
United States Patent [191 1111 Patent Number: 5,632,022
Warren et al. 1451 Date of Patent: May 20, 1997

[54] ENCYCLOPEDIA OF SOFTWARE
COMPONENTS

PSI Inventors: Lloyd V. Warren, Pasadena; Brian C.
Beckman, Sunland, both of Calif.

[73] Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

[21] Appl. No.: 792,501

[22] Filed Nov. 13,1991

[51] ht. C1.6 GMF 15/00; GO6F 3/00;
G06F 9145

[52] U.S. C1. 395/350; 3951762; 395t702
3951968

[58] Field of Search 395/155, 156,
395/157, 158, 159, 160, 161, 922, 350,

762,702,968

[5 61 References Cited

U.S. PAl’ENT DOCUMENTS

4,476,528 10/1984 Matsumoto et al. 395/601
4,558,413 12/1985 Schmidt et al. 395/619
4,622,633 11/1986 &con et al. 395/651
4,631,664 12/1986 Bachman 395/611
4,734,854 311988 Afshar 395/700
4,813,013 3/1989 Dunn 395/333
4,860,204 8/1989 Gendron et al. 395/702
4,974,160 1111990 Bone et al. 395/161
5,123,103 6/1992 Ohtaki et al. 395/600

OTHER PUBLICATIONS

Maarek et al., “An Information Retrieval Approach for
Automatically Constructing Software Libraries”, IEEF!
Transactions on Software Engineering, vol. 17 No. 8 (Aug.
1991) pp. 800-813.
Di Fehce et al., “An Interaction Environment Supporting the
Retrievability of Reusable Software Components”, IEEE
Computer Society Press, Tenth Annual International Phoe-
nix Conference on Computers and Communications (Mar.
1991), p ~ . 287-293.

Wood et al., “An Information Retrieval System for Software
Components”, Software Engineering Journal, vol. 3 No. 5
(S q . 1988) pp. 198-207.

Jones et al., “Building and Managing Software Libraries”.
lEEE Computer Society Press, Proceedings COMF’SA 88:
The lkelfth International Computer Software and Applica-
tions Conference (Oct. 1988), pp. 228-236.

Latour et al., “Seer: A Graphical Retrieval System for
Reusable Ada Software Modules”, Em Computer Society
Press, Third International JEEE Conference on Ada Appli-
cations and Environments (May 1988) pp. 105-113.

Primary ExaminerMark K. ZimTnerman
Assistant Examiner-Joseph R. Burwell
Attorney, Agent, or Firm-John H. Kusmiss; Thomas H.
Jones

[571 ABSTRACT

Intelligent browsing through a collection of reusable soft-
ware components is facilitated with a computer having a
video monitor and a user input interface such as a keyboard
or a mouse for transmitting user selections, by presenting a
picture of encyclopedia volumes with respective visible
labels referring to types of software, in accordance with a
metaphor in which each volume includes a page having a list
of general topics under the software type of the volume and
pages having lists of software components for each one of
the generic topics, altering the picture to open one of the
volumes in response to an initial user selection specifying
the one volume to display on the monitor a picture of the
page thereof having the list of general topics and altering the
picture to display the page thereof having a list of software
components under one of the general topics in response to a
next user selection specifying the one general topic, and then
presenting a picture of a set of different informative plates
depicting different types of information about one of the
software components in response to a further user selection
specifying the one component.

26 Claims, 14 Drawing Sheets

IUFlLE EDm GO TOOLS OBJECTS TEXT WARP

“. 400 1 U”’”

https://ntrs.nasa.gov/search.jsp?R=19970023853 2020-06-18T00:17:48+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10472365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

U.S. Patent May 20,1997 Sheet 1 of 14 5,632,022

I
I
-I- o
F

I

\\
\

-

ro 0 b
0
0

US. Patent May 20,1997 Sheet 2 of 14

200 7 2 1 4 ~

Dl STRl BUTED SOFMlARE
COLLECT1 ON S

5,632,022

E%- /

OB J ECT- OR1 ETATED DATABASE
REFLECTS THE STRUCTURE AND
CONTENTS OF THE COLLECTIONS 222

ER

SEARCH - BY - LOGICAL-QUERY INTERFACE

FIG.
LINKS

3 BETWEEN HYPER- \
k

STACK-FORM NAVIGATOR
(HtSTO RY LIST)

230 7

DAG- FORM
N AVI GAT0 R

(OVERVIEW DIAGRAM)

U.S. Patent May 20,1997 Sheet 3 of 14 5,632,022

SOFlWARE
REPOSITORIES

/- 7

' 0 2 q USER

300 \

ESC APPLICATION DRIVER AND SUBSYSTEM
GRAPHICAL USER INTERFACES (GUl's)

3;y; PUBLISHER

HY P ERMEDIA
SP ECI Fl CAT1 ON

DESCRIPTION
DATABASE

-b RETRIVER

31 2

/c 318
LOCAL

ENVl RON MENT
LOCAL CACHE,

ON-LINE
SOFTWARE

FIG. 3

US. Patent

0
* P

May 20,1997 Sheet 4 of 14

t
0
t

LD
0 *

I I

5,632,022

\
I

US. Patent

c\l -t'
0 0
Ln v)

May 20,1997 Sheet 5 of 14 5,632,022

I
/ I

\
I
I I

I

IT-

>\

U
F
L

c
0

r
0
v)

r E
0 2

\ * v)
/ w z

0

I

-

t

Q:

4

I I I
I

U.S. ?atent May 20, 1997 Sheet 6 of 14 5,632,022

Z

i a

U S . Patent May 20,1997 Sheet 7 of 14 5,632,022

702a 7 0 2 d 7 0 2 d

FIG. 7

702cJ 702d--/ 702eJ

FIG. 8

902

904

702a 7 0 2 d 7 0 2 d

FIG. 9

U.S. Patent May 20, 1997 Sheet 8 of 14 5,632,022

US. Patent May 20,1997 Sheet 9 of 14

1 O M j

AUTHORIZED
UPDATES

I

R ETR I N A L S
1

1 0 0 4 3

5,632,022

USERS'
SUBMISSIONS

I
f-'120

1100
101 1

INTERACTION
MONITOR DBMS QUERIES

A 1014 ACCESS
RECORDS

RETRI EVAtS 1004

UPDATES

QUERIES

I
SUBMISSIONS

1
1140 -

BACKUP
PROCESS

FIG. 11

US. Patent May 20,1997 Sheet 10 of 14 5,632,022

PROD U CTlVlTY
REPORTS

GRAPHICAL
BROWSER

RETRI NALS

1200 -
1002 4-

QUERIES

)-J

1004 -
SUBMISSIONS

I

1230 -$--9 I LOCAL I-(, ENCYCLOPEDIA DATA (
BASE ENCYCLOPEDIA

DATA

ENCYCLOP EDlA
UPDATES ENCYCLOPEDIA

ACCESS
SJG NALS

MAINTAINER
ENCYCLOPEDIA PROCESS

FIG. 12

U.S. Patent May 20,1997

1 0 0 4 4
USERS'

SUBMISSIONS

USERS'
SUBMISSIONS

1300

Sheet 11 of 14 5,632,022

1 3 1 0 ' 4

ENCYCLOPEDIA
UPDATES

I GLOBAL

1310 - - -

EN CYCLO PEDlA
UPDATES

ENCYCLOP EDlA
UPDATE
ORDERS

1302

PROCESS ED DOCUMfNTATlON
SUBMISSIONS ORDERS COMPLETED

DOCU M ENTATIO N

1306

ADMINISTRATOR DOCUMENTOR

DOCUMENTATION

AUTHORIZED
UPDATES

k 1 0 1 4

FIG. 13

US. Patent May 20, 1997 Sheet 12 of 14 5,632,022

,,,,--I
ACCESS

RECORDS

1400 / TOOL BASE f-
ACCESS

-I 1016

PRODUCTIVITY
REPORTS

14

1406

PRODUCTIVITY

ANALYSIS
PROCESSES
U

FIG.

US. Patent

\

0
0
Lo

May 20,1997 Sheet 13 of 14 5,632,022

h
P

PI

..
8

iz
I

II

J L

ai
.A b b

0

'
U 0%

c
Q) L
L

n N
N

i

U.S. Patent May 20,1997 Sheet 14 of 14 5,632,022

5,632,022
1

ENCYCLOPEDIA OF SOFTWARE
coMPomNTs

ORIGIN OF THE INVENTION
The invention described herein was made in the perfor-

mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in whichthe
Contractor has elected not to retain title.

BACKGROUND OF THE INVENTION
1. Technical Field
The invention is related to software development and

engineering tools which increase software design produc-
tivity.

2. Background Art
A high fraction of the time spent developing new software

systems is spent performing mundane functions that are well
known in the art. By comparison, when a mechanic goes to
make a new device, he does not reinvent mundane pieces,
such as the threaded screw. The same cannot be said of
software engineers. Software engineers have long identified
the need for convenient, easy-to-learn, intuitive software
reuse systems to support rapid prototyping.

Software development is a tedious, expensive, time-
consuming, and error-prone process. Approaches to improv-
ing the process include object-oriented programming,
computer-aided software (CASE), software reuse, formal
mathematical verification, structured walkthroughs, formal
testing regimens, and so on.

Most hardware artifacts are constructed from standard
parts fitted together with standard fasteners. Custom parts
and fasteners are used only when their much higher cost can
be justified. Using standard parts not only makes replace-
ment easier but also amortizes the cost of design,
engineering, and tooling across large production runs, often
spanning decades of time.

The analogy in software to the use of standard parts in
hardware is the reuse of previously developed software
code, modules, libraries, designs, architectures,
documentation, test data, test routines, test strategies, and so
on. AU of these information artifacts, and more, are software
in the sense that they are directly related to the production
and use of computer instructions. We use the term “soft-
ware” in this broad sense in this paper.

One reason software is expensive is that, for the most part,
we do not amortize the cost or development by reusing
components in new applications. Software is still, by and
large, a craft process characterized by the custom design and
fabrication or components. The lack of software reuse is
especially ironic since economies of scale are easier to
achieve in software than in hardware. The reason is that
software is mere information and, therefore, massless. Rep
licating and distributing it is relatively inexpensive (a major
cost driver in hardware industries is the mass of the objects
being produced). One would think, on the face of it, that an
industry that could achieve economies of scale relatively
easily would eagerly do. Yet, we have not seen the “Software
Industrial Revolution”.

Many reasons have been advanced for the failure of the
software industry to adopt a standard component parts
technology. Perhaps the most plausible reason is that it often
takes more effort merely to research existing software com-
ponents than to develop them anew. In other words, many
software developers-potential consumers of reusable
software-simply find it more cost-effective to invent new
software than to look for old software.

5

10

15

20

25

30

35

40

45

50

55

2
The only discipline in which software component reuse is

traditional is computational mathematics. This is at least
partly due to the fact that it requires a great deal of
specialized knowledge and experience to write correct and
efficient mathematical software. It is, in fact, for non-
specialists, not easier to reinvent than to reuse. We find it
interesting that the majority of mathematical software-the
most reused software-is written in Fortran. Of all major
programming languages, Fortran is perhaps the least
hospitable, prima facie, to software reuse. It has virtually
none of the packaging and information-hiding features that
conventional wisdom deems helpful, if not necessary, for
reusability. We take this fact as supporting evidence in favor
of our consumer-side approach to software reuse, as opposed
to a producer-side approach that posits basic changes in the
way software is written as a precondition for reuse. People
will reuse software, even if that software is not written for
maximum reusability, if it is easier for them to reuse than to
reinvent.

One prior attempt at making software retrievable is dis-
closed in US. Pat. No. 4,860,204 to Gendron et al. In this
patent, software components called softrons are created in a
single language and stored in a file cabinet metaphor, rather
than using existing software components of any language. A
particular softron is accessed in response to a user’s selec-
tion of relevant software attributes. However, there is no
disclosure of any means for permitting the user to first view
the attributes and other characteristics of the accessed soft-
ron before incorporating it i n a program under construction,
absent external means of some sort. Gendron et al. therefore
have nothing to do with attempting to reuse existing
software, but rest their concept on creating a complete set of
software components in a single language.

OBJECT OF THE INVENTION

It is the principal object of the invention to make it easier
to reuse than to reinvent software. We can achieve maximum
impact by focusing on consumer issues: by trying to make
it easier to reuse software in general. We feel that the process
that a potential consumer of reusable software components
must go through consists of the following steps:

locating,
understanding,
retrieving,
validating, and
adapting

existing software. We call this process LURVA, an acronym
constructed from the first letters or each or the five steps.
This is in concert with other, published task analyses of
software reuse.

We focus on facilitating LURVA in a very general way to
make it easier to reuse software in general. By software in
general, we mean software in any programming language,
for any application domain, for any platforms, etc.

Arelated object of the invention is to directly aid locating,
understanding, and retrieving, the first three steps of
LURVA. In the invention, an encyclopedia of software
components (ESC), locating is facilitated through a very

60 general classification scheme, based on semantic networks,
and through tying this scheme closely to a hypermedia
browsing-and-searcxng front end. Understanding is facili-
tated by describing software with electronically cross-linked
text, graphics, animation, audio, video, and typeset

65 mathematics, i.e., hypermedia. Retrieving is facilitated by
encapsulating knowledge about network access along with
the descriptions of software and by automatically computing

5,632,022
3 4

closed sets of software items that enable a chosen time to be ware component is in its own “tray” containing several
used as an independent unit or a component. plates corresponding to different representations of the soft-

The invention was developed with the following assump ware component (including graphical and animated repre-
tions: sentations in appropriate cases), the attributes of the soft-

M~~~ programmers and managers feel that the effort of 5 ware component, utilities associated with the software
reusing is than the effort of writing component, etc. The invention further includes a search
software from scratch. system employing the tray metaphor which searches on

selected attributes stored in the attributes plate of each tray.
software because this software is inherently a c d t to ESC enables the convenient and intuitive location and
write and because there is a long radiation of reusing 10 retrieval of reusable software tools and parts through a

graphical hypertext user interface. Hypermedia is a term for this kind of software.
information systems that can depict a h t i o n , audio, text,
and graphics. We do not need to wait for fundamental shifts in the way

software is produced before trying to tip the balance in

now by simply encapsulating. automating,

The balance is tipped in favor of for

favor of reuse for general software. w e can promote The software developer first locates the general category
l5 of books in which he is interested, then he scans the book,

as if it were a standard reference work, to determine which
pre-existing software components will solve his immediate The LURVA process accounts for most of the cost of development needs.

Using this scheme, existing software packages can simply
Maximum, short-tem leverage to facilitating LuRvA can 2o be referenced and copied into the developer’s program. With

S C , the developer is free to concentrate on those portions

requiring novel solutions. In other words, his development
procedure will now be more like that of the mechanic who

existing pieceS to new
pieces.

This approach should permit truly rapid prototyping,
greatly reduce the cost of software development, increase

by 3o the speed of development, and ensure greater robustness in
the resulting prototype.

ESC permits an endless series of software reference books
to be just as a fibrary can hold a nearly limitless
collection of books. In fact, software developers are allowed

35 to create reference books themselves and place them in the
S C library.

One embodiment of ESC supports rapid prototyping in an

In its current version. there are various

distributing knowledge about how to reuse.

software reuse on the consumer side.

be applied by the locating3 understanding’

components manually3 they

There exist vast numbers of accessible and reusable 25

and retrieving (LuR-) if programmers of his program that are unique to his particular effort and
and adapt

will find the total effort less than that of reinventing.

software artifacts now, mostly on distributed network
nodes.

Rog-ers are especially eager to reuse their own
software and to make it and
other programmers (the urge to publish).

If we Can make it easy for ProfF-aS to Submit their
own software for consideration for inclusion in the
ESc, we create an automatic mechanism for the
ESC by capitalizing on the urge to publish.

Finally, programmers will want to reuse the mechanisms
Of the itself to make front ends for
special-purpose, local collections of software in the
broadest sense of the word (designs. architectures, test

40 nents residing in the ESC. For design purposes these can be data, etc.)
The foreseeable effects of the invention are the following: divided into two groups. Group o ~ e components are

practice Of P r o g r d g is subroutines, functions, procedures and objects with a d-
changed so that is always attempted mum of entanglements and external dependencies. Group
before reinvention. The habit Of pulling Off one components live at the language cell level of use. They
networks consultin&’ an on-line* comprehensive, 45 are small, well abstracted modules of functionality easily
international ESC becomes commonPlace. incorporated into lager programs. The group two compo-

Of software technician is nents tend to be larger, stand-alone applications that live at
created. A software technician is One fabricates the executive or shell level of use. Examples of these are
software by assembling specified, standard parts with- Screen editors and system utilities.

a new device by

prototyping environment.

most impact: The

the job

Out profound Of the working Of these Parts* 50 Future embodiments o f m C will include advanced media
are freed routine to devote technology. including voice and video. and will link ESC to

a database management system (DBMS). The new media
will allow developers to experiment with non-textual com-
munication of information about software, such as computer

with a DBMS will d h w very large tool bases to be handled
and willfacilitatetechnologytransfer.

Yet another embodiment of ESC includes a graphical
hypertext feature called Hypercode. Hypercode wiU allow

6o a programmer not only to retrieve software, but to modify it,
execute it, and aoss-fink it with other software using
interactive graphics and hypertext.

BRIEF DESCRETION OF THE DRAWINGS
HG. l depicts a portion of a computer generated video

display representing one aspect of the encyclopedia meta-
phor of the invention.

themselves to design.
moderate -act: The ESc Proves to be a valuable

Programmer’s tool. At the very least, it helps to teach
programmers to document, classify, and reuse their 55 animation and recorded verbal descriptions. Integrating
own software. Requirements for improvements on the
structure and contents of the Est result from the
research program.

SUMMARY OF THE INVENTION
The invention is a Computer System embodying an enCY-

clopedia of software components (ESC) which stores a large
compendium of reusable software components with a hyper-
media browser system consisting of an encyclopedia meta-
phor at the highest level corresponding to the compendium 65
and a tray metaphor at the lowest level corresponding to
each software component. In the tray metaphor, each soft-

5,632,022
5 6

FIG. 2 is a graphical flow diagram representing the

FIG. 3 is a simplified schematic block diagram of a

In the video display 214, each software group is a block 216
which flows from more generic groups and branches into
more Specific groups from left to right in FIG. 2 dong
connecting lines 218. The invention automatically generates

operation of the invention.

computer system embodying the invention,
FIG. 4 depicts a computer generated video display r ep (220) from the represented the Object Ori-

resenting another aspect ofthe encyclopedia metaphor of the ented database 214 hypermedia search and
browse tools (222) consisting of a video display 224 of an
encyclopedia metaphor comprising a bookshelf browser tool

invention.
FIG* a generated video Of a and a video display 226 of a logical search-by-inqujr

Of the invention. 10 interface comprising a search tool. The video display 226 in One aspect Of the
FIG. 6 depicts a computer generated video display of a consists of topical lists of software components having

hXOnOllliC graph in one aspect Of the navigation aid feature attributes corresponding to those specified by the user.
of the invention. Interactive lids 228 between these tools provides naviga-

FIG. 7 depicts the lefhnost part of a computa generated tion tools consisting of an overview navigator video display
video display of a user’s search path in another aspect of the 15 230 and a history list navigator video display 232. Each of
navigation aid feature of the invention. the navigation tool video displays 230,232 illustrates to the

user the history Of his activity in S a c h i 2 Or browsing
video display of a user’s search path of FIG. 7. among various software topics.

FIG. 8 depicts the rightmost part of a computer generated

FIG. 9 depicts the computer generated display of FIG. 7 In FIG* 3, a system the invention is
with a pop-up menu listing search path branching options. 2o summarized as an driver SO0

the user 302 the video displays illustrated in FIG. 2. The
having graphical user interfaces (GUI’s) which provide to

application driver 300 interfaces with a bookshelf browser
304, a searcher 306 and a publisher 308. The publisher 308

25 is the source of a software components description database
310 which provides the search-by-logical query interface
display (226 in FIG. 2) of the searcher 306. A hypermedia
generator 312 generates the display Of the metaphor Of the
encyclopedia bookshelf (224 in HG. 2) comprising the

used by the browser 304. A retriever 316 responds to
requests from both the browser 304 and the searcher 306 to

302 from either a local repository 318 or from remote
repositories 20.

One of the ways the ESC supporh an encyclopedia
metaphor is by displaying a shelf of books about software in
a widow on the screen, as shown in FIG. 1.
We choose the metaphor of an encyclopedia for three reason.

40 First, the encyclopedia metaphor is uniquely suited to real-
ization in hypermedia. Second, the metaphor will be imme-

Jntroductory Overview: diately familiar to most software developers, who are literate
The ESC uses hypermedia front ends for subsystems that people who have used traditional encyclopedias often.

classify, catalog, retrieve, and display information about Third, the encyclopedia is an appropriate metaphor on
large, structured collections of reusable software. The ESC 45 epistemological grounds. Encyclopedias arose from efforts
concentrates information about software; the software itself to classify and encapsulate all human knowledge. They use
is on local and distributed repositories, e.g., networks, pictures, text and a rich web of cross references to cope with
archive servers and bulletin boards. Among the features of expansive, complex, ill-bounded, ambiguous, and incom-
the ESC are a metaphor of an encyclopedia at the highest plete knowledge. Except for special cases (such as compu-
level (shown in FIG. 1) and a metaphor of a tray of 50 tational mathematics), high-level descriptions or software
informative plates at the lowest (software component) level are inexact. In many cases, the only exact description of a
in a hypermedia context. In addition, an automated sub- piece of software is the software itself. Yet, high-level
system can add not only new entries but new software descriptions are precisely what are needed by reusers who
classification structures. must understand and evaluate a component quickly before

The architecture of the ESC is illustrated informally in 55 “buying,” without learning the details. Being inexact, high-
FIG. 2 and schematically in FIG. 3. The informal illustration level descriptions can be expansive, complex, ill-bounded,
of FIG. 2 shows the subsystems of the ESC iconically, ambiguous, and incomplete, i.e., the kind of knowledge for
emphasizing the graphical appearance of each element on which encyclopedias were designed. Furthermore, classify-
the user’s video monitor screen. The schematic of FIG. 3 is ing software is almost as djl3icult as classifying all human
a more formal rendition of the subsystems of the ESC and 60 knowledge. The reason is that software can be written about
the data and control flows among the subsystems. any topic. It is a kind of universal theory language-any

In FIG. 2, the invention provides a video display 200 of sufficiently cogent idea can be “brought to life” as a com-
a topological graph of distributed software collections, each puter program. Thus, the space of knowledge of the appli-
group of software being a point 210 whose relations with cation domains of software is almost the same as the space
other groups are indicated by connecting lines 212. The 65 of all human knowledge. We conclude that the encyclopedia
display can be translated to another video display 214 which is an appropriate metaphor for representing and containing
illustrates the same relations in an object oriented database. knowledge about software.

lo is a ’lock diagram Of a
ing the invention corresponding to FIG. 3.

system of FIG. 10.

system of FIG. 10.

of the system of FIG. 10.

the system of FIG. 10.

representing the tray metaphor of the invention and contain-
ing several information plates representing Werent aspects 35 off-he or
of the software component of the tray.

FIG. l6 depicts the full computer generated video display
in which the User has opened to one page of a selected
encyclopedia volume in the encyclopedia metaphor.

FIG. 11 is a block diagram Of the central tool base Of the

FIG. 12 is a block diagram of the browser system in the

FIG. 13 is a block diagram of the maintenance subsystem

FIG. 14 is a block diagram of the analysis subsystem of 30 highest leve1 Of the hypermedia specification database 314

FIG* l5 depicts a generated retrieve software components finally select& by the user

Dmm

5,632,022
7 8

A metaphor for a simpler mechanism of an encyclopedia open-book window. Index tabs 408 appear on the edges of
might be a catalog. Such a metaphor could adequate for pages 410 passed to help the user keep track of current
certain, restricted kinds of software. Consider again the location. The button lists, index tabs, and open-book dis-
example of computational mathematics. The language of plays are linked together in a hierarchy that mirrors the ESC
mathematics is sufficiently precise and universal that it is 5 classification hierarchy. This hierarchy can be tailored to
possible to give unambiguous, highlevel specifications of some degree at the time the ESC is built with the Publisher
mathematical software components. Furthermore, this field 308 (the process of building the ESC is explained in greater
is reasonably well understood, and there is reasonable con- detail below)
sensus on the overall framework for classifying works in the Eventually, the user reaches the final, lowest level of the
field. Specifications and taxonomies are currently published hierarchy. arriving at one or afew components. At that point,
in massive paper catalogs. Users can retrieve components a new kind of metaphor, a tray of informative plates includ-
from repositories with high confidence that the components ing the data plate 500 illustrated in FIG. 5, is displayed on
will meet their requirements, which are expressed in the the user’s video monitor. The data plate 500 displays infor-
same language as the specifications. However, other areas of mation about the component, references to related
Software application are not as S t a d d k d nor as easily 15 components, and buttons for automated retrieval of the
described as mathematics. Generally, it is necessary both to component, including the transitive closure of all software
describe software with long narratives, diagrams. and even on which the component depends. from distributed reposi-
video; and to describe the relations between components tories. Any network connections, dial-ups. mounting of
explicitly and separately for each pair of components. Dif- remote file systems, etc., necessary for retrieval are done
ferent kinds of structures are needed to present Merent 2o automatically by the ESC.
kinds of high-level information. Because of its rigid, uni- For example. in FIG. 5, the data plate 500 explains the
form structure, the catalog metaphor bre& down when quicksort algorithm software component using a title and
stretched to represent fuzzy and variegated knowledge. descriptor field 502. a code field 504 and animation fields

The realization of the ESC consists of computer programs 506,508 illustrating the operation of the software compo-
(subsystems) to simulate the appearance and operation, as it 25 nent. The user can “click” on any one of several buttons,
were, of an encyclopedia. The ESC user has access to three including a Get It button 510 for retrieving the software
subsystems through mutually consistent graphical user inter- component itself, an Animate button 512 for running an
faces (GUS) of the applications driver 300 of FIG. 3: animated display (for example a cartoon that may be avail-

the bookshelf browser 304 supports unstructured. inter- able for this software component). an Explain It button 514
active browsing. 30 for displaying a detailed text explanation of the software

the searcher 306 supports goal-directed, logical query- component and a Take Me Elsewhere button 516 for termi-
style searches. nating the session with the present software component.

the publisher 308 supports automated component inser- Graphical displays 518,520 (Which mY be animated upon
tion and rebuilding of the browser and searcher. request) graphically depict the concept of the algorithm

The bookshelf window of the video display 224 of FIG. 35 Performed bY the Software component.
2 is the primary interface to the ESC. It contains a picture or we make a conscio~s effOrL to limit the depth and the
a shelf or books strongly reminiscent of encyclopedias (FIG. branching factor Of the ESc, attending to a ‘‘magic number
1). This window waits visibly in the background of the seven, plus or minus two” that characterizes the limitations
programming environment, ready to be brought to the fore- of human short-term memory- T O aid the user further, the
ground when the need to find a software component arises. 40 Bookshelfis integrated with spatial and temporal navigators:
When dormant, the bookshelf window is analogous to a an overview diagram that shows the contents of the entire
bookcase containing dormant reference materials. When encyclopedia in the form of a graph (FIG. 6), and
active, the bookshelf window and its subwindows are analo- a history list that keeps track of the user’s path through the
gous to reference books open on the programmers desk. The graph in the form of a stack with optional branching
bookshelf is designed to be inviting and obvious; one or our 45 points at each level (FIGS. 7, 8 and 9).
goals is that it must be possible to learn how to use the ESC The graph 600 of FIG. 6 corresponds to arelevant portion
simply by using it. of the object oriented data base 214 of FIG. 2. In FIG. 6. the

The titles 100 on the book spines 102 (FIG. 1) denote graph illustrates a taxonomy of mathematical properties, in
application domains, e.g., Artificial Intelligence, Computer which a generic block 602 named “property” branches into
Graphics. Data Structures, and so on. These titles correspond 50 topical blocks 604 which in turn branch out into sub-topical
to an implicit question asked or the user, “What is the blocks 606. The graph 600 serves as a guide to the user in
application domain of the software you are looking for?” planning his search or browse activity.
When the user clicks on the spine 102 of a book 104, the The history list 700 of FIG. 7 keeps the user from getting
book 104 is opened. Accompanied by the sound of a book “lost” by showing him where his search or browse activity
being removed from a shelf 106, a picture of a book 400 55 has thus far taken him. The history list 700 is somewhat
open to a hierarchical table of contents 402 is presented in redundant with the index tabs 408 of FIG. 4, but the evident
a new window or video display illustrated in FIG. 4. Each metaphorical value of the latter argue for keeping them.
item 404 in the table of contents 402 has a link or “button” Also, we feel that having a large variety of albeit redundant
to a deeper level in the ESC classification scheme which the navigation aids, especially for large hypermedia documents,
user can explore by “clicking” onto the item 404 with a 60 is helpful rather than confusing. Such tools are held to be
cursor 406 or a mouse (not shown). The table of contents generally helpful in hypermedia systems and are well-
402 usually corresponds to a second implicit question asked known in the art. Each block 702 in the history list is a
of the user: “What is the functionality of the software you window depicting the software topic or component that the
are looking for?” user has looked at in chronological order from left to right.

When browsing, the user supplies successively sharper 65 In the example of FIGS. 7 and 8, the user has started at the
characterizations of the software of interest by choosing highest browse level, so that the first block 70% is the
options from button lists and traversing deeper levels in the encyclopedia bookshelf display of FIG. 1. The user next

5,632,022
9

selected the sorting topic from the table of contents of one
of the volumes so that the next block 702b illustrates an open
volume at the appropriate page. The user next selected the
attribute “In Memory” and from the resulting information in
the “In Memory” block 702c selected the Merge Sort
algorithm of block 702d. FIG. 8 shows that the last selection
of the user was a fortran listing of the Merge Sort software
component (block 702e). FIG. 9 illustrates the use of a
pop-up window 900 which the user can request to make a
selection at any block. In the example of FIG. 9, the user has
requested a listing of the various sort routines performed in
memory at the “In Memory” block 702c, so that the pop-up
menu 900 lists all of the available software components
which perform sort routines in memory. The cursor 902 is on
the Merge Sort label 904 of the pop-up window 900, so that
the user can “clicli‘ on the label 904.

The Searcher allows a user to specify desired character-
istics in any order, unlike the Browser, which encourages a
time order of access that mirrors the classification hierarchy.
The Searcher bypasses the encyclopedia metaphor and
instead first presents classification criteria in scrolling lists
from which selections are made. No lists are presented that
are not known to be germane at any point. For example, a
user who has not sufficiently sharpened a query to distin-
guish between mathematical software and computer graph-
ics software would neither be given a list of arithmetic
precisions to choose from nor a list of color conventions to
choose from. The user can specify search criteria in Boolean
combinations of pattern-matching expressions. The Searcher
is accessible from buttons on the overview diagram and
from a menu. Whenever the user “clicks” on a particular
software component on a list, the “tray” of that component
is then displayed so that the user can view the various
informative plates therein, such as the data plate illustrating
the attributes of that software component.

Both the Bookshelf and the Searcher depend on a flexible
and robust classification scheme. When developing the ESC,
we discovered the simple hierarchies (e.g., the Dewey
decimal system) and faceted classification schemes that
classify via a fixed number of characteristic are inadequate.
To give one counterexample, consider software for solving
equations. A straightforward faceting scheme would have us
classify all such software under the intersection of the
functionality=solve facet and the operand=equations facet.
At this point in the Cartesian facet space, however, we may
have several thousand components, far too many for a user
to peruse and choose from at one stroke without further
refinement. The reason is that there are many different
descriptors for equations, e.g., algebraic, Diophantine,
linear, nonlinear, differential, separable, etc., and many
different kinds of solution algorithms. It is not right to
represent all equations with the Cartesian product of all
equations descriptors because many compound descriptors
denoting equation types that do not exist will result.
Furthermore, it is not right simply to add every kind of
equation to the operand facet and every kind of solutions
strategy to the functionality facet because not every solution
strategy is applicable to every kind of equation. A great
number of empty points in facet space would be created. The
faceting scheme itself breaks down under this counterex-
ample. Equations and solution strategies naturally fit into a
hierarchy of types that simply does not map to a Cartesian
space. We find that faceting, while a powerful and even
necessary classification technique, does not s d c e alone to
represent many kinds of taxonomies.

In an alternative embodiment of the invention, the clas-
sification scheme of the Searcher is based on semantic

10
networks, which are standard AI structures for representing
knowledge. Such a taxonomic scheme allows the builders of
a collection to specify arbitrary characteristics of compo-
nents of the collection and arbitrary relations among the

5 characteristics. This scheme is rich enough to represent
virtually any kind of software artifact, from design docu-
ments to program schemata to data structures to individual
procedures.

The Publisher is the subsystem for adding new classifi-
cation structures and new components to the ESC. Its user
interface has mandatory and optional on-line forms to fill in
with attributes of a component. The mandatory attributes
constitute catalog and classification information. They
include items like the name of the component, its function,
its programming language, its application domains, the

l5 names of directories and files containing the component
source and documentation, the version number, the date of
posting, and so one. The values of these attributes are
organized in multiple inheritance hierarchies that represent
the taxonomic hierarchy. The optional attributes are user-

2o definable, though some are named by reserved keywords,
and constikite search and usage information. The optional
forms allow the user to add arbitrary, new, hierarchically
structured attributes to the description of any component.
The Publisher also rebuilds the entire hypermedia system,

25 through a lower-level subsystem, called the Hypermedia
Generator, to ensure internal consistency among the
Browser and Searcher and external consistency with the
database.

It is possible to use the Publisher to create arbitrary
30 databases and to generate a Browser and Searcher with the

Hypermedia Generator. Thus, a user can create special-
purpose, custom collections of software with front ends just
like that of the ESC. these custom collections are called
“Handbooks of Software Components” to distinguish them

35 from the master “Encyclopedia of Software Components.” It
is useful to reserve that specific name for a single, refereed
collection components. Users are free to create as many
Handbooks as desired, but contributions to the ESC are
moderated by us for the time being.

In another alternative embodiment of the invention, the
Searcher uses deduction and case-based reasoning to help
the user find desired software. In this alternative
embodiment, the Browser can aid a lost user by using
machine learning to detect well-worn browsing paths that

45 others have traversed and to suggest short cuts. The instru-
mentaiion for such learning features in the Browser would
also pay dividends in the empirical assessment program by
aiding data collection.

In yet another alternative embodiment of the invention,
50 the ESC suggests some validation grades, such as those in

10

40

Table 1, to the software contributor.
A+ F o d y validated.
A Exhaustively tested over the input domain.
A- Tested on random inputs (Monte Carlo).
B+ Packaged with test data and working test programs
B Extensively reused by programmers other than the

author of the component (say, in n applications by k
other programmers).

C Extensively reused by the author of the component (in
n applications for m years).

D Used by the author in one application.
F Untested.

55

60

Table 1
One clear direction for development is in supporting

formal testing regimens directly in the ESC. Requiring test

65

5,632,022
11 12

routines, input sets, and results to be packaged with com- system 1008. The interaction monitor makes an access
ponents would be a start. Allowing the user to execute test record of all user activity and forwards the access records
programs interactively on a candidate component before 1011 to the analysis subsystem 1012.
committing to retrieval. with support for perusing and visu- Referring to FIG. 12, the browser subsystem 1006 con-
alizing the results, would be another step. 5 sists of a graphical browser 1200, local tool copies 1220,

As regards adaptation. the ESC contains software in m y local encyclopedia data base 1230 and a local maintainer
programming languages and for many hardware and soft- Process 1240. The graphical browser 1200 includes the
ware platforms. Nothing in the taxonomic scheme of the interface 1200a of the ESC with the user 1250. As the
BC restricts its contents in any way. However, the pro- browser 1006 is used, it generates queries 1002 and sub-
*dg language and platform attributes are identified in 1o missions 1004. which are sent to the central tool base 1000.
the description of every component. ~ d a ~ ~ t i ~ ~ , that is, the Retrievals 1010 from the central tool base 1000 are received
changing of interfaces between a component, its calling by the local browser subsystem 1006. Productivity measures

browser subsystem 1006 (by the user 1250 or others), and the user. they are sent to the software engineering analysis subsystem

e.g., software emulations of operating systems, portable presentations.
implementations Of P O S K language Of graphics The graphical browser 1200 is a reading system for color.
s k m h d ~ * Portable Programming language P r ~ e s s o r s ~ and multiwindow, large window graphical hypertext. The
so on. Directions and tools for calling C routines from ADA, graphical browser 1200 interprets the user’s mouse clicks
Fortran routines from Lisp, etc., should be packaged with 20 and keyboard hits, generates queries for the central tool
components. base, passes user submissions to the central tool base (which

The invention overcomes the need for revolutionary new routes them to the ESC maintenance subsystem after record-
programming languages, paradigm, tools, and methodolw ing the transaction), routes retrievals of software to the
gies to take hold before attacking the problem of software repository of local tool copies 1220, gets encyclopedia data
reuse from the consumer side. The invention makes it easier 25 (cards) from the local encyclopedia data base 1230, and
not only for consumers of reusable software to find what sends signals to the local maintainer process 1240. These
they want but for the moderators of collections of software last signals inform the local maintainer process 1240 when
to maintain and update collections as well as the hypermedia and how to update the local encyclopedia data base 1230.
front ends that make access easy. The local maintainer process 1240 receives commands (or
Working Example 30 signals) from the graphical browser 1200 that informs it

The system of FIG. 3 will now be described in detail with when an how to update the local encyclopedia data base
reference to the schematic system diagram of FIG. 10. The 1230. These updates take the form of new trays of informa-
Central Tool Base 1000 is the repository of the reusable tive plates or “cards” to be inserted into the encyclopedia
software that the Encyclopedia metaphor refers to. It data base 1230, either adding to it or replacing old cards. The
receives user queries 1002 about software attributes and 35 maintainer process 1240 receives new cards from the ESC
submissions 1004 of new software from the local browser maintenance subsystem 1008.
subsystem 1006, where the user of the entire ESC system The user 1250 is a programmer (or software engineer)
resides. It receives authorized updates from the ESC main- engaged in some software development task. The goal of the
tenance subsystem 1008. It sends retrievals 1010 of software ESC task is to measure the impact of ESC on programmer
components to the local browser subsystem 1006. It sends 40 productivity. The user 1250 interacts with the graphical
the users’submissions 1004 through to the ESC maintenance browser 1200, giving it mouse clicks and keyboard events.
subsystem 1008. Access records 1011 are automatically The user 1250 receives graphical displays from the graphical
collected by the central tool base 1000 and sent to the browser 1200. The user 1250 files task status reports to his
software engineering analysis subsystem 1012, where evalu- or her management, which interprets them and assesses
ation of the ESC takes place. The central tool base receives 45 productivity.
authorized software component updates 1014 from the ESC Suppose a user has a tool, utility, or other reusable
maintenance subsystem 1008. Productivity measures 1016 software component that he feels ought to be represented in
are transmitted by the browser system 1006 to the analysis the encyclopedia. The user will have available a “submit”
subsystem 1012. operation, allowing him to submit the software and support-

Referring to FIG. 11, the central tool base 1000 consists 50 ing material to the encyclopedia. The submission first flows
of a data base management system (DBMS) 1100, and from the local browser subsystem 1006 to the central tool
interaction monitor 1120, a software tool collection 1130, a base 1000, where it is automatically logged as a type of
backup process 1140 and backup tapes 1150 or an equivalent transaction or access. The log entry is sent (automatically) to
mass storage device. The DBMS 1100 implements the the software enginering analysis subsystem 1012. Refer-
central tool base 1000. It controls access to and modification 55 ring to FIG. 13, The user’s submission is sent to a submis-
of the Software Tool Collection 1130 (which includes sions data base 1300 or “holding tank” in the maintenance
metadata), which is the file containing the actual data. The subsystem 1008. A submissions evaluation team, including
DBMS 1100 communicates with that file via updates and a tool analyst or computer scientist 1302, a hypertext author
retrievals. Retrievals from the tool collection 1130 are sent 1304, a documentor 1306 and a database administrator 1308
to the local browser subsystem 1006. The DBMS 1100 60 takes it from there, evaluates it, tests it, documents it, and
receives queries 1002 from the interaction monitor 1120. It creates graphical hypertext for it. When a user’s submission
receives authorized updates 1014 fromthe ESC maintenance has passed the ESC maintenance subsystem evaluation
subsystem 1008 and forwards them to the software tool team, an authorized update 1310 may be sent through a
collection 1130. The interaction monitor 1120 receives que- global encyclopedia base 1312 of the maintenance sub-
ries 1002 and submissions 1004 from the browser subsystem 65 system 1008 to the central tool base 1000, with a concomi-
1006 and forwards the queries 1002 to the DBMS 1100 and tant encyclopedia update going to the local browser sub-
forwards the submissions 1004 to the Maintenance sub- system 1006.

software. and its platform environment, is currently left to and Other evaluation data are generated in the local

The ESc can (and adaptation libraries, 15 1012 for analysis and incorporation into publications and

5,632,022
13 14

The Software Engineering Analysis subsystem 1012 is the
locus of evaluation of the ESC. Referring to FIG. 14, the
analysis subsystem 1012 stores the access records received
from the browser subsystem 1006 in a tool base access
history 1400, which is accessed by analysis processes 1402

reports accessible through the local browser subsystem
1006. The questions, it increase
or decrease programmer productivity?” are answered by the

productivity data received from users and their
management in the local browser subsystem 1006. They also
examine access records automatically produced in the ten-
tral tool base.
Tray of Informative Plates Metaphor:

Once the user has employed the encyclopedia metaphor
224 (FIG. 2) or the search list 226 to select a specific
software component to evaluate for possible use, the
browser 1006 displays a tray of several informative plates
(or windows) describing various aspects of the selected 20 The Data Plate fields are:
software component on the user’s video monitor. The pre- Native Name Field A
ferred video display of a tray 50V is illustrated in FIG. 15 mS field specifies the name of the component in its
which includes, in addition to the informative plates implementation language without argument fists, delimiters,
described above with reference to FIG. 5, an additional plate or separators. Example: dot_Vec3
522 containing additional fields of information. A complete
user video display which includes a window corresponding 25

encyclopedia volume and a window corresponding to the
tray metaphor is illustrated in FIG. 16.

There are various types of reuseable software components

into two soup one Components are subroutines,
functions, procedures and objects with a minimum of
entanglements and external dependencies. Group One com- &Planation Field @
ponents live at the language cell level of use. They are small, This field specifies in one hundred words or less what the
well abstracted modules of functionality easily incorporated 35 component is or does. Example: The dot product operator
into larger programs. Group Two Components tend to be computes the magnitude of the projection of one vector onto
larger, stand-alone applications that live at the executive or another.
shell level of use. Examples of these are screen editors and
system utilities.

informative plates for a Group One component. The tray
display provides, at a glance, a summary of all pertinent
information that a user would require to use the component.
This visual and textual summary provides several different
views of the same component simultaneously. These views 45 about the component. Example: vec3.ref
will now be enumerated and explained with reference to
FIG. 15. The tray as a whole is analogous to a part

such as The Linear Data Book
Plate Definitions

fields called plates. There are currently six plates, the Title
Plate, the Data Plate, the What Is Plate, the Call Plate, the
Part Plate and the Doc Plate.
Title Plate:

its class and a one sentence explanation of what the com-
ponent is or does. The Title Plate is analogues to the tab on
a file folder. It is probably the first thing that a textually
oriented user reads.
Data Plate:

This plate contains important type and rating information
about the software component. The goal of the Data Plate is
to provide good i n f o d o n for finding the right component,
if it exists. The Data Plate is analogous to the NEMA rating
plate on an appliance that specifies voltage, current and 65
power requirements and is the second thing a textually
oriented user might read.

The format for specifying Data Plate files is defined below
in accordance with the following fields. Certain fields have
buttons on which the user may “click” as described as
follows:
N~~ Of Field: <a>, <A>

ulrough a scientist 1404 performs Verbage describing the contents ofthe field ASet &scrip-
productivity analyses 1406 which produce Productivity tion if field values draw from an enumerated list of possible

is ESC used?”, values. [valueA, valueB, . . .] Example: Possible contents of

software enginering scientist 1404 in this subsystem by 10 If the button symbol <@> (shown in angle brackets
above) is present then the contents of the field are accessible
kO%h an on card button that the user may Press at
time. If the on screen icon <A> (angle brackets h p l y it’s
optional) is present then the contents of the field are inter-

15 preted graphically in some form other than the Data Plate on
the card. Bold italics indicates fields used in hypertext
primary navigation schemes. Bold only indicates fields that
are candidates for use in secondary or backup navigation
schemes.

English Name Field A
This field specifies the English name that a would

to the a window for an Opened use to describe the component. Example: Dot
Product

One Line Description A
This field specifies in eighty characters or less what the

component is or does. Example: Dot. scalar or inner product
Of two three vectors-

in the SC. For design purposes these can be divided 30

Read Me Field 0
This field specifies the name of a file containing docu-

The illwtration of FIG- 15 shows the tray display Of 40 mentation in excess of typewritten page about the compo-
nent. rnamPle: vec3~o.dOc

References ~ i ~ l d
 hi^ field the name of a file containing directly

relevant theoretical, science, oT engineering information

Language Field A
specification such as that which occus in a reference work This specifies the language in which the Part is

written. The set of possible language field specifiers is: [Ada,
C, Fortran66, Fortran77, Algo168, Modula2, Pascal, Other]

Each tray is separated into 6 graphical and textual sub- 50

This field indicates the Of Problem that the
component is designed to address. The set of possible
category field specifiers is published in: ‘The Full Comput-

This plate contains the name of the software component, 55 ing Reviews Classification Scheme 1987 Version” Example:
G.1.3 Numerical Linear Algebra:

Genus Field A
This field indicates the bundling class of which the

60 component is a member. The set of possible genus field
specifiers is: [Abstract Data ’Qpe,Libracy, Input Output
Package, Demonstration, Test, Other] Example: Abstract
Data ’Qpe

Vector Operations

Species Field A
This field indicates the type or aggregation level of the

component. The Species Field is language dependent. For
the ‘Cy language:

15
[Main Program, Procedure, Macro, Structure]

[Main Program, Subroutine, Function, Block Data

For Pascal: 5

For Modula:

For the Fortran language:

Subprogram, Common Block]

[Procedure, Function. Type]

[Definition Module, Implementation Module, Procedure,
m e 1 10

For Ada:

Example: Procedure
[Subprogram, Task, Package]

Package Name Field
This text field names any membership that the part has in 15

a larger aggegation such as a file or package. Example:
Vec3.c

If0 Name Field
This text field specifies the file containing I10 components

for the datatypes that the current component manipulates. 20
Example: Vec3IO.c

Test Stand Field:
This text field specifies the name of any test stands

constructed for use with this component. Example:

Demo Stand Field Like test stands but simpler. this text
field specifies the name of any demonstration stands con-
structed for use with this component. Example: Vec3Demo.c

Vec3Test.c 25

Performance Data Field
This text field specifies the file containing performance 30

information about the component. Example: Vec3Test.pmon
EIlw Kind Field:
Indicates machine makes, models and configurations

Sun 3/50 and 35

Sun 31160 and
Iris 3130 and
Iris 4D/20
STW Env Field:
Indicates operating system, compiler, and executive or

shell requirements for compiling, linking or executing the
component. Example:

Berkeley 4.2 Unix or
System V Unix
Cshell cr
Bourne shell
S/W Scripts Field:
Specifies the name of compilation and linking scripts

Vec3Test.make
RunVec3 .csh
Test Kinds Field Indicates what kind of testing has been

done and to what extent. Draws from set of: [Certified,
Range Tested Random Input Tested] Allowing untested 55
software components to be placed in the encyclopedia is
probably a bad idea. Example: Random Input Tested

capable of executing the component. Example:

40

45

necessary to make the component operational. Examples: 5o

Copyright Field:
Specifies the name and address of the holder@) of any

copyrights, liens, or other encumbrances on the software 60
component. Example:

Copyright (c) 1984
Gene Muzak AND
Supercomputing Services Inc. AND
Jet Propulsion Laboratory AND
Motorola Mainframes

65

5,632,022

I

16
Version Field
Component version designators. Example: Version 1.1

Authors Field:
This ASCII text field specifies the names of the author(s)

of the component at the time the component was contributed
to the system, with the primary contributor (if applicable)
listed first, the secondary contributor next and so on. If the
component had multiple contributors who contributed
equally. the listing order wilI be determined by random
selection and assignment, and the names will be presented
with an asterisk (*) to indicate that this is the case. Example:

Apr. 6, 1984

Gene Muzak*,
Van Wanen",
Matt Rain*
Address Field
Specifies the terrestrial and electronic mail addresses of

the component author(s). Sufficient information should be
provided to facilitate communication with real persons, even
if this is redundant with other information in the database.
Template:

Name m a t i o n (Company or Institution)
Mail Stop
Street
City, State, Zip
Email

Example:
Gene Muzak Supercomputing Services Corp. Mail Stop

421-DM 800 Bashner Road Missoula, Mont. 54121

muzakOssc.desi.arpa

same for second author
. . .

same for third author

Notes:
1) The city and state in the Address Field will be used as

a primary navigation scheme (location navigation).
2) The Authors Field and Address Field are a matched

pair. A pair is present for each author. The Authors Field is
perpetually static, however a contributing author may
request that his or her address fields be updated to reflect
changes in institutional afliliation or location.

Date In Field
Gives the date the component was contributed to the

system. Example:
Feb. 1, 1993
Requests Field
Gives the number of requests made for the component

Note:
The Date In and Requests fields taken together form an

informal but democratic method of rating software. Deriva-
tive information might be valuable here, showing popularity
as a function of time.

Inputs Field A
Lists inputs and their types, if applicable, to the compo-

nent. The inputs should be declared as they would in the
native language definition of the component. Example: Vec3

since its contribution. Example:267

0;
Outputs Field A
Lists outputs from the component, including pointers in

the input argument list that are touched by the component
during its operation. Example:

5,632,022
17

extern Float dot-Vec3 ();
Entry Points Field
Lists names and calling interfaces of components with

multiple entry points such as abstract data types or object
types.

Exit Paths Field
Lists information about multiple exit paths, if applicable.
Exceptions:
Lists exceptions states, error flags, and error conditions

capable of being triggered during operation of the compo-
nent. Example:

ZERO-LENGTH-VFCTOR
HUGE-COMPONEIW-OVERFLO W
What Is Plate:
This plate contains an illustration indicating what the

software component is, what it does or what it is used for.
Call Plate:
The Call Plate shows a generic calling sequence as it

would appear in a user program or source declaration. Its
purpose is to convey code-like usage and typing information
sufficient for use in a textual cut and-paste environment.

Part Plate:
The Part Plate is visual analog of the calling sequence for

a dataflow programming paradigm. It shows the software
component or part, its inputs and output arcs, and the typing,
if applicable that binds to the I/O arcs. Instance names are
not annotated to the dataflow diagram since they are not
necessary at the user level. (Do plumbers name their pipes
Mary or Fred?) Type names are afiixed to the arcs since it is
(or should be) illegal to join dissimilar data streams without
a coupler. The purpose of the Part Plate is to convey
code-like usage and typing information adequate for use in
a graphical cut and-paste environment.

Doc Plate:
The Doc Plate contains a summary explanation of what

the component is, does, or is used for. It is the textual analog
of any visual material in the What It Is Plate. This analogy
should be enforced when components are added so that this
dualism is evident to the user. Newer versions of the Doc
Plate will contain a “more” button for more textual detail.
Similarly the What Is Plate might animate when clicked or
struck, providing additional graphical detail.

Button Requirements:
Read Me Button:
Enables access to the mandatory Read Me documentation

Perform Button:
Provides access to any performance data & benchmarks.
Reference Button:
Provides access to any technical references providing

theoretical, science, or engineering information about the
component.

file in ASCII text format.

Depends On Button:
For the ‘C’ language would provides access to the include

files required for this component to compile, link, or run. For
other languages would convey what this component depends
on environmentally or definitionally to operate.

Left Sibling Button:
Accesses the component card for the left sibling when

Up to Parent Button:
Accesses the view of the ensemble of components when

Right Sibling Button:
Accesses the component card for the right sibling when

pressed from the component viewing level.
While the invention has been described in detail with

specific reference to preferred embodiments thereof, it is

pressed from the component viewing level.

pressed from the component viewing level.

5

10

15

20

25

30

35

40

45

50

55

60

65

18
understood that variations and modifications thereof may be
made without departing from the true spirit and scope of the
invention.

What is claimed is:
1. A method of facilitating intelligent browsing through a

collection of reusable software components using a com-
puter having a video monitor and user input means such as
a keyboard or a mouse for transmitting user selections to
said computer, said method comprising:

presenting on said monitor a picture of encyclopedia
volumes with respective visible labels referring to types
of software, in accordance with a metaphor in which
each volume includes a page having a list of general
topics under the software type of said volume and
pages having lists of software components for each one
of said general topics;

altering said picture to open one of said volumes in
response to an initial user selection specifying said one
volume to display on said monitor a picture of the page
thereof having said list of general topics and altesing
said picture to display the page thereof having a list of
software components under one of said general topics
in response to a next user selection specifying said one
general topic; and

presenting on said monitor a picture of a set of different
informative plate means for depicting different types of
information about one of said software components in
response to a further user selection specifying said one
component, wherein the set of different informative
plate means comprises,
a first plate comprising a graphic display illustrating the

operation of said one software component;
a second plate comprising a set of software language

statements comprising said software component;
a third plate comprising a text statement describing in

detail what said software component is, what said
software component does, and what said software
component is used for.

2. The method of claim 1 further comprising:
fetching one of said software components for incorpora-

tion into a software program under development in
response to a final user selection requesting said one
software component.

3. The method of claim 1 wherein the step of presenting
a picture of said informative plate means comprises display-
ing plural informative plates simultaneously, each of said
informatiw plates being a separate display area on said
monitor.

4. The method of claim 1 wherein said plates further
comprise:

a fourth plate in which an animated illustration of the
operation of said software component is shown.

5. The method of claim 1 further comprising adding
additional plates of information to the picture displayed on
said monJtor in response to a user selection requesting said
additional plates.

6. The method of claim 1 wherein said initial selection is
made by said user moving a cursor in said picture to overlie
said one volume in said set of encyclopedia volumes.

7. The method of claim 1 wherein said next selection is
made by said user moving a cursor in said picture to overlie
said one general topic in said list of general topics.

8. The method of claim 1 wherein said further selection is
made by said user moving a cursor in said picture to overlie
said one software component in said list of software com-
ponents.

5,632,022
19

9. The method of claim 1 further comprising displaying
on a portion of said monitor a navigation tool depicting prior
user selections of encyclopedia volumes, general topics and
software components.

10. The method of claim 9 wherein said navigation tool
comprises a picture of a set of linearly sequential symbols
representing a temporal history of each of said prior user
selections.

11. The method of claim 1 further comprising:
displaying on said monitor a list of software attributes in

response to a user selection of a searcher means; and,
displaying on said monitor a list of software components

relative to a certain set of software attributes in
response to a user selection specifying said certain set
of software attributes from said list of software
attributes.

12. The method of claim 11 further comprising displaying
on said monitor a set of informative plate means represent-
ing one of said software components in response to a user
selection specifying one of said software components on
said list.

13. The method of claim 1 further comprising accepting
a reusable software component from said user for incorpo-
ration into said collection, whereby to build said collection
from submissions from plural users.

14. Apparatus for facilitating intelligent browsing through
a collection of reusable software components using a com-
puter having a video monitor and user input means such as
a keyboard or a mouse for transmitting user selections to
said computer, said apparatus comprising:

means for presenting on said monitor a picture of ency-
clopedia volumes with respective visible labels refer-
ring to types of software, in accordance with a meta-
phor in which each volume includes a page having a list
of general topics under the software type of said
volume and pages having lists of software components
for each one of said general topics;

means for altering said picture to open one of said
volumes in response to an initial user selection speci-
fying said one volume to display on said monitor a
picture of the page thereof having said list of general
topics and altering said picture to display the page
thereof having a list of software components under one
of said general topics in response to a next user
selection specifying said one general topic; and

means for presenting on said monitor a picture of a set of
different informative plate means for depicting different
types of information about one of said software com-
ponents in response to a further user selection speci-
fying said one component, wherein the set of difFerent
informative plate means comprises,
a first plate comprising a graphic display illustrating the

operation of said one software component;
a second plate comprising a set of software language

statements comprising said software component;
a third plate comprising a text statement describing in

detail what said software component is, what said

20
software component does, and what said software
component is used for.

15. The apparatus of claim 14 further comprising:
means for fetching one of said software components for

incorporation into a software program under develop-
ment in response to a final user selection requesting
said one software component.

16. The apparatus of claim 14 wherein the means for
presenting a picture of said informative plate means com-
ppses means for displaying plural informative plates
smultaneously, each of said informative plates being a
separate display area on said monitor.

17. The apparatus of claim 14 wherein said plates further
comprise:

a fourth plate in which an animated illustration of the
operation of said software component is shown.

18. The apparatus of claim 14 further comprising means
for adding additional plates of information to the picture
displayed on said monitor in response to a user selection

19. The apparatus of claim 14 wherein said initial selec-
tion is made by said user moving a cursor in said picture to
overlie said one volume in said set of encyclopedia volumes.

20. The apparatus of claim 14 wherein said next selection
25 is made by said user moving a cursor in said picture to

overlie said one general topic in said list of general topics.
21. The apparatus of claim 14 wherein said further

selection is made by said user moving a cursor in said
picture to overlie said one software component in said list of

22. The apparatus of claim 14 further comprising means
for displaying on a portion of said monitor a navigation tool
depicting prior user selections of encyclopedia volumes,
general topics and software components.

23. The apparatus of claim 22 wherein said navigation
tool comprises a picture of a set of linearly sequential
symbols representing a temporal history of each of said prior
user selections.

5

15

2o requesting said additional plates.

30 software components.

35

24. The apparatus of claim 14 further comprising:
means for displaying on said monitor a list of software

attributes in response to a user selection of a searcher
means; and,

means for displaying on said monitor a list of software
components relative to a certain set of software
attributes in response to a user selection specifying said
certain set of software attributes from said list of
software attributes.

25. The apparatus of claim 24 further comprising means
for displaying on said monitor said set of informative plate

50 means representing one of said software components in
response to a user selection specifling one of said software
components on said list.

26. The apparatus of claim 14 further comprising means
for accepting a reusable software component from said user

55 for incorporation into said collection, whereby to build said
collection from submissions from plural users.

40

45

* * * * *

