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CREW REGENERATIVE LIFE SUPPORT IN LONG-DURATION SPACE MISSIONS

N.M. Samsonov, _A.I. Grigoriev, 2 Ju.I. Grigoriev 3

INIICHIMMASH, B. Novodmitrovskaya, 14 125015 Moscow, Russia, ZlBMP, Moscow, Russia, 3RSC Energia,
Korolev, Russia

The paper deals with the status and prospects of spacecraft and base crew life support. A key problem governing

human stay and activities in long-duration space missions and planet exploration is the development of regenerative

life support systems (LSS). The use of systems for water recovery and air revitalization and in prospective food

from the end products of life as well as an integrated bioengineering system enables the crew to be provided with
water, oxygen, and food, thereby creating a habitat environment on spacecraft or base. In Russia (former USSR)

extensive research has been done to prove the feasibility of integrated long-life regenerative chemical/physical and

biological systems. The first chemical/physical systems were installed on Salut orbital space stations to recover

potable from humidity condensate. The Russian Mir space station incorporates systems for water recovery from

humidity condensate, from urine reclamation and hygiene waste water processing, a system for oxygen generation

by electrolysis, a system for the removal of CO2 and other trace contaminants. The systems allow a considerable

reduction in specific mass water and oxygen supplied from the Earth. A modular construction of the regenerative

systems provides for their updates. The Mir updated systems complemented with a system for CO2 collection and

concentration and a Sabatier CO2 system followed by a vitamin greenhouse are planned to be installed on the

Russian segment of the International Space Station (ISS). The ISS LSS will be a baseline of new regeneration

spacecraft and planetary base LSS. Advanced LSS will be based on the water recover efficiency, low energy and

mass demand, LSS reliability enhancement with a gradual transition from physical/chemical to integrated physico-
chemical/biological systems.

For successful space exploration and missions to the Moon and Mars a R&D program for building new generation

LSS should be developed. Experience gained on development of ISS shows that the most effective way to
accomplish this is international cooperation and partnership.
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BIOCONVERSION SYSTEMS FOR FOOD AND WATER ON LONG TERM SPACE

MISSIONS.

M.A. Benjaminson, S. Lehrer and D.A. Macklin

NSR/EOD Joint Venture and NSR/Touro Applied BioScience Research Consortium. Dix Hills, NY 11746.

INTRODUCTION

Regenerative biosysterns are logistical and economic requirements for long duration space missions on which expendables

are often expensive and resupply is not tenable. Therefore wastewater recycling and crop plant generated waste biomass

conversion to food would prove beneficial. We fabricated and laboratory tested both a biological wastewater reclamation

system (I3WWR) and awaste cellulose to edible mushroom conversion system (CMCS) with simulated waste products. The
BWWR is designed to remove bacteria, microalgae and other microbiota from water without the use of ionizing radiation,

disposable filters, intense heat or toxic chemicals and convert them to a harmless cellulosic product. The CMCS converts

the waste cellulose anticipated from the BWWR and plant crop waste cellulosic biomass, such as the ligno-cellulose stalks
and other non-food plant parts from controlled ecological life _ systems (CELSS), into edible mushrooms. The CMCS

test substrate was hay treated with a variety of mulching techniques and inoculated with straw mushroom spawn.

METHODS

The pilot scale BWWR consists of two modules which are designed to process the contaminated water sequentially. The

first consists of two connected 19-L plastic tanks one of which serves as a holding tank and the other as a reactor vessel.

The reaction chamber contains a mixing paddle composed of four vertical panels. Sampling ports are located at four
different levels. The biologically active components of the first module are the non-pathogenic Dictyostelium amoebae

which prey on other microbiota such as bacteria. These are added to microbially contaminated water in the holding tank.

This water is then transferred to a mixing chamber where the relative numbers of amoebae and contaminating microbiota
are monitored. Predation is allowed to continue until a marked reduction in microbial contaminants is detected in the mix.

Bacterial numbers are determined by standard plating techniques on 1% lactose-peptone agar (LPA) and recorded as colony
foming units (CFU). The liquid is pumped from the mixing chamber and fed into the second module, an environmentally

controlled "dry" reaction chamber. In this chamber, the liquid is spread onto perforated stainless steel surfaces. Here, the
amoebae (having converted engulfed microbiota into Dictyostelium cell substance) respond to their genetic programming
for life on a solid substrate, in the presence of light, and differentiate into mature cellulosic stalks which can be harvested
and added to the feed stock for the CMCS.

Parametric bench-top e_ts studied the dynamics of stirred vs. static binary cultures ofE. coli and D. dictyostelium

in cell substance) respond to their genetic programming for life on a solid substrate, in the presence of light, and differentiate
into mature cellulosic stalks which can be harvested and added to the feed stock for the CMCS.

Parametric bench-top experiments studied the dynamics of stirred vs. static binary cultures of E. coli and D. discoideum

in nutrient poor vs. enriched media. The data, in terms of reduction of bacterial numbers over time were applied to BWWR

liquid reactor experimental design. The superiority of perforated stainless steel over porus plastic test surfaces was also
determined in bench-top studies carried out by inoculating candidate surface materials with liquid reactor effluents in water
agar petri plates.

The CMCS consists of a chamber with programmable controlled temperature, relative humidity, air exchange, simulated

sunlight lux levels and subs-mite moisture. The substrate and mushroom spawn are housed in a perforated rotation cylinder

divided longitudinally into four compartments to enable comparative studies and to provide for even exposure to the chamber
environment. When mushrooms appear they can be harvested. The design of the experiments which were carried out in

the CMCS was based on a series of trials of various spawning media and substrate preparation/mulching techniques.

RESULTS

BWWR: As expected, bacteria continued to exist in water with extremely low levels of nutrients for protracted periods
of time (in excess of 17 days). In the liquid reactor, contrary to the usual logarithmic growth curve anticipated in a closed

system, the counts of CFU from samples in the mixing tank described a saw-toothed course, the graph of CFU vs. time

looking much like a fever chart. The number of CFU plunged from a high of over 400 colonies down to 2 CFU in 3 days.

It rose again to the same level in 5 days and then plunged down to 7 CFU at 6 days. It peaked again at 6 days, dropped down
to 350 CFU at 7 days and rose again to over 400 CFU at 8 days when the experiment was terminated. In the holding tank,
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starting from a low of 7 CFU at 1 day, the numbers rose to 10 CFU at day 3 and dropped to 1 CFU at day 4. They then rose

precipitously to over 400 CFU on day 5 and were down to 2 CFU by day 7. The number of CFU fluctuated between 4 and
2 until day 11 when they rose to 400 CFU, dropping to 1 CFU on day 14. On day 16, a dose of over 1000 Dictyostelium

amoebae were added to the holding tank. On day 17 the experiment was terminated and the count was 1 CFU.

When liquid reactor effluent was inoculated onto the surface of perforated stainless steel inserts, in the "dry" reactor,

growth was not detected by visual observation until day i 9. At that time, mature cellulose stalks and intermediate

Dictyostelium stages were detected on the stainless steel surfaces.
CIVICS:Examination of the four compar'anents of the rotating cylinder showed that, in order for mushroom primordia to

appear, special care must be take to provide adequate moisture to the substrate. This was dramatically demonstrated by the

lack of growth in the cylinder chambers where substrate moisture was allowed to dissipate during primordium formation.
Primordia appeared only in the chamber where substrate moisture had been maintained by plastic covering and fi'equent

misting.

CONCLUSION

With proper manipulation and augmentation, the BWWR appears to provide a potential for the safe biological removal
of microbes fi-om waste watea-. Similarly, the CMCS has demonstrated a possible means for effectively converting biomass

to food. Both deserve further exploration.

(Supported by NASA contracts, NAS 8-40127 and NAS 13-662)
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NOVEL LABORATORY APPROACHES TO MULTI-PURPOSE AQUATIC BIOREGENE-

RATIVE CLOSED-LOOP FOOD PRODUCTION SYSTEMS

V. Bliim l, M. Andriske l, K. Kreuzber 2, U. Paassen I, M. P. Schreibman 3, and D. Voeste 1
IRuhr-University Bochum, Faculty of Biology, C.E.B.A.S. Center of Excellence, Bochum, Germany, 2German Ae-

rospace Establishmant, Executive Department, Cologne-Porz, Germany and 3City University of New York, Broo-

klyn College, Department of Biology, Brook-lyn, N. Y, U. S. A.

INTRODUCTION

The Closed Equilibrated Biological Aquatic System (C.EB.AS.) is an artificial (man-made) aquatic ecosystem
which was primarily developed to study the long-term influence of space conditions on several subsequent generati-
ons of aquatic animals and plants the ,,evolution" of which was consequently reported on all IAF-congresses and

IAA Man in Space Symposia since 1989. Its development was directed by an international scientific program in
which 5 German and 3 U. S. American universities, the Institute of Biophysics of the Russian Academy of Sciences
in Krasnoyarsk and the Institute for Medical-Biological Problems in Moscow are involved. CEBA. S. is operative
in 2 different versions: the ,,Original CEBA.S." with a volume of more than 150 liters and the ,,CEBA.S. MINI
MODULE" with about 9 liters volume. Based on the latter a spaceflight version fitting into a spaceshuttle middeck

locker is currently under construction and ground test which is dedicated to two different spaceshuttle missions in
late 1997 and early 1998.

CONSTRUCTION PRINCIPLE AND RESULTS

Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel

combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-
term operation in closed state up to two years. In principle both consist of the ,,classic" C.E.B.A.S. subcomponents:

animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter
(Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the
first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal
tank has a volume of about 160 liters and is constructed as an ,,endless-way system" surronding a central unit con-
taining the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator

(1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric
microalgal bioreactor for filamentous green algae. It consists of 3 x 2 subunits and may be as well exposed directly to

sunlight with an automated oxygen level-dependent shading as illuminated with fluorescent lamps. The third plant
growth facilitiy is a chamber with about 2.5 liters volume for cultivation of the ,,traditional" CEBAS plant spe-
cies, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In

the current experiment the animal tank contains the live-beating teleost fish Xiphophorus helleri and the small pul-
monate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is
well known from many previous C.E.B.A.S. experiments. A part of the animals derives from a 13 month test of the
CEBA.S. prototype #3. The water temperature is maintained at 25°C and the oxygen level is regulated between 5
and 8 mg/i by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing

solely the oxygen produced by photosynthesis. The animals and the micoorganisms of filter and biofilm provide the
plants with a sufficient amount of carbon dioxide. Oxygen concentration, pH value, temperature and redox potential

are on-line recorded. Ion concentrations and numbers of living germs in the system water are determined twice
monthly in the laboratory from samples taken from a special ,,sample removal module"; the sample volume is auto-
matically replaced from an reservoir container. A rotatory pump produces a water flow of about 38 l/min System
malfunctions are transmitted by an alert device to the person in duty who is able to control the system status and to

perform certain settings via a modem. Figure 1 shows the construction scheme of this system. For a similar smaller

test system with approx. 10 1volume developed from the CEB.AS.-MINI-MODULE a novel indirect solar energy
supply is tested which has a buffer capacity to maintain the system for 7 days in darkness under central European

climate conditions also in winter. This time span may be increased by the implementation of additional batteries to
simulate, e. g. a lunar night. I contains only a single plant cultivator which is operated with Wollfia arrhiza. This
lemnacean plant is able to produce large amounts of plant biomass in a short time by vegetative reproduction via

daughter fronds. This easy-to-handle apparartus is dedicated to be operative more than 4 month The experimental
animals and microorganisms are the same as in the large system. The lecture pesented here provides detailed infor-
mation on the system construction principles and the biological, physical and chemical data of the first 7 month of the
test runs of both systems.
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Figure 1 Construction scheme of the CEB.AS-based animal-plant production system

CONCLUSIONS

The test results from both systems will provide valuable information about first attempts to convert the laboratory

devices into closed-loop production sites with herbivorous fishes which are fed with plants inedible for humans,

mainly the ('. demer,_Ttm. Furthermore, the utilization of Wolffia arrhiz_ for human nutrition can be evaluated more

precisely. Models for the combination of intensive aquaculture systems with higher plant hydroponics can be develo-

ped for terrestial tests and actual biomass production. The data collected with the solar energy supply system allow

serious calculations for the construction of those in larger scale for real production sites. Finally initial careful at-

tempts can be made to develop dispositions for the implementation of aquatic food production modules into biorege-

nerative life support systems of a higher degree of complexity for a lunar or planetary base.
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ARTIFICIAL NEURAL NETWORK DERIVED PLANT GROWTH MODELS *

Frank Zee

Center for Space Microelectronics Technology

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.

Pasadena, CA 91109-8099

The goal of the Advanced Life Support Systems (ALSS) is to provide self-sufficiency in life support for

productive research and exploration in space, for benefits on Earth and to provide a basis for planetary
explorations. Part of this objective is to be able to grow crop plants in one or more controlled environments for

the purpose of providing life essentials to a human crew, such as oxygen, potable water, and food. To do this

reliably and efficiently, it is necessary to achieve control of the rates of various plant physiology processes.

including: net exchange of exhaled carbon dioxide for oxygen (net photosynthesis), purification of water

(transpiration), and food production (biomass production rate and harvest index).

To develop an efficient control system that will be able to manage, control, and optimize plant-based life

support functions, system identification and modeling of plant growth behavior must first be done. We have

developed a plant growth (physiology) model using artificial neural networks. Neural networks are very suitable

for both steady-state and dynamic modeling and identification tasks, since they can be trained to approximate
arbitrary nonlinear input-output mappings from a collection of input and output examples. In addition, they can

be expanded to incorporate a large number of inputs and outputs as required, which makes it simple to model

multivariable systems. Thus, unknown nonlinear functions in dynamical models and controllers can easily be

parameterized by means of multilayer neural network architectures.

Artificial neural networks are composed of simple albeit numerous non-linear processing elements

(modeled after biological neurons) interconnected through a complex network of variable strength connections
(modeled after biological synapses). The topology of interconnections and the synaptic strengths essentially

dictate the functionality of a given network. A typical network is capable of receiving a large number of

analog/digital inputs (e.g., sensor signals) in parallel, and after a complex nonlinear transformation operation,
provides the outputs (e.g., predicted growth, biomass). The unique strength of such neural network

architectures emerges from their ability to build up their own rules through learning from examples the

underlying input/output transformations in ill-defined problems.

In this paper, we will describe our approach to developing these models, the neural network architecture,

and the results. With the use of neural networks, these complex, nonlinear, dynamic, multimodal, multivariable

plant growth models will be able to better interpolate between all the various environmental conditions and

parameters and be able to simulate both short-term (day-to-day) and long-term (plant life cycle) growth of

various plants.

*Sponsored by NASA, Office of Life and Microgravity Sciences and Applications
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SIX-MONTH SPACE GREENHOUSE EXPERIMENTS - A TEP TO CREATION OF FUTURE

BIOLOGICAL LIFE SUPPORT SYSTEMS

T.N. Ivanova 1, P.T. Kostov I, S.M. Sapunova *, I.W. Dandolov l, V.N. Sytchov 2, M.A. Levinsklkh 2, I.G. Podolski 2,

G.E. Bingham 3, F.B. Salisbury 3, D.B. Bubenheim 4, G. Jahns 4

_Space Research Institute, Sofia, Bulgaria, 2Institute of Biomedical Problems, Moscow, Russia. 3Utah State

University, Logan, Utah 84322. 4NASA Ames Research Center, Sunnyvale, CA

INTRODUCTION

SVET Space Greenhouse (SG) - the first automated facility for growing of higher plants in microgravity
conditions was designed in the eighty years under the joint Bulgarian-Russian project "Study of the ways and

means for use of higher plants in Biological Life Support Systems" for future long term manned missions in

Space. The first successful 54-days experiment with vegetable plants was carried out on the MIR Orbital Complex

(OC) in 1990.
The experiments in SVET SG were resumed in 1995. An American Gas Exchange Measurement System

(GEMS) was added to the existing Bulgarian plant life support system. A three-month wheat plant experiment

was carried out as part of MIR-NASA-3 fundamental biological program.

A set of SVET-2 SG equipment (a greenhouse of new generation) was developed by Bulgarian scientists and

launched on board the MIR OC and successful six-month experiments for growing up of two crops of wheat were

conducted in 1996-97 as part of MIR-NASA-5 program.

METHODS

Some optimizations in the SVET-2 SG hardware have been made to improve the environmental conditions in

the 1996-97 experiments. A new, optimized Light Unit with considerably improved technical and biotechnical
characteristics and a new Secondary Pump Power Supply have been designed. Software improvements in the

Control Unit made the substrate moisture measurement more precise and provided a possibility for individual,

consecutive and independent measurement of each sensor. Another software improvements enable the LP

parameter (duration of the lighting period) to be changed.

The American GEMS system has the additional capability to measure a wide range of environmental

parameters, except the gas exchange measurements that give a possibility to calculate photosynthesis, respiration

and transpiration.
The upgraded basic plant life support system SVET-2 SG as well as the new GEMS system that increased the

information possibilities of the equipment were an important precondition for achievement of the experiments

goals to grow wheat through a complete life cycle, to document the environmental parameters that might impact

plant growth (in addition to microgravity); to collect samples for analysis on the ground; to improve conditions for

plant growth as much as possible.

RESULTS

The Space Greenhouse Complex was used to grow a fully developed wheat crop for 4 months during 1996. In

the space experiment duration of the full cycle of ontogenesis for the "Super-Dwarf' wheat plants as well as their
specific stages was similar to that in ground controls. Nearly 300 heads were developed but no seeds were

produced. After the harvest of the first planting, a second crop of wheat was planted in the SVET-GEMS system

(with CO2 measurements in the plant leaf area). The result was again a vigorously developing canopy. The plants

were harvested after 42 days, frozen in liquid nitrogen for biochemical investigations after landing of the Shuttle

STS-81 in the early 1997.

CONCLUSION

The results of these six-month experiments proved that normal technical and technological conditions for

plant growth in microgravity had been provided. Only now the reasons for the lack of seeds will be considered.

One of the hypothetical causes is the presence of harmful ingredients in the air - for example the gas, ethylene,

probably produced by fungus growing in MIR on the walls. And maybe the microgravity is the principle factor
that hinder the seed formation - we will find out about it through long investigations in future space and ea_

experiments.
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