minimizes an overbound on the H 2 norm, the formulation

utilized in FOCUS minimizes the actual H 2 norm. Consequently, as shown in figure 4, the FOCUS

algorithm results in smaller H 2 norms for a given y with the gap in the Hoo norm overbound smaller

than the reference 1 results in the meaningful region for )', as described in the next section. Whereas

y = 0.52 was the smallest y value reported in reference I, y values of 0.5, 0.4, and 0.3 are utilized with

FOCUS, as iqdicated in table 1. A quasi-Newton technique based on the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) variable metric algorithm was used to extend these results for a full-order mixed

H 2 / H,,o controller, achieving _' = 0.29, corresponding to an actual Ho_ norm of 0.28. 54

This example also demonstrates the synthesis of fixed-order mixed controllers with singular H_

constraints. In practice, compensators representing the extreme values of )' or _ will not typically be

used since either performance or robustness would be severely diminished. A compromise value in the

"elbow" of figure 4 would typically be chosen. While the FOCUS results in table I are not significantly

better than the results of reference I, the example demonstrates that the FOCUS code performs satisfac-

torily and lessens the gap between the overbound and the H_ norm.
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Table 1.Comparisonof FOCUSandreference1results.
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Figure 4. H_ versus H 2 cost for four-disk example.

This example serves to illustrate some interesting features of the mixed H 2 / Hoo formulation

implemented in FOCUS as well as distinctions from other formulations. The formulation implemented

in FOCUS is a method for generating suboptimal Hoo controllers of fixed order that are subject to an H 2

constraint. The cost functional for the mixed H 2 / Ho_ problem can be written as

Jmix = Joo + ,;L/2 , (123)
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where

,I,_= trace{QJ3/3T } (124)

,12 = trace{XCTCi,}, (125)

subject to the corresponding Riccati and Lyapunov equations. The resulting lagrangian is given by

equation (67).

Minimization of ,I_ results in an H_, controller with an upper bound on the _ norm given by

the _, norm of the H 2 controller (as 7-> '_', the H 2 compensator for Tzw is recovered by minimizing

,/_). By successively lowering gamma, the minimum H_, norm controller for Tzw is obtained. Minimi-

zation of .12 results in the optimal H 2 compensator for Tzpwp. So when nonzero it is used in Jmix, the

H_ cost functional imposes an additional constraint on the H_ norm of Tzw, and for large y, the

necessary conditions for the mixed problem yield the simultaneous solution of two H-_ problems. By

increasin_o the H_ weight, it, for a fixed y, T-pwp_ is reduced while IIT_wIL approaches the gamma

overboun_l. At that point, the minimum H-, controlle¥ for T p,,p such that-liT,,IL< 7 is obtained

For this example problem, the optimal H 2 controller for T_l,Wl , results in liT__,,L = i.392 and

IlT=wH2 = 0.3786. 7, values large. than 1.392 are not meaningful for our formulation because the optimal

H 2 compensator for T:pwp satisfies the y constraint on IIr:, L. In that case,the Hoo norm constraint is

inactive in the mixed-norm optimization. However, since the reference ! formulation seeks to minimize

the H 2 norm overbound, it is possible for their formulation to generate meaningful solutions for

7' > 1.392. When using FOCUS, the first step should be to establish an upper bound on 7" by computing

lIT=, I1_ resulting from the optimal H 2 compensator for Tzpwp.

5.2 Example 2: Building Control Example

An interesting example problem is that of controlling the vibration of a building subject to an

earthquake excitation. The problem from a controls point of view is the need to develop a controller that

can reliably accommodate the uncertainty in excitation that is characteristic of earthquakes, while at the

same time handle the presence of uncertainties caused by inelastic structural response. This example

examines design approaches which achieve nominal performance only ( H 2), robust performance

( ,u -synthesis), and nominal performance/robust stability (mixed H 2 //,t ), applied to the problem of

building structural control. The challenge is to achieve the highest attainable level of RMS performance

for a specified bounded set of uncertainties. A comparison of these controller design techniques is given

based on an experimental model of a three-story tendon controlled structure at the National Center for

Earthquake Engineering Research. 55 The laboratory structure is depicted in figure 5.
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Figure 5. Structural control experiment.

5.2.1 Control Design Model

The evaluation model for performance assessment is a 20-state model from reference 55, ob-

tained by system identification experiments on the laboratory structure. A 6-state nominal design model

was obtained by balancing and residualizing the 20-state evaluation model, retaining modes at 2.268,

7.332, and 12.240 Hz. Inputs to the model consist of the ground acceleration disturbance, ._0, sensor

noise, and the tendon control input, u. Performance outputs include the weighted displacement of the

three floors relative to the ground, zp, and the weighted control force, zu. The measurement output, y, is

the absolute acceleration of each of the three floors. All units are in volts. Figures 6 and 7 illustrate the

fidelity of the reduced-order design model by comparing the frequency response of the design model and

evaluation model and are typical of the other input-output pairs. Figure 6 presents the transfer function

from the control input to the relative displacement of the third floor. The frequencies of the first three

dominant modes are matched well, although some error exists with the modal gains. Figure 7 shows

excellent matching with the transfer function from the disturbance input to the relative displacement of

the third floor.

To provide robustness to model errors, the design model is extended to include parametric uncer-

tainty within the control bandwidth in the form of errors in the modal damping and frequency squared

terms as introduced in reference 17. Uncertainty will only be used for the natural frequency squared

terms in this design, but for completeness, the formulation for uncertain modal damping will also be

presented. Although the uncertain natural frequency square terms are real parameters, using a complex

uncertainty also accounts for variations in modal damping if a hysteretic damping model is assumed.

In modal form, the nominal A matrix for a second order system is written

I ° ']A°= -o9 2 -2_'w "
(126)
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Introducing multiplicative uncertainty in the modal frequency square and modal damping terms
results in

0 ' 1A = _(.02( 1 + 61 ) -2_"co(l + 62)
(127)

=Ao+ , (128)
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where

0
(129)

For a system with n total modes and m uncertain modes,

. 113o)

-4-_mA=A 0 _i=lAAi,and

AA i = (e2i)ali (_(o _ )(e2i_ 1 )T + (e2i)(_2i(_2_i(o i)(e2 i)T , (131)

where (e j) is the jth standard basis vector for 9_2n. Defining k to be the set of indices of uncertain modes

allows the plant with uncertain natural frequency square and damping terms to be as shown

in figure 8 with the following definitions:

¢_2 u, T = _D_ETkAALw = AALD = E2k" AARw =-_" _2k-I, Z_4RD

E2k=[e2k(l) e2k(2 ) K e2k(m)] .

(132)

(133)

(134)

u--N 

,, Is,A011_diag {6lk(i) }

"__ diag{82k(i)} _

• x

Figure 8. Plant with uncertain modal damping and frequency square terms.

In addition to the uncertainty in the modal frequency square terms, an additive uncertainty

is included to represent model error outside the control bandwidth. This type uncertainty model forces

the controller to gain stabilize the high-frequency modes that were truncated from the evaluation model.

For robust control design, the baseline uncertainty model included 5-percent uncertainty for the natural

frequency square error (Win = 0_j_-5.05)and an additive uncertainty weighting function given by

(s+5) 3

Wadditive = 6.4 (s + 200) 3 - Kadd * Wadd "
(135)

35



Figure 9 presents the transfer function from control input to the acceleration of floor I and the con'e-

sponding additive uncertainty weight. In order to balance the plant for improved numerical results.

the additive uncertainty model is realized as the frequency-dependent term. Wad, l. and the constant

gain term, Kad d.

o
KI.
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Figure 9. Additive uncertainty weighting function.

Additional inputs for the robust control design generalized plant include inputs associated with

the additive uncertainty, wa, and the modal frequency uncertainty, wm. Additional outputs include those

associated with the additive uncertainty, z a. and the modal frequency uncertainty, zm. The uncertainty
block has the structure

A

-51

& 0

53

A4

Ap

(136)

with A 4 • C 3xl and Ap • C 4x4. Figure 10 illustrates the generalized plant for robust control design.

5.2.2 Control Design Results

This section presents results of the design approaches for nominal performance ( H 2), robust

performance (/,t -synthesis), and nominal performance/robust stability (mixed H 2 /_ ) for the building

structural control problem. For evaluating the nominal performance of these designs, performance is

defined by Vz, the trace of the output covariance where the outputs are the three relative floor displace-

ments, and Vu, the trace of the control input covariance.
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For the H 2 nominal performance design, the disturbance input and perfonnance output

vectors are

En° el (137)

with the control weight, Wu = -x/rp, the weight on the relative displacement of each floor, Wp = 25,

the sensor noise intensity, Kn = 0.001, and the intensity of the ground disturbance, Kd = 0.00 i 7. Kd

was chosen to match the dc intensity of a reference earthquake excitation known as the Kanai-Tajimi

(K-T) spectrum. 55 Control authority was varied in the design process using the scalar p.

For the p -synthesis design, the corresponding disturbance and performance vectors are

14'//I

14 'LI

noise

-_g

ZO 1

- ZU

-7lt

Zp

(138)

A set of/1 controllers of varying control authority was designed by fixing Wp and varying p. At each

level of control authority, the relative weighting between Zp and zu was determined by p and with the

uncertainty weights fixed, _-= _pr -',, was scaled (corresponding to the performance block for the/_

design) to achieve a/1 measure of one. By scaling the performance variables in this manner, at each

level of control authority the controller was designed to maximize performance while providing a fixed

level of robustness. Hence, a consistent comparison of control approaches was made from a robustness

perspective. First order D-scales were used for each/_ controller design, resulting in/1 controllers with

19 states computed using the MATLAB TM /1 -Analysis and Synthesis toolbox. 56
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Finally,a setof mixed H 2//1 controllers were designed with fixed controller dimension of sixth

order using the homotopy algorithm presented in section 4. In order to trade between nominal perfor-

mance and robust stability, the H 2 subproblem is defined for nominal performance as above and the

/,t subproblem accounts for the additive and parametric uncertainty models. This paradigm is an effective

means of exploiting the inherent trade between robustness and performance in mixed-norm design to

separate the two competing design objectives. The H 2 subproblem is defined by the performance vari-

ables and the p subproblem is defined by the variables associated with the uncertainty structure. The

subproblems are defined by the inputs and outputs

14'1 = -1 = w2 = ---_ = , (139)

and the D-scales for the ,u subproblem are obtained from D-K iterations for T_-_w_.

Figure 11 presents the mean-square (MS) nominal performance curves for each control design

method. The robust control designs are for the baseline uncertainty model (which has 5-percent uncer-

tainty in the natural frequency square parameters and the additive uncertainty). The costs are computed

for the closed-loop with input noise filtered through the K-T spectrum. H 2 design costs are computed

for both the design and evaluation models to illustrate the limitation on achievable performance due to

model error. Although the cost curve evaluated with the design model extends to high control authority

levels, the maximum performance with the evaluation model is obtained at p = 15.63 (indicated by "o"

in fig. I I ). The loop closed with the H 2 controllers and the evaluation model are unstable for smaller

values of p. This cost comparison also indicates that for control authority levels lower than the instabil-

ity level, the actual performance is almost identical to the design model performance.

Figure I I also indicates the loss of MS performance that is incurred in exchange for robust

performance. As a basis for comparison, the set of ,u designs is evaluated in terms of MS performance.

A substantial gap in performance exists between the H 2 and/1 designs since the/.t designs achieve

a given level of output performance at a higher control cost than the H 2 designs. However, the mixed

H 2 //.t designs effectively recover the MS performance of the H 2 designs while providing the same

level of robust stability as the/J designs. The mixed H 2/p design procedure provides performance

comparable to H 2 design while overcoming the major shortcoming ofH 2 design, namely a lack of

stability robustness.

The impact of uncertainty on performance in the mixed-norm design setting is evident in

figure 12 where a set of mixed-norm designs for 10- and 20-percent parametric uncertainty are evaluated

in addition to the baseline 5-percent parametric uncertainty mixed-norm designs. As the level of robust-

ness increases, performance is sacrificed as indicated by the upward shift in the performance curve.

A cursory comparison of figures 11 and 12 indicates that the mixed-norm controllers designed for

10- and 20-percent parametric uncertainty yield comparable performance to the ,u controllers designed

for 5-percent uncertainty. Hence, the mixed-norm designs provide more robust stability for a given level

of performance than the ,u controllers. Note that these comparisons are for nominal performance and
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maynot holdfor robustperformance.In theseanalyses,theadditiveuncertaintyis heldfixed sinceit is
definedwith respectto themodelandservesonly to forcethecontrollerto roll off andgain-stabilizethe
high-frequencyunmodeleddynamics.
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Robuststabilityof eachdesignis evaluatedusingmixed p analysiswheretheparametricuncer-
tainty isconsideredrealandtheadditiveuncertaintycomplex.As aresult,themixed/z measureis a less
conservativemeasureof robuststability.Figure 13plotsthe/t measurefor thesetof H 2 controllers for

varying authority levels as a function of parametric uncertainty level. This plot should be interpreted

as indicating the magnitude of perturbation required to destabilize the closed-loop. From equation (I 9),

a p measure < 1 indicates robust stability is guaranteed for all plants in the uncertain set. For a control-

ler associated with a _t measure of/3, the system will be unstable for tlal[_ - The H 2 designs are
robust with respect to the uncertainty model only for very low authority controllers. Figure 13 illustrates

the well known property of H 2 controllers that as control authority increases, the sensitivity (in terms

of stability) to model error increases. This figure also indicates that the ,u measure is relatively insensi-

tive to different levels of parametric uncertainty at high control authority levels which indicates that the

additive uncertainty dominates the stability analysis. Only at low authority levels are the H 2 designs

sensitive to parametric uncertainty. Since control bandwidth is proportional to the authority level for

these H 2 designs, the higher authority controllers interact with and destabilize the unmodeled modes.
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Figure 13. Robust stability analysis of H 2 controllers.

Robust stability analyses of the mixed-norm designs for 5-percent, 10-percent, and 20-percent

parametric uncertainty are shown in figures 14-16. For the 5-percent uncertainty design, an Hoo over-

bound of one was achieved. Although robust stability is not guaranteed for levels of uncertainty above

5 percent, the /t measure for 20-percent parametric uncertainty is <2, which is roughly 3 times better

than the H 2 designs. It is also interesting to note that the /t measure for the mixed-norm design

is sensitive to differences in parametric uncertainty and is relatively insensitive to the control authority,

which is opposite the characteristic of the H 2 designs. As a matter of fact, the /1 measure decreases

slightly with control authority for the mixed-norm designs. Somewhat different behavior is observed

with the mixed-norm designs for 10- and 20-percent parametric uncertainty. The mixed-norm design

set for 10-percent parametric uncertainty used an H_ overbound of 1.3, so robust stability is not fully

guaranteed for 10-percent variations in the uncertain natural frequency. The peak/1 measure in figure 15

is 1.26. Similarly for the mixed-norm design with 20-percent parametric uncertainty, an H_ overbound

of 2.1 was used and the peak p measure is 1.75. These two designs have a characteristic behavior more

similar to the H 2 designs in that the/t measure is more sensitive to control authority than parametric

uncertainty level. However, the variation with control authority is significantly less than the H 2 designs.
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For asecond-ordersystemwith anuncertainnaturalfrequencysquareparameter(equation(127)
with 62 = 0), if 61 is considered a real parameter, the uncertain system will be stable when 61 > -I.

However, if 61 is a complex variation, the system is stable only when J61J< 2_'. 57 Thus reprcsenting the

real parameter uncertainty as a complex variation introduces significant conservatism in the control

design. The impact of this is evident in the mixed-norm design with !0- and 20-percent parametric

uncertainty. The homotopy began with a fixed-order ]3 design for T_-_w_which exists because of the

artificial destabilizing effect of the complex parametric uncertainty. For the 10-percent uncertainty level,

the fixed-order Hoo design with the D-scales from the full-order ]3 design resulted in a minimum Hoo

norm of 1.2539. For 20-percent uncertainty, the minimum Hoo norm is 2.0463. Since these designs are

for the Ha subproblem only, they represent a lower limit on the Hoo norm for the mixed H 2//3 designs

and are used as the initial points for the 2 homotopies in the mixed-norm designs.

The complex ]3 measure of each mixed-norm boundary controller is only very slightly less than

the Ho_ norm overbound, indicating that the D-scales obtained from the full order D-K iteration for

T_-,,. lot each uncertainty level are nearly optimal for the sixth order mixed-norm controllers. Had this

not been the case, the D-scales could have been optimized for a mixed-norm boundary controller, fol-

lowed by another fixed order controller optimization step.

This design example also serves to illustrate the characteristics of the homotopy algorithm along

the solution path. The mixed H 2 /]3 design begins with a full-order ]3 design for T_-_wI followed by

order reductioq and a T homotopy to obtain the minimum fixed-order ]3 design for T_-_wj.This corre-

sponds to a mixed H-, /]3 design for 2, = 0, from which the 2, homotopy begins by fixing the 7

overbound slightly higher than the minimum )' and incrementally increasing A,. _ is increased until

the H 2 norm of T_-__w__reaches a minimum and the Ho_ norm of T_-,. is approximately equal to the

Toverbound. At that point, one boundary design is obtained for a given value of/9. The set of boundary

designs are computed by varying p from this point.

As the /!, homotopy progresses, the H 2 norm decreases from the minimum fixed-order

]3 controller value to the minimum H 2 norm subject to the Hoo norm overbound. The variation of the

H-, norm during the 2, homotopy for the 5-percent uncertainty level is shown in figure 17 along with

the H 2 norms obtained with the fixed-order ]3 design and the full-order H 2 design. The mixed-norm

design reduces the H 2 norm of the fixed order ]3 design by 50 percent while providing the same level

of robust stability. Conversely, the mixed-norm design only increases the H 2 norm by 10 percent over

the full-order H 2 design in exchange for robust stability. Note also that the most significant H 2 cost

reduction occurs in the first few iterations which indicates that the entire 2 homotopy does not have to

be performed to make substantial improvements in H 2 cost. Figure 18 shows the constraint on the H_
norm is satisfied as the H,, norm decreases to the minimum.
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The spikes in figure 18 are artifacts of the numerical optimization algorithm and are indicative

of the numerical sensitivity of the homotopy algorithm. The controller canonical form tends to be poorer

conditioned than a nonminimal realization which makes optimization of the fixed-order controller

parameters difficult. After order reduction and transformation of the controller to canonical form, the

initial gains are typically not optimum and the Hessian is often ill-conditioned and indefinite. Standard

Newton optimization methods fail when the Hessian is ill-conditioned and indefinite. When using

a standard Newton optimization method, the homotopy would terminate prematurely due to the ill-

conditioned and indefinite Hessian. This numerical sensitivity motivated the development of a numerical

optimization method that accounts for ill-conditioned and indefinite Hessians. Implementation of this

optimization algorithm, described in appendix A, resulted in a numerically robust algorithm which

converged along the homotopy path.

As for the homotopy along the boundary for variation in p, a typical gain trajectory is shown

in figure 19 which is the second element of the parameter vector corresponding to the ( 1,2) element

of the gain matrix G. Note that the gain variation is not monotonic. The trajectory of control gains

in essence provides the mechanism by which the gains of a multivariable controller may be "dialed in,"

much the same manner as the dc gain of a classical controller. This enables an incremental implementa-

tion which may be monitored to determine the onset of instability and the maximum achievable nominal

performance for a given design model. Hence, this example illustrates how the mixed-norm design

procedure may effectively be used as a means of tuning multivariable controllers in orbit to achieve

maximum performance.
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Figure 19. Gain variation along boundary homotopy with 5-percent uncertainty.
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5.3 Example 3: Flexible Space Structure Experimental Example

5.3.1 Facility Description

The Controls/Structure Interaction Ground Test Facility (CSI GTF) at the NASA Marshall Space

Flight Center (MSFC) has been developed for experimental investigation into the control, system identi-

fication, and dynamics of an FSS. Characteristics of FSS's which make modeling, simulation, and

control design challenging are embodied in the facility. The experiment is a large, flexible structure

which has numerous Iow-fl'equency, coupled, tightly spaced, lightly damped modes. The present con-

figuration includes a flexible, deployable boom which once flew on the Shuttle for the Solar Array Flight

Experiment (SAFE). Initially, the facility was designed as a GTF for the Control, Astrophysics, and

Structures Experiment in Space (CASES) flight experiment.

As shown in figure 20, the test article is inverted and vertically suspended from a platform 132 ft

above ground level. A disturbance system provides two translational degrees of freedom to the base of

the structure (the base refers to the portion of the experiment at the top platform). A simulated mission

peculiar equipment support structure (MPESS) interfaces the disturbance system with the test article

to simulate a flight experiment interface between the Shuttle, MPESS, and the payload. The test article

consists of a 105-ft boom which supports a simulated occulting plate at the boom tip. The control objec-

tive of the flight experiment is to maintain alignment of the tip plate with a detector at the base of the

boom oq the Shuttle; this would allow the occulting plate to point towards a star to perform an x-ray

experiment. Similarly, the ground experiment strives to maintain alignment of the tip plate with the

simulated detector at the MPESS.

Control authority is provided by angular momentum exchange devices (AMED's) and bi-

directional linear thrusters (BLT's). Each AMED package consists of two motors attached to reaction

wheels, two two-axis gyros, and associated electronics. One AMED package is located at midboom

and a second AMED which is augmented with a third reaction wheel is located at the tip. Each AMED

motor has a peak rated torque of 290 oz-in. Two single-axis bidirectional linear thrusters are located

at the boom tip which have a force capability of_+ 2 lb up to 10 Hz. The shakers are considered actuators

for disturbance generation and not for control. The measurement system includes sensors available for

feedback control, disturbance, and safety monitoring. Control sensors include three single-axis acceler-

ometers at the base (MPESS), two dual-axis gyroscopes (one redundant axis) in the midlength and tip

AMED packages, three single-axis tip accelerometers, and a three-degree-of-freedom tip displacement

sensor (TDS). Hence there are seven control actuators, 15 control sensors, and two programmable

disturbance inputs. The CSI GTF computer system consists of a Sun host and a separate real-time

system. Real-time control is provided with the capability of 64 sensor measurements, 64 actuator com-

mands, and up to a 100th order controller at a rate of 250 Hz.

5.3.2 System Identification

The CSI GTF exhibits the pathologies that make control of FSS's challenging. System identifica-

tion and control design for this structure is difficult due to the modal density and light damping at low
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Figure 20. CSI ground test facility.

frequencies. Since the tip displacement is dominated by the low frequency bending modes, the model

fidelity must be high in this regime. Modal density at low frequency also leads to high-order design
plants.

The Eigensystem Realization Algorithm with Data Correlation (ERA/DC) 58 was used to obtain

control design models for the CSI GTF. Time response data are used by ERA/DC to generate a discrete-

time state space realization of the system. Inputs for system identification were the two disturbance

shakers, the two tip thrusters, and the tip z-axis reaction wheel. In the initial iteration of system identifi-

cation, each actuator was individually excited with an 80-sec burst of uncorrelated random noise with

impulses interspersed every 20 sec. Comparison of the resulting models with frequency responses of the

actual data indicated that several significant modes below 1 Hz were not accurately identified. Impulsive
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inputs primarily excited the dominant first bending modes. To provide more energy at the fi'equencies

where the unidentified modes were expected (from modal testing), a set of inputs were formed by sum-

ming sine waves at the 10 discrete target frequencies with a random phase. An uncorrelated noise se-

quence filtered with two poles at 25 Hz was added to each input in an effort to better facilitate identifica-

tion of zeros. For one experiment, each actuator was excited simultaneously for 200 sec and the response

was measured at the feedback control sensors. This procedure was repeated four times. The 200-sec

response time histories were sampled at 250 Hz and postprocessed by removing the mean, low-pass

filtering with four poles at 5 Hz and decimating to a 10-Hz sample rate.

To generate control design models from the time history data using ERA/DC. the System/

Observer/Controller Identification Toolbox fo, MATLAB TM was used. 59 A 100-state model was obtained

which identified the significant modes in the frequency range of interest for control design. This

100th-order model was reduced to a 40-state model by transforming to a balanced realization and trun-

cating the states with low controllability/observability grammians. The modes above 3 Hz were then

residualized resulting in a 26-state nominal model of the plant dynamics used for control design. Table 2

presents a comparison of the modes below 3 Hz from the 40-state system identification model with those

generated by modal testing 6° and finite element modeling 61 and a description of each mode. Note that

the modal test and system identification tests used different excitation and sensing.

As table 2 indicates, the structure exhibits a high degree of modal density with closely spaced,

lightly damped modes, which taxes the system identification procedure. However, good results were

obtained by ERA/DC and the resulting design model accurately describes the dynamics of the CSI GTF

in the desired frequency range of <3 Hz. Due to the offset of the center of mass from the boom axis in

the x direction (as well as coupling with the tip suspension system), bending in y couples strongly with

torsional motion. Accurately representing this dynamic coupling in the identified model is critical for

control design and is an indication of the fidelity of the ERA/DC identified model. The third and fourth

x and v bending modes involve coupling with tip plate bending also.

Table 2. Comparison of experimental and analytical frequencies.

System ID

Frequency

(Hz)

0.118

0.119
0.215

0.325

0.535

0.554
0.953

1.214

1.539
1.771

1.872

2.061

2.839
3.073

Damping
(%)

0.506

8.48
0.904

57.3

1,07
0.604

3.60

38.8
17.7

3.15

2.76

13.2

9.45
3.58

Modal Test

Frequency

(Hz)

0.112
0.120

0.210

0.520
0.530

1.391

Finite Element

Frequency

(Hz)

0.08

0.09

0.16

0.56

0.58

1.23

1.868

2.802

2.995

1.82

2.73

3.28

Mode

Description

y 1st Bending

x 1st Bending
1st Torsion

x 2nd Bending

I Y 2nd Bending

x 3rd Bending

y 3rd Bending

y 4th Bending

x 4th Bending
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5.3.3 Control Design

The control objective for CSI GTF is to maintain alignment of the tip plate with respect to a

sensor at the base of the boom when subjected to a disturbance force (DSy) applied at the base. To

accomplish this objective, the measurements used for control are displacement sensed by the tip dis-

placement sensors (TDSx and TDSy) and the three rotational rates sensed by tip rate gyroscopes (TGx,

TGy, and TGz). Sensor noise is added to the plant output for control design. The BLT and the tip z axis

reaction wheel (MC5) comprise the set of actuators used fo," feedback control. Due to the large general-

ized mass of the first x and v bending modes, the BLT's are the only actuators that have sufficient control

authority to affect these modes.

The design results which follow are based on the mixed H 2 / H_ control methodology to achieve

high nominal performance as measured by the MS alignment error of the tip plate while providing

stability robusmess in the presence of model errors. A compensator dimension of five was chosen for

these design comparisons. Enforcing a constraint on the compensator order of five states is an extreme

case chosen to highlight the effect of compensator dimension for fixed- and reduced-order designs. Five

states result in a true canonical form for the compensator (the plant has five measured outputs) and also

reduces computation. A major factor contributing to the computational burden of the mixed-norm

homotopy algorithm is computing the Hessian. Since the Hessian is computed one row at a time and the

number of rows is a multiple of the compensator dimension, keeping the compensato," dimension small

is important lot computational efficiency.

A set of full-order H 2 designs provides a baseline for nominal performance evaluation with

weighted control and weighted tip displacements as performance outputs and disturbance force and

sensor noise as inputs. With reference to figure 21, the H 2 subproblem is defined by

(140)

The baseline nominal performance design uses the weights KDSy = 25. Wp = 100, Kn = 0.001, and

W. = _ where p is scaled to vary control authority. Figure 22 shows the performance of the full-order

baseline H 2 designs and reduced fifth order H 2 compensators evaluated by comparing output and con-

trol cost with p varied from 1.000 to 100 (p is inversely proportional to control authority). The output

and input costs plotted in figure 22 are the traces of the output and control covariances. Note that the

solid line corresponding to the fifth order H 2 controllers obtained by balanced model reduction indicates

that the order reduction process does not preserve closed-loop stability with the design model for higher

levels of control authority (corresponding to p values <600).
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Figure 21. Generalized plant of the CSI GTF for control design.
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Figure 22. Mean-square cost trades for CSI GTF control design.
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Phase l:

In the initial mixed-norm designs, the H_ subproblem employed a frequency-dependent additive

uncertainty. Wathlitiv e. to constrain control bandwidth and a constant multiplicative uncertainty at the

plant input, Wmult, to account for model error in the control bandwidth. A constant 5-percent multiplica-

tive uncertainty is used. The additive uncertainty weight is a high-pass filter which is shaped to envelope

the frequency response magnitude of each actuator to sensor transfer function above the control band-

width. To control modes below 1 Hz and gain-stabilize the higher frequency unmodeled or poorly

modeled modes, the additive uncertainty weight

(s+5) 2

Wad d = 0.25 (s + 25) 2
(141)

is used, as indicated in figure 21. This weight effectively limits the control bandwidth to I Hz. The

diagonal weighting matrix Kad d provides a separate scaling for the additive uncertainty in each sensor

channel and is given by Kad d = diag(1,1,0.5,25,0.75). The additive uncertainty output associated with

the MC5 actuator was also scaled by a factor of 0.5. These scalings were determined to provide a tight

covering for the additive uncertainty weight. The uncertainty structure for D-scaling is

A=[Aadd 0 ],
0 Amult

where Aa_hl is a 5x3 unstructured block and

Amult = 0

0

0 0

62 0

o 63

(142)

(143)

With reference to figure 21, the H_ subproblem is defined by

14'1 = --i = •
Wm --t/I

(144)

Although several options exist for defining the respective subproblems of the mixed H 2 / H,,_ formula-

tion, this approach separates performance and robustness according to the most appropriate norms.

Using this uncertainty structure, D-scales were included in the generalized plant for fixed order

mixed-norm control design. The generalized plant had 40 states including 26 for the nominal plant,

6 for the multiplicative uncertainty (a second-order weighting function for each of three plant input

channels), and 4 each for the left and right frequency varying D-scales. A compensator dimension of five
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waschosento resultin atruecanonicalform (theplanthasfive measuredoutputs)andreduce
computation.

Varyingp from I to 0.001 in the H 2 subproblem resulted in mixed-norm designs of such low

authority that the performance was basically the same as open-loop. To allow a higher control band-

width, the additive uncertainty weight was modified to envelope modes above 3 Hz, but no appreciable

improvement in control authority was realized. The probable cause of this severely limited control

authority is the excess conservatism associated with the full unstructured additive uncertainty block.

Full unstructured uncertainty allows for cross-coupling between inputs and outputs which may not be

realistic. This uncertainly model also neglects the inherent kinematic coupling of the displacements

and rates.

In an attempt to mitigate this excess conservatism, the rate measurements were removed from

the additive uncertainty, resulting in a 2×3 unstructured additive uncertainty block. However, using addi-

tive uncertainty weights for both I- and 3-Hz control bandwidths again resulted in similar low authority

controllers. Thus, with the compensator dimension constrained to five states, unstructured additive un-

certainty appears to introduce excessive conservatism which severely limits nominal performance in the

mixed norm design setting. The effect of uncertainty models with compensators having larger dimension

remains to be assessed.

Phase II:

An alternative means of limiting control bandwidth and gain-stabilizing high-frequency modes

is to use frequency-dependent multiplicative uncertainty in the H_ subproblem. In this second design

phase, the additive uncertainty weight is removed and the multiplicative uncertainty at the plant input

is given by

Wmult = W m (2_-_+ 1)2 , (145)

where W m represents a percentage uncertainty in magnitude of the frequency response at dc. The same

uncertainty structure for Amult given in equation (143) is used for this design phase.

When using the mixed norm design procedure, it is important to recognize that the mixed norm

design is only merited when the underlying H 2 controller does not provide robust stability for a given

uncertainty model and control authority level. Figures 23 and 24 present the robust stability of the full-

order and reduced-order (5th) baseline H 2 designs, respectively, as a function of percent multiplicative

uncertainty. For less than 10-percent muitiplicative uncertainty, the full-order H 2 designs satisfy the

robust stability constraints and the mixed norm design is not merited. However for 10 percent or larger
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uncertainty,thefull-order H 2 designs are only robustly stable in the low authority range. As expected,

the shape of the surface in figure 23 indicates that the stability robustness is inversely proportional to

control authority for a given level of uncertainty and is also inversely proportional to uncertainty at a

fixed level of control authority. This is a well-known property of H 2 control design that in part moti-

vates the development of robust control theory. The robust stability plot of the reduced-order H 2

designs indicates the same trend except that loss of stability due to order reduction precludes high

authority controllers which violate robust stability to 10-percent uncertainty or larger. The point on

figure 22 denoted 'o' is the highest authority reduced-order H 2 controller that satisfies robust stability

for 10-percent multiplicative uncertainty.
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Figure 23. Robust stability of full-order H 2 controllers.
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Figure 24. Robust stability of reduced-order H 2 controllers.
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Nominalperformanceof thefixed-order,mixed-normdesignswith 5-, 10-,and20-percentmulti-
plicative (dc) uncertaintyisshownin figure22.Note thatfor eachuncertaintylevel, asetof mixed-norm
controllersresultswith nominalperfonnanceill differentregionsof thecosttradecurve.Figure22 indi-
catesthattheeffectof uncertaintyis to limit thecontrolauthorityand,hence,limit theattainableperfor-
mance.Although this is thesametrendobservedwith themixed-normdesignsthat includedtheadditive
uncertaintymodel(phaseI), the limiting effectof themultiplicativeuncertaintyis notassevereandcon-
trollers with betternominalperformanceareobtained.Thegapsbetweenthefull-order H 2 design curve

and the fixed-order, mixed-norm design curves are indicative of the performance sacrificed to accommo-

date compensator order constraints. Performance of the mixed-norm designs is severely limited by con-

straining the compensator to five states. Although the fixed-order, mixed-norm procedure produces

higher authority stabilizing controllers than does order reduction on the H 2 designs, the loss of closed-

loop stability with H 2 order reduction could possibly be remedied with fixed-order H 2 design.

It should also be noted that although the mixed-norm controllers guarantee robust stability

according to the uncertainty model for which they are designed, these mixed-norm controllers (except

for the very low authority designs for 20-percent uncertainty) are not stable with the 40-state evaluation

model. Thus, the multiplicative uncertainty model does not adequately capture the error introduced to

the design model during the process of model reduction. Figure 25 presents the frequency response mag-

nitude of the 26-state design model, the 40-state model, and the envelope of the uncertain design model

with 10-percent multiplicative uncertainty. Evident from this figure is truncation of modes above 3 Hz

in the design model as well as the mismatch between models at low frequency that results from model

reduction. Other input/output frequency responses are similar.
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Figure 25. BLTx to TDSx transfer functions.
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6. CLOSED-LOOP SYSTEM IDENTIFICATION FOR CONTROLLER REDESIGN

The traditional approach to control design is to obtain a nominal model of the plant,/_, which

is the basis for control design. Since i6 is an approximation of the true plant, P, the model based com-

pensator, C[:,, must provide a certain level of robust stability (i.e., C/3 must internally stabilize b and. _,n,_._.,e,°_ent_cat_on_,oce...an.,,em_,_m._e_o_oon_,_emo_e,erro_I1"-_liw_c_
II I[

determines the amount of robustness required by the control design. It is also desirable that the control-

ler provide some level of performance robustness; that is, the achievable performance should not differ

significantly from the nominal design performance. High-performance control design for a flexible

space structure is especially challenging since high-fidelity nominal plant models are difficult to obtain.

The large error bounds that result typically require a very robust, low-performance control design which

must be tuned on orbit to achieve the required performance.

An upper bound on achievable performance is 18, 29

(146)

_e_e,(.._) _.,_e._i_v_pe_orm.nce.,(_,_) _,t.enom_na,_er_orm.n_e..n_
.I(P, Ci,)- J(F"Ci') is performance differential. The choice of a specific performance metric J and

norm [I*IIis determined by the control design methodology. To achieve high performance requires:

• ._.ommal_o_,a.,c_(=,(_._)sma..)

The second condition is actually a requirement on model fidelity and indicates that the nominal closed-

loop system model must closely approximate the actual closed-loop system performance when the com-

pensator C/3 is used. Therefore, the "fitness" of the nominal model is a function of the compensator and

must be judged from a closed-loop perspective. This fitness is not guaranteed by good open-loop model

matching nor is it precluded by poor open-loop model matching. 3

When the model error P -/_ is large, stability and performance robustness necessitates a low

authority controller. Since a low authority controller is not as sensitive to model errors, the performance

differential will be small compared to high authority controllers. However, the performance may not be

satisfactory. To achieve high performance, the issues of modeling and control design mus! be treated
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asajoint problem.Thefitnessof thedesignmodel, /3 is a function of C/_, which is itself a function of

the design plant. In some cases, high-performance control design requires an iterative closed-loop sys-

tem identification and control design procedure.

A new closed-loop system identification method is presented in this section which is one step

of an iterative closed-loop system identification and control design procedure. It is assumed that a mod-

erately accurate dynamic model of the system to be controlled is available for the initial low authority

controller design. However, this initial design model is not of sufficient fidelity to permit high authority

control design. The objective of the closed'loop system identification procedure presented in this chapter

is to refine the initial control design model based on closed-loop response data.

In the development of a closed-loop system identification method, consideration must be given

to the nonuniqueness of the triple (A, B2,C 2) in the identified realization. Although there is an infinite

number of equivalent state space realizations for a system, a system with n states, m_ inputs, and nv out-

puts can be uniquely expressed with a minimum of nora + ny) parameters. Having as the objective

of the closed-loop system identification process the ability to refine an existing design model, one ap-

proach which circumvents the nonuniqueness p,'oblem is to realize the open-loop system matrices

in a unique, minimal form and directly identify the canonical parameters from closed-loop response

data. Denery has developed a method of parameter estimation for multivariable state space systems

from open-loop test data using canonical forms. 43 By utilizing the structure of the closed-loop system

matrices, an extension of Denery's algorithm is developed to estimate the plant parameters based on

closed-loop response data.

Proper selection of the objectives of system identification and control design further stresses

the joint nature of the identification and control problem. Based on the prediction error method, the ob-

jective of the new closed-loop identification procedure developed in this section is to obtain a model /3

that minimizes the performance differential |T- 7_ -, where T is the actual closed-loop system and 7_

is the identified closed-loop system. This system norm cannot be evaluated since T is not known. How-

ever, the actual and predicted closed-loop measurements are known and an equivalent objective is to

minimize the prediction error of the closed-loop system, II>'- _ 112.The actual and predicted closed-loop

system outputs, y and _, respectively, are determined for the same set of inputs. The least-squares cost

functional for control-dependent, closed-loop system identification then is

= ] ft r ....
J 2ao (y- _')Tw(v- _)dt (147)

where W is a constant matrix chosen to weight the relative importance of different measurement outputs.

The control objective is matched with the identification objective by designing the controller to mini-

mize the H 2 criterion T 2"

The rest of the section is structured as follows. First, the algorithm developed by Denery for

open-loop system identification procedure is presented in detail. Next, the extension of the canonical
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systemidentificationalgorithmto closed-loopsystemidentification ispresented.Finally,analgorithm
lot"iterativeclosed-loopsystemidentificationandcontrolredesignis presentedalongwith illustrative
examples.

6.1 Denery's Open-Loop System Identification Algorithm

In reference 43, a two-step procedure is given which generates parameter estimates based on

noisy measurement data. The algorithm begins with an equation error procedure, which is similar to a

linear observer, to generate an initial estimate of the parameters. Noisy measurement data may cause the

equation error estimates to be biased, but they are sufficiently accurate to initialize the second step, an

iterative quasi-linearization output error procedure. Since the structure of the two procedures are identi-

cal with one exception that will be pointed out in the following, these two procedures are combined to

form an iterative algorithm that is robust to initial parameter estimates and relatively insensitive to

measurement noise. First, the details of the equation error procedure will be presented, followed by the

output error procedure.

6.1.1 Equation Error Procedure

Consider a model of the state space system to be identified:

-=F-+GI, :(0)=:0 (148)

_' = Hz . (149)

The objective is to identify some F, G H, and :0 which represents the dynamics of the unknown

system based on knowledge of the inputs, u(t), and noisy measurements, y(t). An estimate of the un-

known parameters may be obtained by minimizing the cost functional given in equation (147). Directly

minimizing J results in a nonlinear optimization process, but in the absence of measurement noise, a

linear formulation may be obtained. Recognizing that for a perfect model the output in equation (149)

will exactly equal the measurements and v - _ = 0, this difference can be fed back to the model with

arbitrary gains K and M according to

-"= F:+Gu+ K(y- /4-) (]5o)

which can also be written

f' = H:+ M(y- H:) ,

 -=FNz +Cwu+6G +

(151)

(152)

--(0) = --NO + _0 (153)

_' = HNZ + My (154)
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by use of the definitions

FN=F-KH

GN = G-SG

H N =(I-M)H

ZNO = z 0 - _z 0

The elements of (F- KH) and (/- MH) may be chosen independently of the unknown elements

of Fand H by using a maximum of n * ,v parameters in Kand M when the structure of the system

is in a specific form. As a consequence, F N, G N, H N, and 2NO are chosen and the unknown

parameters are contained in K, M, 6G, and 5:0.

(155)

(156)

(157)

(158)

The structure of the system musl be such that the unknown parameters in Fare coefficients

of measured states. To obtain this structure, Denery developed a canonical form for multivariable sys-

tems which is analogous to a canonical form in reference 62 for multi-input systems. Denery's canonical

form is called the observer canonical form in reference 63, which is dual to the controller canonical form

presented in section 3. It can be shown that if the plant dimension is an even multiple of the number

of outputs and the first n rows of the observability matrix are linearly independent, then the realization

is canonical and Hwill consist only of ones and zeros. Otherwise, some elements of Hwill be included

as unknown parameters in the estimation procedure.

Equation (154) can now be rewritten as

(159)=.VN + f(/)7 ,

(160)

where TN is the output of the linearized trajectory

-N =FN-N +GNI'' :'N( O)=:NO

(161)YN = H NZN

8_
f(t) =-- ,

87
(162)

The sensitivity matrix,.f?t), is given by
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wherethevectorof parametersto beestimatedis

[ v,,c(K) ]

,'e,'(aG)

7= vet(M)

,','d&0)
(163)

Using the expression for _ from equation (159) in the cost functional, equation (147), results in J

becoming quadratic in the unknown parameters. By differentiating ,I with respect to the unknown

parameters and equating the result to zero, the estimate of y is given by

(164)

or for discrete measurements,

Z.r(,,)Tw(,,) :.(,,)"w(y(,;)-)(,;)).
Li=I "=

(165)

The ith column of.fi't) is -_'7i(t), which is the output of the ith sensitivity equation

8K + 8(6(3) u (166)_Yi = FN:7, ' + -- v
,97i _ i

(167)

3M
3_'7i= HNZyi + -- v (168)

o_i"

From _', the system matrices are obtained by solving equations (155)--(158) for H, G F, and z 0. These

values are used in F N, GN, H N, and zNO as the initial values for the next iteration.

6.1.2 Output Error Procedure

If the measurement data used in the equation error procedure are corrupted with unbiased mea-

surement noise, a bias error will result in the parameter estimates. This can be circumvented by using
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anoutputerrorprocedurewhichyieldsunbiasedparameterestimatesbasedonunbiasednoisymeasure-
ments,providedtheinitial estimatesaresufficientlyaccurate.Typically,thebiasedestimatesobtained
fi'om theequationerrorprocedurearesufficientlyaccurateto initialize theoutputerrorprocedure.
Hence,thetwo proceduresform acombinedalgorithmfor unbiasedparameterestimatesbasedon
unbiasednoisy measurements.

Theoutputerrorprocedureimplementsthemethodof quasi-linearization,which is awell-
knownapproachto minimizeequation(147)subjectto equations(148)-(149).Themethodof quasi-
linearizationapproximatestheresponseof thesystemmodelby a nominaltrajectory YN, based on the

initial parameter estimates, plus a linearized correction about the nominal trajectory. By defining the

initial estimates F, G H, and z 0 to be F N, G N, H N, and zNO, respectively. _' may be approximated

by .Va from

_A - FN_A +[F- FN]zN +[GN +(_[J']u, _AO=-NO +_zO (169)

?A = H N'_A +[H- HN ]- N , (170)

where 2N is obtained from

-N -- FNZN +GNu, zN(O) = --NO, YN = HNZN • (171)

Using the definitions in equations ( 155)-(156). and recognizing that the initial estimates are sufficiently

accurate, implies

K. (172)

MH=M[HN+MH]=MHN (173)

Substituting these expressions in equations ( 169)-(170) yields

_A = FN_A + GNU + &(_i_+ K y N , CA() = zNO + (_z0 (174)

3'A = HN_A + My, , (175)

which is identical to equations (I 52)-(154) except YN replaces y. Using -_'A in equation (I 47) instead

of 9 reduces the minimization problem to a form identical to the equation error procedure, except YN

is used in the place of y when computing fin the sensitivity equations, equations (166)-(168). In the

absence of noise in the measurements, the equation error estimate is the same as the quasi-linearization

estimate.
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6.2 Closed-Loop System Identification Algorithm

Denery's algorithm is extended to closed-loop system identification by expressing the plant in

observer canonical form and exploiting the structure of the closed-loop matrices. For the plant given by

.( = Ax + BlW + B2u (176)

v = C 2x (177)

and a dynamic compensator

2,, = Acx c + BeY (178)

the resulting closed-loop dynamics are

u=-Ccx c . (179)

E IEA=  2ccli,li +-(c BcC 2 A c .rc 0 0 u
(180)

Ec2o]E-"]v= 0 I x c (181)

As with the open-loop algorithm, noisy measurements are accounted for by averaging over multiple data
sets.

If the plant (A, B 2, C 2) matrices are expressed in observer form, then the C 2 matrix consists

of ones and zeroes and the unknown parameters in A are coefficients of the measured transformed states.

(As stated earlier, in some cases the transformation may not be canonical, resulting in the C 2 matrix

having additional nonzero elements, but these parameters can be estimated as well.) It is assumed that

the compensator state vector time history is recorded. Comparison of equations ( 148)-(149) with

equations ( 180)-( !81 ) indicates that

F= BcC2 A,. , G= 0 ' and H= 0 1
(182)

Since the only unknowns in F and G are the plant matrices A, BI, and B 2, the unknown

parameter matrices are defined as

(183)
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In thecaseof a true canonical form for" the plant, H is completely known. Note that K 11 corresponds

to the unknown parameters in A, KI2 corresponds to the unknown parameters in B2, 6_ 1 corresponds

to the unknown parameters in B 1, and 6_2 = KI2.

For closed-loop system identification, the partial derivative expressions in the sensitivity equa-

tions, equations ( 166)-(168), are modified as follows and the unknown parameter vector is defined as

''"(<') q
,,,,c(K,_,)/

/
,,cc(,5_-o)/

(184)

For Yi corresponding to the (.j, k) element of Kll,

o_K T

°3")/i eje k ( 185 )

and

OSG_ O, aM _ O, '05:° - 0 ,
O_/i O_'i c)7 i

(186)

where eje T is a matrix of zeros except for a one in the (j, k) element. For Yi corresponding to the (j, k)

element of KI2,

where

OK o(-KI2C')-_Tyi= O7i0
(187)

o3K12Cc _ .e.jeT Cc ,
C)7Z

(188)

which is an nxnc matrix of zeroes except for thejth row which is comprised of the kth row of C c.

Since 6_2 = KI2,

85G_[_ a6_2OYz argO
(189)
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_)_(_2 °aKI2 c)M c)_--o
where 8)', = 8L ' is zero except for a one in the (j, k) element. The terms _ and c)_,i

are identically zero. For Yi corresponding to the (j, k) element of 8G i 1,

" (190)

,')<SGii •
-- _s zero except for a one in the (j, k) element and all others are identically zero. Similarly,where By,

88z o
for Yi corresponding to thejth element of _:0, _ is a zero vector with a one in thejth element

and all others are identically zero.

Note that this algorithm is not guaranteed to converge. Since the estimates are determined by

nlinimizing the error in the closed-loop time response and not the error in the open-loop plant parameter

estimates, the plant parameter estimates may not converge to the "true" plant parameters but still provide

it good control design model.

6.3 Iterative Control Redesign Examples

The iterative closed-loop system identification and control design procedure implemented herein

is patterned after the approach of reference 18 with one notable exception to be pointed out below.

Iterative closed-loop identification and control redesign algorithm:

1. Beginning with model /5i, design a set of H 2 controllers of varying control authority.

2. Evaluate actual and estimated output and control costs and performance differential

3. Determine highest performance control design point which satisfies performance differential

constraint threshold, denoted Cp. i.

4. Using closed-loop data from T(P, Cki) and ['i, do closed-loop system identification

to determine /5i+ I .

5. Repeat until desired performance is attained.

This algorithm differs from the framework presented in reference 18 in that the amount of con-

trol authority increase between iterations is more formally quantified. Recognizing that small changes

in controller authority tend to result in small changes in performance, a constant scaling factor was used

in the control design step in reference 18 which was slightly increased each identification/control design

iteration. Thus the control authority was gradually increased each iteration until an appropriate model

and high authority control design was achieved. In the procedure introduced above, the performance

is evaluated for a set of controllers with varying authority to ascertain the onset of performance differen-
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tial dueto modelmismatch.Insteadof numerousiterationsof identificationandcontrol design,the
emphasisis placedonevaluatinga setof controllersdesignedfor acommonmodel.By explicitly evalu-
atingtheperformancedifferentialfor eachcontroller,largestepsin controlauthoritymaybetakenwith
eachiteration,resultingin few identification/controldesigniterations.Theoutputandcontrolcostsare
evaluatedin thesamemanneraswasdonefor thebuilding structurecontrolexampleof section5.
Althoughthe iterativeprocedureis notguaranteedto converge,theconvergencemaybecheckedat each
iterationby evaluatingtheperformanceateachiteration.

6.3.1 Coupled Mass Example

As an example of the iterative identification and control procedure, the coupled two mass prob-

lem illustrated in figure 26 is used. This example problem highlights robust control issues as related to

flexible space structures and was used as a benchmark problem in reference 64 (with k I = 0 and d I = 0).

A disturbance acts on mass two and the control force is applied to first mass. The coefficient matrices are

0

0
A=

-(kl + k2) / ml

k2 / m2

0 1 0

0 0 I

k2/ml -(dl+d 2)/ml d2/ml

-k 2 / m2 d2 / m2 -d2m 2

(191)

B¿ =

0

0

0

1/ m 2

, B2 =

0

0

1 / m 1

0

(192)

'--_ xl _" X2

\\\\\\ \\\ \\\ \\\\

Figure 26. Coupled mass benchmark problem.
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Thestatevector is ._= l.vl,x2 ' -(l,-(2 ]T and the measurements are y= lxl, x2 ]T so

1 0 0 0]C2=0 I 0 0 " (193)

Two cases will be considered--the first having open-loop stable and the second case having a rigid body

mode. The stable system is described by k 1 = k 2 = 1.2, m I = m 2 = 1.5, _'1 = _'2 = 0.1 and the damping

constant is computed by d i = 2_i,_/kim i .

The procedure begins with an initial plant for control design. As an extreme case, the initial plant

is obtained by adding 50-percent error to k I , k 2, _'1, and _'2 and 5-percent error for each of the two

masses. After transforming the true (a,[Bi B2],C2) triple to observer canonical form, the resulting
realization is

0 -0.8000 0 0.8000

1.0000 -0.1789 0 0.1789

At 0 0.8000 0 -I.6000

0 0.1789 1.0000 -0.3578

(194)

0.6667 0

[81,82,1= o o
0 0.6667

0 0

C20 =
0 I 0 0]0 0 0 1 "

(195)

and the corresponding initial triple in observer canonical form is

A0=

0 -1.1429 0

1.0000 -0.3207 0

0 1.1429 0

0 0.3207 1.0000

1.1429

0.3207

-2.2857

-0.6414

(196)

[BI0 B20] =

0.6349 0

0 0

0 0.6349

0 0

(197)
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In observercanonicalform, theC2 matrix is fixed for a given set of observability indices and the col-

umns of the A matrix with free elements corresponds to the columns of C2 that have an element equal

to one. Note that the resulting initial design plant elements varied by 79.28 percent and 42.86 percent

in the A matrix, and 4.76 percent in the B I and B2 matrices from the truth model.

A set of LQG controllers of varying authority were designed for the initial design plant using

the weighting matrices

E' °1,=['00]W= 0 plm_ " l,y
(198)

where/9 is used to vary the control authority. The performance of this set of controllers was then evalu-

ated with both the design model and the truth model to assess the performance differential that results

from the initial erroneous model. Recall from the beginning of this section that the performance differ-

ential is a measure of performance robustness. Figure 27 indicates a large performance difference at all

control authority levels, so a controller with a moderate authority level (p = 5) is chosen for initial

implementation.

5O

45

40

35

30

25

20

-- Achieved Performance
Nominal Performance

15 f"'"
10 "_ ....

-~~-------- .....

5 I I I I I ---I

0 05 1.0 1,5 2.0 2.5 3.0

I I

3.5 4.0 4.5

Vu

Figure 27. Performance differential using initial plant: Coupled mass problem.

Using the LQG controller designed for/9 = 5 with the initial design model, the closed-loop is

excited with unit intensity, zero mean random noise low pass filtered at 25 Hz. The closed-loop measure-

ments are corrupted with a low-intensity, random measurement noise (the standard deviation of the noise

was equal to 20 percent of the standard deviation of the measurements). In reference 43, measurement

noise is accounted for by averaging over multiple experiment sets. In this example, five sets of measure-

ments are used and the five resulting sets of estimated system matrices are averaged.
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Table3givesthe initial, actual, and estimated parameters of the system matrices in observer

canonical form. The significant error is clear as well as the convergence of the parameter estimates after

50 iterations. As with the combined open-loop algorithm, the first 25 iterations used the equation error

method and the second 25 iterations used the output error method. The convergence over 50 iterations

lot the correction to the A(4,3) parameter is shown in figure 28. This parameter corresponds to the

largest element of y (required the largest correction) at the first correction iteration. A slight discontinu-

ity is evident at the 25th iteration when the algorithm switched from the equation error method to the

output error method. However, this is removed after one iteration.

Table 3. Comparison of initial, actual, and estimated pa,ameters

for open-loop stable coupled mass problem.

Initial Parameters True Parameters Estimated Parameters

-1.1429
-0.3207

1.1429

0.3207

1.1429
0.3207

-2,2857

-0.6414
0.6349

0
0

0

0

0

0.6349
0

--0.8000

-0,1789
0.8000

0,1789

0.8000
0,1789

-1.6000

--0.3578

0.6667
0

0

0

0
0

0.6667

0

-0.8240
-0.1832

0.8252

0.1993
08219

0.1720

-1.6531
-0,3815

0.6672

-0.0064

-0.0027
0.0016

-0.0004

0.0113

0,6733
0.0039

0.07

0.06

0.05

A 0.04

0.03

0.02

0.01

0 i

5 10 15 20 25 30 35 40 45 50

Iterations

Figure 28. Convergence of A A(4,3).
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Havingrefinedthe initial designmodelto obtaina moreaccuratemodel,a secondsetof LQG
controllersis designedandtheperformancedifferentialevaluated.Figure29showsthatthegapbetween
designperformanceandachievedperformanceis considerablydecreasedat all authoritylevelswhen
comparedto figure 27.Theidentifiedmodelresultsin robustperformance(asdefinedatthe beginning
of thissectionin regardto performancedifferential)andgoodnominalperfonnance.It bearspointing
out thatwhentheidentificationexperimentwasconductedwithoutmeasurementnoise,theachieved
performanceanddesignperformancecurveswereindistinguishable,indicatingthatthedifferencein
figure29 isdueto measurementnoise.Moreaveragesandmoreiterationscouldpossiblyfurtherdimin-
ish theperformancedifferential.Anotherperspectiveis to comparetheachievedperformancefor aset
of LQGdesignsbasedon theinitial plantmodelwith theachievedperformancefor thedesignsbased
on theestimatedmodel,shownin figure30.Thedifferencebetweenthedashedlineandthesolid line
indicatestheperformanceincreaseattainedby performingclosed-loopsystemidentificationandcontrol-
ler redesign.Althoughtheamountof performancesacrificedby designingthecontrollerbasedonan
initial open-loopdesignmodeldependsonthespecificplantandcontroldesign,figure 30 illustratesthe
fact thatmodelerror limits achievableperformanceandbetterperformancecanbeobtainedby refining
themodelto reducetheerror.Thedesignpoint correspondingto p = 5 which was used in the closed-

loop system identification is indicated by 'x' on figure 30.

50 i i i i i i r

-- AchievedPerformance
45 -- NomnalPerformance

40

30 "
_ ,

25

2O

15 -_10

5 i i i i i i i

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

VU

Figure 29. Performance differential using estimated plant: Coupled mass problem.

A more difficult identification problem is obtained by removing the spring and damper denoted

k I and d I on figure 26, resulting in an unstable rigid body mode in the open-loop plant. Identification

of open-loop unstable systems (such as spacecraft) is a difficult task which is a further motivation for

closed-loop system identification. Using the same initial stiffness and damping error, table 4 indicates

the convergence of the estimated system parameters after 50 iterations. Again, the measurements were

noise-corrupted and the estimates were averaged after five identification experiments. Similar conver-

gence of the parameter estimates was observed for this case as for the open-loop stable example.
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Figure 30. Comparison of achieved performance: Coupled mass problem.

Table 4. Comparison of initial, actual, and estimated parameters

for open-loop unstable example.

Initial Parameters

-1.1429
-03207

1.1429

0.3207

1.1429
0.3207

-1.1429

-0.3207

0.6349
0

0
0

0
0

0.6349

0

True Parameters

-0.8000

-0.1789

0.8000

0.1789
0,8000

0.1789

-0.8000
-0.1789

0.6667

0

0
0

0

0

0.6667
0

Estimated Parameters

-0.8228

-0.1830

0.8253
0.1937

0.8228

0.1835
-0.8231

--0.1860

0.6637

0.0009
-0.0011

-0.0016

0.0016

0.0034
0.6678

0.0045

6.3.2 Building Control Example

A second example is the building structure used as a control design example in section 5. Using

the six-state nominal design model as the truth model, the inputs are the ground acceleration and control

force and the outputs are the relative displacements of the three floors, which results in 30 parameters

to be estimated. An initial erroneous design model is obtained by adding 5-percent error to the natural

frequency square terms and the B 1 and B 2 matrices. Although only 5-percent error is introduced, the

maximum errors in the elements of the A, B 1, and B2 matrices (in observer canonical form) are

72.2 percent, 9.9 percent, and 39.6 percent, respectively.
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Using the initial model, a set of LQG controllers is designed using p to vary the control author-

ity. For this example, filtered noise is used as input excitation and perfect measurements are assumed.

Figure 31 indicates the performance differential resulting from controllers designed for the initial model,

which is relatively constant at all control authority levels. A low authority controller is used for closed-

loop system identification which results in an estimated plant with the performance differential shown

in figure 32. For this estimated model, there is virtually no performance differential.

x 10-3
11 .....

AchievedPerformance
10 ', NominalPerformance

9 ',,

8

7

6
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4
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0 1 2 3 4 5

Vt./ x 10 -3

Figure 31. Performance differential using initial plant: Building problem.
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Figure 32. Performance differential using estimated plant: Building problem.
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6.3.3 Discussion

Since the end objective is an iterative system identification and model-based control design pro-

cedure, additional constraints are placed on the input and output processes. The system identification

is based on closed-loop test data which mandates that the generalized plant, equations (54)-(57), consist

of actuated inputs and measured outputs only. Figure 33 illustrates this requirement where the distu,'bance

inputs, w and w/_, act through the control input and sensor channels and the performance variables.

_ and :/_. must be linear combinations of the sensed variables, y, and the control inputs, .. Hence a

constraint is placed on the generalized plant formulation by the system identification such that the col-

umns of B 1 and Bp lie in the column space of B 2 and the rows of C 1 and Cp lie in the row space of C 2.

With regard to the Hoo subproblem, this requires the uncertainty representation to consist only of (input

or output) multiplicative and additive uncertainty models, which implies that it is not possible, for ex-

ample, to include parametric uncertainty such as mass or stiffness uncertainty in the generalized plant

formulation. The matrices D21, D2p, Dip. and DI2 are obtained from the input/output uncertainty

models and disturbances, and do not contain parameters to be estimated. Consequently, the plant matri-

ces A. B 2, and C._ are the only matrices to be estimated by closed-loop system identification. To relax

this constraint would require introducing additio,ml actuators and sensors for the sole purpose of system
identification.

Control

Disturbances

I Weighting I I Weighting IFunctions Functions

'_ Plant _

Measurements

Weighting I [Weighting I

Functions I I Functions I

Performance I
Variables "[

Figure 33. Input/output constraint relationships.

A brief discussion on the closed-loop system identification algorithm from a numerical imple-

mentation perspective is warranted. The stability of the algorithm is sensitive to several factors. The

primary factor influencing convergence of the parameter estimation is the matrix inversion in the com-

putation of _' (equation (164) or (165)). For this inverse to exist, the (ny + nc)xNp sensitivity matrixf

must have full row rank where Np = n*(nu + nv + nw) is the number of unknown parameters. Recall

that the columns of fare time histories of the sensitivity equations, equations (166)--(168), which include

the compensator state time histories. If the input is not sufficiently rich to excite the measurement

and compensator states, thenfwill not have full rank. This difficulty is compounded as the number

of parameters increases. If the matrix tends to singularity, the magnitude of the elements of _' diverge.
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In orderto alleviatethedivergenceof _"in theexamplesabove,a relaxationfactorwasintroducedthat
scaled_'. Scaling_' by a relaxationfactorof 0.5typically wassufficient to producesmoothconver-
genceasseenin figure 28.Without therelaxationfactor,theestimateswouldovershootandovercor,'ect,
resultingin divergenceof theparameterestimates.Therelaxationfactorin essencedampedtheover-
shootof thecorrectionstepsateachiteration.This couldpossiblyhavebeenaccomplishedby usinga
pseudo-inverseof thematrix to zerothesmallsingularvalues,but thatwouldhaveintroducederro,.
Usingtherelaxationfactor did not introduceerrorbutonly slowedtheconvergence.

71



7. CONCLUSIONS AND RECOMMENDATIONS

This dissertation has shown that to achieve high performance control requires a control design

methodology that maximizes performance while guaranteeing robust stability for a given model error.

The mixed H 2 / H,_ design procedure presented herein is well suited to this task when used to synthe-

size a set of controllers that explicitly trade between robustness and performance. Design examples

have shown that fixed-order, mixed-norm design provides performance comparable to an H 2 design

while overcoming a key deficiency of H 2 design by providing robust stability. When performance

is defined by an H 2 measure in mixed-norm design, better performance is often obtained than

the /1 -synthesis for the same error bound. Synthesis of the mixed-norm controller set is accomplished

using a homotopy algorithm which generates a trajectory of gain variations as plant parameters or

performance specifications vary.

To improve performance often requires reducing model error through system identification.

In many cases open-loop testing is not possible, and even when it is, often the most appropriate model

for control design is obtained from closed-loop response data. A new method for refining a control

design model from closed-loop response data is presented herein. Based on a prediction error method,

the open-loop plant parameters are estimated in a canonical form. Examples have shown that higher

performance can be obtained when the controller is redesigned based on the refined model.

A major shortcoming of the mixed-norm design procedure is the inherent computational burden

associated with the homotopy algorithm. Basically a predictor-corrector method, the homotopy algo-

rithm requires prediction step sizes that are typically quite small due to the ill-conditioning of the Hes-

sian. In part. the numerical difficulties associated with the often ill-conditioned and indefinite Hessian

are due to the use of canonical forms for the compensator dynamics. Transforming the controller to

canonical form results in a more poorly conditioned realization which makes optimization of the control-

ler parameters more difficult. Future research should investigate the use of over-parameterized realiza-

tions of the controller, as suggested in reference 49. By using a more robust optimization procedure that

does not rely on inversion of the Hessian, larger step sizes and more efficient computation could possi-

bly be attained. The robustness of the continuation algorithm developed herein could possibly be im-

proved by using newer curve-tracking homotopy algorithms. 65 Another promising approach is to employ

genetic algorithms which are insensitive to both ill-conditioning of the Hessian and saddle points in the

search space. To improve the attainable performance, future developments should investigate the incor-

poration of real parameter uncertainty into the mixed-norm design procedure. Recent advancements in

mixed real/complex /1 synthesis are promising toward this end. 45 Computational efficiency may also

be gained by taking advantage of developments in computer technology such as parallel architectures.

Much like the control design homotopy algorithm, a key shortcoming of the closed-loop system

identification procedure is numerical sensitivity. The solution procedure presented herein requires
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the inversionof a largedatamatrixwhichtendsto be ill-conditioned.Ensuringfull-rank of thedata
matrix requiressufficientlyrich excitationin all of themodesto be identifiedwhich is oftenquitediffi-
cult ill practicedueto limitationssuchassensorandactuatordynamics.Methodswhichdonot involve
matrix inversionsuchasgeneticalgorithmshavepotentialfor theclosed-loopparameterestimation
aswell ascontroldesign.An additionalbenefitof geneticalgorithmsis thatthesystemidentification
canbeoperatingin thebackgroundaspartof anautonomousidentification/controllertuningprocess.
Futureresearchshouldbeconductedto thatend.Finally, themeasurementnoiseproperties(intensity,
frequencyspectrum,etc.)shouldbeexplicitly accountedfor in theparameterestimationinsteadof the
adhocuseof ensembleaveraging.
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APPENDIX AmNUMERICAL OPTIMIZATION FOR ILL-CONDITIONED

AND INDEFINITE HESSIANS

Many numerical optimization problems exist where analytical expressions for the function and

its first and second derivatives are available. However, numerical determination of the minimum may be

quite difficult. In particular, ill-conditioned and/or indefinite Hessians present a challenge for numerical

optimization. A modification to the standard Newton optimization algorithm is presented here that

effectively accommodates ill-conditioned, indefinite Hessians encountered in the synthesis of fixed-order

optimal compensators. Synthesis of the optimal control law involves solution of a set of nonlinear

coupled matrix equations that arise in a minimization problem with explicit first and second derivative

expressions. However, an accurate initial estimate of the fixed-order compensator gains is often difficult

to determine due to factors such as order reduction and transformation to certain parameterizations,

which may result in all ill-conditioned or indefinite Hessian. Before describing the optimization proce-

dure, preliminaries on quadratic optimization are presented. A more thorough treatment may be found

in a text on numerical optimization such as references 66 and 67.

A.1 Background

In many optimization applications, the objective is to determine the parameter vector x _ _N

which minimizes some function./ix). It is assumed that the function is continuous with analytical expres-

sions for the continuous first and second derivatives. The gradient vector and Hessiaq matrix are give,1
by

and

g(x): 7f(x) (199)

::-,-)::(vr:.,->:)::%->,

respectively, where the gradient operator is

(200)

Necessary conditions for a local minimizer, x*, are that

(201)

g(x *)= 0 (202)
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and

sTG(.v*)s > 0 s G ¢j_N

The second order necessary condition, equation (203) is sufficient if

sTG(x*)s > 0 Vs ¢: 0 .

The necessary condition requires the Hessian to be positive semidefinite while the sufficient

condition requires that the Hessian be positive definite at the local minimum.

Numerical procedures are used to generate a sequence of points, x (/'), with the objective of

converging to the fixed solution point x*. Given an estimate of the solution at the kth iteration, x (k),

a one-dimensional line search in the direction s (k) is used to find the optimum step size. _(/"), which

minimizes

(203)

(204)

+ (205)

Typically, the function to be minimized will not be quadratic, but assuming a quadratic approxi-

mation (or a quadratic 'model') of the function is often effective for minimization. From the Taylor

series expansion of a general function./?.v_,

1 o(6/'6)f(x+ 6) = f(x) + g(x) r 6 + - 6rG(. -)6 +
2

(206)

the quadratic model may be obtained by truncating the terms above second order with the resulting error

on the order of]" 6 T6] . Near aminimum,' quadratic models accurately represent the function. Even when

remote from th_ minimum, second order information provided by the quadratic model gives insight into
1

the most fruitful search directions. Quadratic models also have the property of invariance under linear

transformation which is important for scaling and preconditioning of the Hessian.

Based on the Taylor series approximation of a function truncated to second order, Newton's

method defines the search directions of the quadratic model as

s (k) =_(G(k))-lg(k) (207)

Another means of forming a quadratic model is to utilize search directions that are conjugate

to the Hessian, given by

s(i)TGs (j) = 0 . (208)
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Theminimumof a quadraticfunctioncanbedeterminedin at mostN exact line searches along nonzero

conjugate directions (Theorem 2.5.1, reference 66). Several options exist to select the conjugate direc-

tions, but one in particular is discussed below.

Fox the mininlum of the quadratic model to exist in _N space, the Hessian must be positive

definite. However-, when x (k) is "far" from the minimizer x*, the Hessian may not be positive definite.

Ill-conditioning resulting from singularity oz"near-singularity of the Hessian is a particularly difficult

situation which must be dealt with by the numerical optimization procedure. The two issues of indefi-

niteness ar|d ill-conditioning of the Hessian are the motivation for the algorithm presented in the follow-

ing section.

A.2 Partitioned Newton Optimization Algorithm

Ill-conditioning of the Hessian is a key difficulty in minimization of quadratic models. The

co.idition number of a matrix is a measure of the closeness of the matrix to singularity and is defined as

the ratio of the maximum siqgular value of the matrix to the minimum singular value, where the singular

values of a matrix G are the square roots of the eigenvalues of GTG. Since the eigenvalues of the Hes-

sian are a measure of the curvature of the parameter space along directions defined by the corresponding

eigenvectors, small magnitude eigenvalues indicate very slight curvature, or long "valleys" in the param-

eter space, which require large steps to achieve the minimum.

Choosing the eigenvectors of the Hessian as search directions guarantees that the search direc-

tions are orthonormal and conjugate to the Hessian, thereby forming a quadratic model of the type shown

in equation (208). 67 Wher| the x"('t) is not "close" to the minimum, the Hessian may be indefinite. In this

case, Newton's method with one line search in the direction given by equation (207) may not be effec-

tive. The directions with positive curvature must be searched independent of the directions with negative

curvature to ensure minimization in each direction of the parameter space. Since the indefiniteness of the

Hessian indicates that the current estimate, x (k), is remote from the minimum, searching along direc-

tions with negative curvature in the direction of decreasing cost may be effective for moving away from

critical points such as saddle points.

An optimization scheme that is robust to ill-conditioned and indefinite Hessians is developed

which applies Newton's method to a partitioned Hessian. For the symmetric Hessian G,

G_ = _A ,

where the eigenvectors, (0i, and eigenvalues, 2,i, comprise the matrices

(I)=[(01 (02 .L (ON] (209)

and

A=diag{AI, A2,L '/]'N} • (210)
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TheHessianmaybewritten

G = _A_ T

01,_I01T + 02/],20/+L _ T= +ON2N(pN

N

: E o,x,d
i=l

(21 I)

Since the eigenvectors form a set of N conjugate directions, the minimization problem is to

determine

where

 rg[v,(,,k, (212)

(213)

This minimization problem consists of N one-dimensional line searches to determine the elements of

[I/t (1)* gt (2)* L I/t(N)*] r. Instead of doing N one-dimensional line searches to determine hu *_*=
L J

one could approximate the optimal step size in each direction with one scalar, _, where

/ N/
i=1 (214)

In contrast with the search direction in Newton's method equation (207), which is a function of the

inverse of the Hessian, the search direction formed from the Hessian eigenvectors is given by

N

s(k) = '_q)i (215)
i=1

Although insensitive to near-singularity of the Hessian, this approximation of the step sizes would lead

to similar difficulties as Newton's method in that directions with large curvature would dominate and

progress would be restricted to a subspace of the parameter space.
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A compromise between the approximation of equations (214) and the computational burden

of the N one-dimensional line searches in equation (212) is to partition the search space into distinct

subspaces with a line search for each subspace. This approach is implemented in the partitioned Newton

optimization algorithm, which is formalized below.

By partitioning the eigenvalue and eigenvector matrices in equations (209)-(210) into five matrix

partitions as

qb=[*l q_2 *3 *4 *5] (216)

and

A=blockdiag{Ai,A2,L .A5} , (217)

from equation (211) the inverse of the Hessian may be partitioned as

4

G-' : y_.,_'iAT'O, .r
i=1

(218)

and the Newton search directions analogous to equation (207) may be defined as

s(i) = _%ATl%Zg . (219)

A.2.1 Algorithm

I. Given an initial estimate .v(°), compute the eigenvectors and eigenvalues of the Hessian

G(x (0)) and form ¢D and A from equations (209)-(210).

2. Partition _ and A according to equations (216)-(217) where:

• A I is comprised of"large" positive eigenvalues,

• A-, is comprised of"smali" positive eigenvalues,

• A 3 is comprised of"smali" negative eigenvalues,

• A 4 is comprised of"large'" negative eigenvalues,

• A 5 is comprised of"near-zero" eigenvalues,

and _ is compatibly partitioned. The partitions are determined by the intervals

hi > Apart _ "_i E A 1

Atol < _'i <- Apart _ hi E A 2

-Apart < hi <-)_tol _ hi E A 3

h i<--Apart _h i EA 4

--Atol <-hi <- '_tol _ hi E A 5 .
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To precludenumericalproblemsdueto nearzeroeigenvalues,/'l.to/ is defined to effectively, set these

small eigenvalues to zero by neglecting the partition A 5 in the search procedure.

3. Do foul separate one-dimensional line searches to minimize .v according to

.v(i) = x (i-1) + ill(i)s (i) ,

where

s (i) =_iATJ_Tg, 'v'i = 1:4

and the sign on s (i) is chosen to ensure descent of the cost function. These four searches constitute

one iteration with x (4) used as the initial vector, x (°), for the next iteration.

Variations on this algorithm may be adopted where line searches are conducted in some of the

individual directions comprising a partitioned eigenvector matrix, (I) i, but with increased computation.

Note that in well-conditioned cases where the Hessian eigenvalues are positive and larger than &pari,

this algorithm reduces to Newton's method. The following section presents example problems which

demonstrate the utility of the partitioned Newton algorithm.

A.3 Examples

The examples in this section are specifically chosen to highlight ill-conditioned and indefinite

Hessians. For the line searches, a golden section search is used and )tpart = l,A-er o = 10 -8. The stop-

ping criteria for each test case is based on the relative change in cost between iterations and is given by

,(x'k-")-S(,'k')
< 10 -8

The first two examples are from reference 66, the third is from reference 67, and the fourth is an optimal

control design.

Example 1"

f(x)= 100(x 2 -x? +(1-Xl)"

This function is known as Rosenbrock's function and is a well-known test function for optimiza-

tion methods. Located in a steep-sided parabolic valley, the minimum of this function occurs at

x* = [1,1] T. The Hessian is singular when x 2 -x I = 0.005, so an extreme test case is to define the

starting point as .i-0 = [0,0.005] T. From this initial point, Newton's method did not improve the cost

and terminated after one iteration due to the singular Hessian. However, after 13 iterations, the parti-

tioned Newton algorithm converged to the minimum, accurate to nine decimal places. Figure 34

graphically depicts the convergence achieved using the partitioned Newton algorithm.
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Figure 34. Convergence of Rosenbrock problem with partitioned Newton optimization.

E pl "_"xan! c .-.

.f(X)=X 4+xlx 2+(1+x2) 2

For this example, an initial choice is

Xo=[O'o]T_g=[O'2]T' G=I_ _3 (220)

At this starting point, the Hessian is indefinite. The search direction from Newton's method is

s = [-2,0] T which results in termination since no improvement can be made in the x 2 direction.

The partitioned algorithm breaks this into two orthonormal search directions given by

Z l = 2.4142,

A,_ = -0.4142,

s I = [-0.38268,-0.92388] T

s 2 = [0.92388,-0.38268] T

Table 5 indicates the rapid convergence of the partitioned algorithm to the minimum, even though

the Hessian is initially indefinite.
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Table 5. Convergence of x for partitioned Newton method in example 2.

Iteration x+

0.0
0,6367312144637250

0.7011674364048575
0.6959277688023086

0.6958843926891740

0.6958843897926642

x2

0.0

-1,075920796208131
-1.3467638098297626

-1.347963884399868

-1.347942196344587
-1.347942194896332

Example 3:

](.,-) + += _ + (1 -Xl)+ + 90(x4 - x3)2 +(i - x3)"
(221 )

_,/2 ]+,9.+-2
This example is known as Wood's function and is originally attributed to reference 68.

Wood's function is much like Rosenbrock's function except with four parameters. Beginning at

x0 = [3,- 10,-5,10] T+ Newton's method did not converge to the minimum at .r* = [1,1,1, I] r but terminated

after 14 iterations at x = [0.83,-2.31,-5.32,25.84] r. Figure 35 indicates that the partitioned algorithm

successfully found the minimizer x*. The piecewise constant rate of convergence is indicated in figure

36. It is interesting to note that from x 0" the Hessian remained significantly indefinite with the minimum

eigenvalue ranging from -1.36e--4 to-87.7 and the partitioned optimization algorithm continued to

converge to the minimizer.

20

15

10

-5

i i i r i

+,,

"'-.+.+,

_,.....................:::::::::::::::::::::............. _,c.-:-:!:.:i:_-2;-.;.-._--:_..........................
2

.++.°-+

.+_+"

-10 i i i I i
0 1O0 200 300 400 500 600

Iteration

Figure 35. Convergence of Wood problem with partitioned Newton optimization.
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Figure 36. Rate of convergence of Wood problem with partitioned Newton optimization.

It should be pointed out that with some initial conditions for these functions, Newton's method

converged more rapidly than the partitioned algorithm, but no case has been observed where the parti-

tioned method did not converge.

Example 4:

The final example demonstrates the partitioned Newton optimization algorithm in the context

for which it was developed, optimization of fixed-order dynamic compensators. The problem is to design

an H 2 controller for the coupled mass problem introduced in section 6. Section 3 presents the formula-

tion of the fixed-order H 2-optimal control problem with the gradient and Hessian expressions developed

as a special case of the fixed-order mixed H 2 / Ha control problem. This optimization algorithm com-

prises the local correction step of the homotopy algorithm introduced in section 4.

with

For this example, the plant is described by equations ( i 91 )-(192) for A and B 2 , respectively,

k1 = k2 = 1.2, m I = nh = 1.5, and _'1 = _'2 = 0.1. The remaining plant matrices are

B 1=[I 0], C1=[1 0] T, DII=0, DI2=[0 pl], D21=[0 I], D22=0 , (222)

where/9 is used to vary the control authority.

In order to illustrate the distinction between the partitioned Newton algorithm and Newton's

method, an initial controller is selected to be remote from the minimum. The desired controller

is for/9 = 0.0 ! and the initial controller is selected as the exact solution for the lower authority case
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is for p = 0.01 and the initial controller is selected as the exact solution for the lower authority case

with p = 10. Convergence is defined to occur when the relative change in cost between iterations

is less than 5×10 -7.

Figure 37 illustrates the convergence of the gradient toward zero with the partitioned Newton

algorithm as well as the termination of the Newton optimization remote from the minimum. Figure 38

presents the comparison of the convergence of the (2, I ) element of the controller gain matrix, G, to the

exact value with both the partitioned Newton method and the Newton method. Clearly, the Newton opti-

mization does not converge to the correct value. For this example, the difficulty in convergence is due

to the near-singularity of the Hessian which produces large erroneous correction steps with Newton's

method. These results strongly indicate the deficiencies of an optimization algorithm that uses second

order information and assumes a positive definite Hessian (such as Newton's method). The partitioned

Newton algorithm presented herein is better suited for these problems by accounting for ill-conditioned

and indefinite Hessians.

E
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J J i • r , i
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Figure 37. Convergence of gradient for control design.
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Figure 38. Convergence of control gain estimate.

The initial and exact final controller gains for the controller in the controller canonical form

(defined in equation (35)) are

= I0.4073 -0.6215 -0.0003 -0.30321
G° 1_2.3727 4.1798 4.3888 2.29041 (223)

Ge.vdct =
8.3899 -37.0769 -1.2240 -13.8905]

/
29.5261 40.7987 27.6252 9.8040J

(224)

Using the partitioned Newton method, after 11 iterations the percent error in each element is

Gerro r =

-0.0562 0.0650 0.1305 0.0671-

0.0637 0.0613 0.0608 0.0637 percent . (225)

The Newton method terminated after 18 iterations with percent error

=f224 215 698 1951
Gerr°r L223 253 245 275_1 percent . (226)
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