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ABSTRACT

The purpose of th_ research was to examine the potential of the rough sets

technique for developing intelligent models of complex systems from limited information.

Rough sets a simple but promising technology to extract easily understood rules from

data. The rough set methodology has been shown to perform well when used with a large

set of exemplars, but its performance with sparse data sets is less certain. The difficulty is

that rules will be developed based on just a few examples, each of which might have a

large amount of noise associated with them. The question then becomes, what is the

probability of a useful rule being developed from such limited information? One nice

feature of rough sets is that in unusual situations, the technique can give an answer of"I

don't know". That is, if a case arises that is different from the cases the rough set rules

were developed on, the methodology can recognize this and alert human operators of it. It

can also be trained to do this when the desired action is unknown because conflicting

examples apply to the same set of inputs.

This summer's project was to look at combining rough set theory with statistical

theory to develop confidence limits in rules developed by rough sets. Often it is important

not to make a certain type of mistake (e.g., false positives or false negatives), so the rules

must be biased toward preventing a catastrophic error, rather than giving the most likely

course of action. A method to determine the best course of action in the light of such

constraints was examined. The resulting technique was tested with files containing

electrical power line "signatures" from the space shuttle and with decompression sickness
data.
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INTRODUCTION

As NASA moves forward towards deployment of the space station, a possible

permanent manned station on the moon and a manned flight to Mars, the long term

reliability and maintenance of life support systems in hostile environments becomes a

crucial issue. Intelligent software that can monitor systems and make automated decisions

can relieve the human crew of such responsibilities during long space and lunar missions,

fleeing them to perform other tasks. The complexities of life support and other systems

make such software difficult to develop. For example, the software must be able to

evaluate several interdependent inputs, with many variations on typical eases. The

software should probably also be developed from mission data, which has noise both on

system inputs and on system outcomes (i.e., the results of system actions). As a result of

these requirements, often very few examples will exist for situations that occur only rarely.

It is often in these rare cases where it is critical that the software perform correctly. Rough

sets is one technique that makes intelligent monitoring of complex systems less
cumbersome.

Since its introduction [Pawlak, 1982], rough sets has proven to be a simple but

effective technology to extract rules from data [Slowinski, 1992]. Discussions of rough

set methodology are given in [Pawlak, 1988], [Grzymala=Busse, 1988], [Chan, 1991] and

[Szladow, 1993]. The rough set technique has been shown to perform well when used

with a large set of examples, but its performance with small data sets is less certain. The

problem is that rules will be developed based on just a few examples, each of which might

have a large amount of noise associated with them. Furthermore, conflicting rules will

often be triggered when the system is used on new cases. The question becomes, what is

the probability of a useful rule being developed from such limited information? Probability

theory is used to determine how much cortfidence one ear, have in a given rough set rule

based on the number of examples that support that rule.

ROUGH SETS

A core idea in rough sets is that precision is frequently not necessary when looking

for patterns in data. For example, a fever is usually enough to indicate the presence of

disease, without knowledge of exact body temperature. Rough set rules are generated

from a set of examples with known outcomes. Discrete inputs are used as is, while

continuous inputs are divided into discrete categories. An input with a temperature range

of 96 - 110 °F might be divided into broad ranges described by cold, cool, warm and hot.

In this manner, strong patterns that exist in the data are reflected in the model.

The rough sets algorithm is typically used to extract rules from a table of

examples. Each example (table row) is called an object, while each piece of information in

the example (table column) is called an attribute. The outcome is then called the decision

attribute. Ideally, the decision attribute is completely determined by the other attributes in

the table, and the outcome is said to be discernible by the inputs. The rough set

methodology then searches for a minimal set of input attributes, called reducts, that can
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completely describe the decision attribute. Small reducts produce general rules, while large

reducts produce specific rules. Various factors can cause the outcome to not be

completely discernible by the inputs. These include cases where there is noise in the data,

the input attributes do not completely describe the outcome, complex relationships exist

between the input and decision attributes, or the input attributes are divided non-optimally

into discrete categories.

Figure 1 shows an example of a two input case where the outcome is either a 'yes'

or a 'no'. Each input is divided into six discrete categories, and it is assumed that no noise

is present on either the inputs or the outcome. The region enclosed by the irregularly

shaped loop marks the true boundary between 'yes' and 'no' outcomes for different

combinations of the two inputs. The white boxes inside the loop are called the positive

region, or lower approximation of the outcome. These are boxes that always have 'yes'

outcomes in the table of examples. The negative region, where all examples have an

outcome of 'no', is the combination of all white boxes outside of the boundary loop. In

between these two areas is a boundary region, marked by gray boxes in Figure 1. In the

boundary region, some examples will have a 'yes', while others will have a 'no' outcome.

Because the examples that fall in the boundary region are inconsistent, two types of rules

are often generated by rough set algorithms, called certain and possible rules. Certain rules

are developed from a set of completely consistent examples (e.g., the positive and negative

regions in Figure 1), while possible rules are generated from a set of inconsistent examples

(e.g., the boundary region in Figure 1). As will be shown, however, because rules are

generated from a limited sample of examples, there are no rules that are completely
eertairL
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Figure 1.- Rough set example with consistent data.
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The boundary region in Figure 1 can be made smaller by changing the definition of

the attribute categories for the inputs. For example, if the definition of VL is increased for

input A, the boundary region will decrease in size. The price to pay for such a move is that

rules generated for input A being L will have fewer examples supporting them, and will

thus have less certain validity.

Figure 2 shows the same case as in Figure 1, except that now noise has been added

to the data. The noise adds inconsistencies to what should be the positive and negative

regions of the model, and sometimes creates a false consistency in the boundary region. If

the rough set model is generated fi'om a large set of examples, this will not cause a major

problem because the patterns will be clearly discernible through the noise. A difficulty

arises, however, when the number of examples the model is based on is small in any region

of the input space. Because the number of examples for a given combination of inputs is

small, noise can significantly alter the apparent outcome for that combination.

Input A

VL L LM HM H VII

Input B ml
"ll

Consistent Examples

Inconsistent Examples

Figure 2.- Rough set example with noisy data.

There are many reasons a data set might have relatively few examples in certain

regions. Certain values of an input may occur infrequently, or it may be physically difficult

to collect data for these input ranges. Sometimes, it is desirable to predict an event that

occurs only rarely, such as a moderate to severe earthquake in Arkansas. Often, a model

will have a large number of inputs, making the number of examples required to fall all

possible combinations of inputs quite large. A more common difficulty is when predictions
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need to made on dynamic systems. For example, cardiac patients benefit from a large

number of drugs that become available each year. Conditions that would have been fatal a

few years ago are now readily treatable, and any model that predicts cardiac mortalities

needs to be continually revised using only data from recent patients.

When rules are generated based on a few examples, the question arises as to how

much confidence one can have in these rules. This question becomes critical when the

penalty for a wrong decision is catastrophic. For example, a model that incorrectly

predicts the presence of cancer in a patient may cause needless worry and extra expense

for additional tests, but if that modd incorrectly predicts the patient has no cancer, the

results could be deadly. For decision attributes with only two possible values (e.g., yes or

no), the confidence one has in a given rule can be determined by examirun" g the binomial

probability distribution. For decision attributes with more than two values, the analysis

below also holds true if one only wants to know the probability of a given rule being
correct.
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Figure 3.- Example of how contradictory rules are generated.

Another feature of rough sets is that contradictory rules are often created in an

attempt to have the strongest, most general rules possible. To see how this occurs, look at

Figure 3. Recall that the fewer variables in a rule, the more general it is. In this case, there

are two inputs and an output that is either a 'yes' or a 'no'. The decision boundary

between these two states is shown by the irregular-shaped loop. Suppose we are willing to

accept any rule that is correct over 70% of the time in an attempt to have a very general

system. In Figure 3, when Input A is L, the output will be 'no' more than 70% of the time.

When Input B is H, the output will be 'yes' more than 70% of the time. With these two

rules, a conflict wiU occur whenever Input A is L and Input B is H at the same time. A

method of selecting the strongest rule is necessary to resolve this conflict. The next
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sectionpresentsa method of detemaining the confidence level one can have in a given rule,
which can then be used to resolve conflicts between rules.

PROBABILITY CALCULATION

Given n samples from a binary distribution, r of which are true, what is the

probability p of a true respome7 Ifp is known, then the probability P(n, r, p) of getting r
true responses is:

P(n,r,p) = (7)P" (1-p)" (1)

To find the mode, the peak of the distribution, simply maximize (1) with respect top as
follows:

d rp,q . p)n., _ p, r)n.,._ = p,_,4
--_ P(n,r,p) = (1 (n - (r(1 - p) - (n - r)p) = 0 (2)

Solving (2) one gets

r-rp = np-rp

orp = r/n. To obtain a probability distribution from (1) one need only normalize as
follows

(3)

(OF(I-p)'-" (4)
D_;_,,)= j_(:)p'(l-n _,4p

The integral in the denominator of (4) can easily be evaluated using integration by parts.

Let I(n, r) = f_p'(1-p)'-'@. Then

and

i . 1
rjop@=_$II(n,n) = (5)

1 v+l

l(n,r)= j':p'(l-p)"-'dp = _-_-+ip (1-p)'-'[_+n-rT..4Tjopr',+,q(-p)'"-<'÷')__,,e

- "_I(,.,+, I) (6)
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Solving the recurrence (6) with end condition (5), one gets

i(.,0=____1 = 1
(.;iX:)

The mean of the distribution (4) is realized as

= I(n + 1, r + 1) = (n + 1)(r + 1)!(n- r) In ! = r +___1.1 (8)
I(n,r) (n+2y!(n-r)!(n+l)! n+2

Note that the expected value ofp (the mean value ofp) is different from the mode (the
peak value of the distribution) for all cases except r/n = 0.5.

Confidence limits for the underlying value of p can be obtained by numerically
integrating (4) with respect to p for any given values of n and r. Starting with p = 0 and

increasing it incrementally, the area of the distribution from 0 to any given value ofp can
be calculated. Since the total area of the distribution is equal to one, confidence limits can
easily be placed on upper and lower approximations ofp. For example, if the area under

(4) for a given value ofr and n is 0.05 fromp = 0 to 0.60, then there is a 5 percent chance
that the true underlying probability for this case is less than 0.60.

NUMERICAL MODEL VERIFICAT/ON

The above analysis answers the question of, given r/n 'yes' responses, what is the

likely underlying probabilityp of the system? In order to numerically verify the results, this
question must be rephrased to: given a known underlying probability p, what is the

likelihood of getting r 'yes' responses out of n trials7 An algorithm was written to answer

the latter question for n = 10 and r = 5 through 9. Probabilities were incremented from 0
to 1 in 0.001 steps, with 40,000 trials were run for each probability. In each trial, ten
numbers were randomly generated and the results were checked for r 'yes' responses. The

total number oft/10 'yeses' was recorded for eachp, and the area under the distribution
was calculated from 0 to p for each probability. The results were then compared with the
above analysis for calculating the mean, the mode and confidence limits on the underlying

probability for any given observation of r/10 'yes' observations.

Results for the theory based calculations can be compared to the ones from the

numerical experiment. The largest differences between the numerical and analytical results
occurred for r = 9. In this case, the maximum difference between the cumulative
distributions is 0.0019, or less than 0.2% of the maximum. The 10% confidence level is
0.69 and the 90% confidence level is 0.95 in both cases. When the cumulative distribution

for the experimental case is plotted versus the theory-based calculations, the result is a line

with a correlation coefficient (Pearson's R) of 1.000. The mode for both cases is 0.9,
which equals the expected value ofn/r.
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DISCUSSION

The most obvious conclusion from the above analysis is that there are no certain
rules in rough sets. Rules are generated based from a sample of similar cases, and it is

hoped that those cases are representative of all cases the rough set model will ever see.
The typical probability normally used to evaluate rules, p = r/n, represents the peak of the

distribution that represents all possible values ofp for a given combination of r and n. The
distribution, however, is skewed to the left for all values ofr/n > 0.5. The minimum error

over large number of rules will therefore occur for the probability that divides the
distribution into two equal areas, p -- r+l/n+2, rather than r/n. Even with a completely
consistent set of examples, the minimum error over a large number of rules will always
occur by choosing p<l, irrespective of the number of consistent examples supporting the

rule. For example, if a person flips a coin three times in a row, on average they will come
up with three heads once in eight times. Having seen a person flip this coin three times, all

of which came up heads, one cannot assume that the coin will always come up heads.

Now suppose in a given rough set model there are numerous combinations of inputs that

all have three examples in them, all with 'yes' responses. The average probability of

getting a 'yes' response, over all these rules is 0.8, not 1.

Sometimes it is desirable to have a rule used only when it has a high probability of

being correct. Confidence limits can be used to determine what rules to use. Note,
however, that high confidence limits require a large number of examples. For example, if

one wishes to have a 99% confidence thatp >0.9 for a rule to fire, it requires a minimum
r/n of 43/43, 62/63, or 78/80. Other times it is a necessary to make a "best guess" as to

what the correct answer is, in that case the decision indicated by r/n is always the most

appropriate choice.

Often with rough set models it is necessary to decide between conflicting rules.

The mean probability, t3 = (r+ l)/(n+ 2) can be used to determine which rule is stronger.

Ofren the cost for a wrong decision is greater than the reward for a correct decision, such

as in the case of screening for cancer. Mean probabilities can be used with a cost
functional to determine the optimal decision. Let tp represent a correct 'yes' predictions

for a rough set model, tn represent a correct 'no' prediction, fp an incorrect 'yes'

prediction and h an incorrect 'no' prediction. A cost function, C, can be defined as
follows:

C = at tp + a2 tn - a3 fp - a4fia (9)

where al - a4 are the relative costs of each decision. Let py be the mean probability of a
true positive (tp), (1- py) the mean probability of a false positive (fp), po the mean

probability of a true negative (tn) and (1- po) the probability of a false negative. For a

positive rule to fire, al py - as (1- py) must be greater than 0; conversely, a2 p. - a4 (1- po)
must be greater than 0 for a negative rule to fire (otherwise a no decision is better). To
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choosebetween conflicting positive and negative rules, the benefits of each rule must be
compared. For a 'yes' rule to have more advantage than a 'no' rule,

a_ pw- as (1- py) > a2 p.,- a4(1- p.,) (10)

Solving for py, we get

1_ > (a2+a4)/(al+as) * po + (a3-a4)/(al+as) (11)

for a 'yes' rule to control the decision, otherwise the 'no' rule prevails.

The analysis in this paper was carried out for a decision attribute with only two

possible values. It is easy to see that this can be expanded to any number of categories. If
one is only interested in whether a decision is correct or not, then the analysis holds as is.

Otherwise, the probability description given in (1) can be modified to include more than

two states, and the calculations redone.

APPLICATIONS

The rough set methodology was applied to two applications, detection of the space
shuttle electronic "signatures" and prediction of decompression sickness. The space

shuttle has numerous electrical systems that periodically turn on and off. It is oRen
desirable to know when individual appliances are operating, but the number of these
devices makes using telemetry to send this information back to earth problematic. The
electrical power usage in the shuttle, however, is regularly monitored by mission control.

Fluctuations in the power indicate that different apparatus is turning on and off. In the

past, human operators examined these fluctuations to determine which piece of equipment

was turning on and off. Automation of the electrical power "signatures" recognition would
eliminate the need for human monitors.

Rough sets was used to classify ten different electrical power signatures, including

a "none of the above" category. On a model development set, the rough sets technique
was able to correctly classify 84.6% of over 5,000 cases, with 14.6% no decisions and

0.9% missclassified. When electrical signatures in the "none of the above" category were
removed, the rough set model correctly classified 98.7% of the signatures, with a no

decision in 1% and 0.3% missclassified. These preliminary results indicate that additional

work on rough set model development for electrical "signature" recognition is justified.

Decompression sickness (DCS), commonly known as the "bends", occurs when

people experience rapid changes in external pressure. This most commonly occurs when
divers resurface too rapidly fi'om deep dives, but may also happen when pilots fly at high

altitudes. Astronauts performing an extravehicular activity (EVA), or space walk, may

also be at risk of developing DCS due to the low pressure in space suits. A preliminary

rough set model of decompression sickness was developed from retrospective data on

1-10



1018 exposures. Fourteen physiologic and case history inputs were available for each
subject, and the outcome was the development or absence of DCS. The model was tested

on 706 subjects that were not among the 1018 cases used for model development. The
rough set model was able to correctly classify subjects as experiencing DCS or not 83% of
the time. This compares well with the 79% correct classification seen with stepwise
logistic regression, and warrants further investigation of the rough set model.
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