
I11111 11111111 111 11111 11111 11111 11111 11111 11111 11111 lllll111111111111111111
US005602968A

United States Patent 1191 [11] Patent Number: 5,602,968
Volpe [45] Date of Patent: Feb. 11, 1997

TASK SPACE ANGULAR VELOCITY

GENERATION
BLENDING FOR REAL-TIME TRAJECTORY

Inventor: Richard A. Volpe, La Crescenta, Calif.

Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

Appl. No.: 238,041

Filed: May 2, 1994

Int. C1.6 G05B 13/00; G05B 19/42
U.S. C1. 395797; 395/80; 395/86;

395/87; 3 18/568.18
Field of Search 395/97, 80, 86,

395/87; 318/568.18

4,218,172
4,360,886
4,529,921
4,554,497
4,593,366
4,616,326
4,663,726
4,675,502
4,683,543
4,689,756
4,698,777
4,727,303
4,734,866
4,77 1,389
4,797,835
432 1,207
4,879,663
4,887,222
4,967,125
5,015,821
5,020,001
5,046,852
E Inn n n r

References Cited

U.S. PATENT DOCUMENTS

811980 Freund 395/97
11/1982 Kostas et al.
7/1985 Morihe

1111985 Nozawa et al. 318/636
6/1986 Sugimoto et

10/1986 Meier et al.
5/1987 Chandetal. .
6/1987 Haefner et al. .
711987 Hirasawa et al.
8/1987 Koyama et al.

211988 Morse et al.

911988 Takahashi et al. 364/167.01
111989 Kurami et al. 395/87
411989 Ming et al. 395/87

1111989 Fuehrer ...

............ 395/82
911991 Hametner et al. 3561398
?,inno 0, 7 . I -_I

5,285,525 2/1994 Nagao et al. 395/87
5,287,049 211994 Olomski et al. 318/568
5,430,643 7/1995 Seraji 3641167.01
5,467,430 1111995 Itoh ... 395/95

OTHER PUBLICATIONS

Angeles et al, “Trajectory planning in Robotics Continuous-
Path Applications”, IEEE Journal of Robotics and Automa-
tion, vol. 4, No. 4, Aug. 1988.
Yeung et al, “Efficient Parallel Algorithms and VLSI Archi-
tectures of Manipulator Jacobian Computation”, IEEE
Transactions on Systems, Man, and Sybernetics, vol. 19, No.
5, Sep./Oct. 1989.
M. Brady and Others (editors). Robot Motion: Planning and
Control MIT Oressm Cambridge, MA, 1982.

(List continued on next page.)

Primary Examiner-George B. Davis
Attorney, Agent, or Fim-John H. Kusmiss

1571 ABSTRACT

The invention is embodied in a method of controlling a robot
manipulator moving toward a target frame F, with a target
velocity vo including a linear target velocity v and an angular
target velocity w, to smoothly and continuously divert the
robot manipulator to a subsequenl frame F, by determining
a global transition velocity v,, the global transition velocity
including a linear transition velocity v, and an angular
transition velocity wl. defining a blend lime interval 2~~
within which the global velocity of the robot manipulator is
to be changed from a global target velocity vo to the global
transition velocity v1 and dividing the blend time interval
27, into discrete time segments 6t. During each one of the
discrete time segments 6t of the blend interval 27,, a blended
global velocity v of the manipulator is computed as a blend
of the global target velocity v, and the global transition
velocity vl, the blended global velocity v including a
blended angular velocity w and a blended linear velocity v,
and then, the manipulator is rotated by an incremental
rotation corresponding to an integration of the blended
angular velocity w over one discrete time segment 6t.

https://ntrs.nasa.gov/search.jsp?R=19970022907 2020-06-18T00:18:29+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10472311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5,602,968
Page 2

OTHER PUBLICATIONS

J. Canny. Collision Detection for Moving Polyhedra. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8 (2), Mar. 1986.
J. Craig. Introduction to Robotics: Mechanics and Control.
Addison-Wesley, Reading, Massachusetts, 1986.
H. Goldstein. Classical Mechanics. Addison-Wesley, Read-
ing, Mass. 1980.
C. Lin and P. Chang. Formulation and Optimization of Cubic
Polynomial Joint Trajectories for Industrial Robots. IEEE
Transactions on Automatic Control, 28(12):1066-1073,
1983.
J. Lloyd and V. Hayward. Real-Time Trajectory Generation
Using Blend Functions In IEEE International Conference on
Robotics and Automation, Sacramento, California, Apr.
1991.
M. Mujtaba. Discussion of Trajectory Calculation Methods.
Stanford University, Artificial Intelligence Laboratory, AIM
285.4, 1977.
R. Paul. Robot Manipulators: Mathematics, Programming
and Control MIT Press, Cambridge, MA, 1981.

R. Paul. Manipulator Cartesian Path Control, pp. 245-263.
MIT Press Cambridge, Mass., 1982.

R. Paul and H. Zhang. Robot Motion Trajectory Specifica-
tion and Generation. In Second Intcrnational Symposium on
Robotics Research, Kyoto, Japan, Aug. 1984.
R. Rosenberg and D. Karnopp. Introduction to Physical
System Dynamics. McGraw-Hill, New York, 1983.

H. Seraji and R. Colbaugh. Improved Configuration Control
for Redundant Robots. Journal of Robotics Systems, 7(6),
1990.

R. Taylor. Planning and Execution of Straight Line Manipu-
lator Trajectories, pp. 265-286. MIT Press, Cambridge,
Mass., 1982.

S. Thompson and R. Patel. Formulation of Joint Trajectories
for Industrial Robots Using B-Splines. IEEE Transactions
on Industrial Electronics, 34(2):192-199, 1987.

D. Whitney. Resolved Motion Rate Control of Manipulators
and Human Protheses. IEEE Transactions on Man-Machine
Systems, 10(2):49-53, Jun. 1969.

U.S. Patent Feb. 11, 1997 Sheet 1 of 7 5,602,968

I N

0
-0

n
0
Q)
v)

W

w
I
i=

Q

U.S. Patent Feb. 11, 1997 Sheet 2 of 7

n
' v)

L1L

I
W

(0
0
0

0

9
0

n
v)

E I
W

X

5,602,968

n
v)
tY

I
W

z

U.S. Patent Feb. 11, 1997 Sheet 3 of 7 5,602,968

.- * z
0 N

0 I l l
r METERS

w
I
i=

z
n

N
c-

I I n 1

0 I l l
.c Ml3ERS

U S . Patent Feb. 11, 1997 Sheet 4 of 7 5,602,968

U.S. Patent Feb. 11, 1997 Sheet 5 of 7 5,602,968

I
/

/
I

/

I 1 q - q o
F 0

N

0 I l l
G METERS

W

U.S. Patent Feb. 11, 1997 Sheet 6 of 7

k
CD

t

0
--VI

5,602,968

i j
I f

U.S. Patent Feb. 11, 1997 Sheet 7 of 7 5,602,968

TI-- .-
LL u,

0 7 .-

5,602,968
1

TASK SPACE ANGULAR VELOCITY

GENERATION
BLENDING FOR REAL-TIME TRAJECTORY

ORIGIN OF THE INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 USC 202) in which the
contractor has elected not to retain title.

BACKGROUND OF THE INVENTION

1. Technical Field
The invention relates to a compliant motion control

system for controlling a robot using angular velocity blend-
ing in task space in performing specific tasks.

2. Background Art
The specification below makes reference to the following

publications by number:

References

[l] M. Brady and others (editors). Robot Motion: Plan-
ning and Control. MIT Press, Cambridge Mass., 1982.

[2] J. Canny. Collision Detection for Moving Polyhedra.
IEEE Transactions on Pattern Analysis and Ma

131 J. Craig. Introduction to Robotics: Mechanics and
control. Addison-Wesley, Reading, Mass., 1986.

[4] H. Goldstein. Classical Mechanics. Addison-Wesley,
Reading, Mass., 1980.

151 C. Lin and P. Chang. Formulation and Optimization of
Cubic Polynomial Joint Trajectories for Industrial
Robots. IEEE Transactions on Automatic Control,

[6] J. Lloyd and V. Hayward. Real-time Trajectory Gen-
eration Using Blend Functions. In IEEE International
Conference on Robotics and Automation, Sacramento,
Calif., April 1991.

171 M. Mujtaba. Discussion of Trajectory Calculation
Methods. Stanford University, Artificial Intelligence
Laboratory, AIM 285.4, 1977.

[8] R. Paul. Robot Manipulators: Mathematics, Program-
ming and Control. MITPress, Cambridge, Mass., 1981.

[9] R. Paul. Manipulator Cartesian Path Control, pages
245-263. MIT Press, Cambridge, Mass., 1982.

[lo] R. Paul and H. Zhang. Robot Motion Trajectory
Specification and Generation. In Second International
Symposium on Robotics Research, Kyoto, Japan,
August 1984.

[111 R. Rosenberg and D. Kamopp. Introduction to Physi-
cal System Dynamics. McGraw-Hill, New York, 1983.

[12] H. Seraji and R. Colbaugh. Improved Configuration
Control for Redundant Robots. Journal of Robotics
Systems, 7(6), 1990.

[13] R. Taylor. Planning and Execution of Straight Line
Manipulator Trajectories, pages 265-286. MIT Press,
Cambridge, Mass., 1982.

[14] S. Thompson and R. Patel. Formulation of Joint
Trajectories for Industrial Robots Using B-Splines.
IEEE Transactions on Industrial Electronics, 34(2):

1151 D. Whitney. Resolved Motion Rate Control of
Manipulators and Human Protheses. IEEE Transac-

28(12): 1066-1073, 1983.

192-199, 1987.

5

10

15

20

25

30

35

40

45

50

55

60

65

2
tions on Man-Machine Systems, lO(2): 49-53, June
1969.

1 Introduction
Just as manipulator control can be effectively accom-

plished in joint space or task space, trajectories for the
manipulator can also be specified in joint or task space.
Typically, the trajectory is specified in the same space in
which the controller is working. However, conversion tech-
niques can be used to translate the specified trajectory to the
control space. For instance, inverse kinematics applied to a
task space trajectory will provide setpoints to a joint space
controller. Since task space trajectory specification is usually
considered most useful (especially with task space control),
the converse translation of a joint space trajectory to task
space is uncommon.

Joint space trajectory generation is straightforward since
each joint may be treated independently [8, 1, 31. Typically,
motion between specified joint values is dictated with a
third, fourth, or fifth order polynomial. Some extension and
optimization of this technique have been proposed 15, 141.

Task space trajectory generation has been addressed more
extensively, because of the complexity inherent in it. Whit-
ney proposed Resolved Rate control [I51 to easily enable
straight line motion or constant axis rotation of an end
effector. However, this technique does not inherently
address extended trajectory generation considerations. Fore-
most among these is the problem of blending changes in end
effector orientation. Paul [8, 101 proposed blending of the
Euler angles describing the relations of the initial and final
frames to the intermediate one. This method blends one
orientation to the next, but the path generated is not intu-
itively obvious. Worse, he proposes changing one Euler
angle with a different blend profile from the others. Alter-
natively, Canny [2] utilizes quaternions to describe orienta-
tion. However, since he was addressing a different problem
(collision detection), he does not discuss the issues of
blending the quaternions. Craig [3] utilizes the similar
angle-axis formulation, but represents the orientation of
each via frame with respect to the world frame, not the
previous frame as Paul had done. Thus, the blend of orien-
tation parameters will produce a motion path that is depen-
dent on the relation of the via frames to the world frame, not
just their relation to each other. Finally, Lloyd and Hayward
[6] developed an elegant method for creating variable posi-
tion blend paths, but do not show an extension of the method
for orientations.

As will be seen, Taylor [13] has proposed a scheme that
provides smooth, intuitive, and repeatable position and
orientation blends. Its major drawback is computational
complexity. This paper presents a velocity based method that
achieves the same results with a simpler formulation and
significantly reduced computation time.

The next section presents the terminology employed for
the solution description. Section 3 presents the proposed
velocity blending formulation and described possible blend
profile functions. Section 4 quickly discusses position path
blending. Orientation blending is extensively discussed in
Section 5, where Taylor’s method is reviewed, angular
velocity blending is presented, and the second order differ-
ence between them is analyzed. Sections 6 and 7 discuss
implementational considerations and computational costs
associated with the algorithms and show why velocity
blending is preferable. Finally, Section 8 describes the
results of simulation and real-time implementation.
2 Velocity Blending Terminology

A task frame is defined as the set containing the rotation
matrix that specifies the end effector orientation, R, the end

5,602,968
3 4

effector position, p. other scalar configuration control
parameters (e.g. arm angle y~ [12]), and the transit to this arm
pose, T. Thus,

computation steps and is therefore faster than prior art
processes.

Typically the end effector orientation is specified by a
rotation matrix composed of the vectors defining the end
effector orientation with respect to the stationary world
frame [8]. 10

R,=[n,, o,, a,] (2)

To specify a frame, rotation matrix, or vector with respect to 15
another frame, the former is proceeded with a superscript.
For instance, a frame, rotation, or vector with respect to the
world frame is denoted by "F, "R, "p.

In between two sequential frames, the desired linear
velocity of the end effector is simply the difference in
position over time: 20

The angular velocity is obtained from the equivalent angle-
axis formulation for a rotation from one frame to another [3]: 25

w, = k, $>IT, (4)

(5)

(6)

where motion at velocity w for time At causes a rotation of:

k, sin$,=- 1 (n,-l x n , +o,-i x o,+a,-i xa,) 2
30

c o s $, = z 1 (n,-i.n,+o,-i o,+a,-l a , - l)

SUMMARY OF THE INVENTION

The invention is embodied in a method of controlling a
robot manipulator moving toward a target frame F, with a
target velocity vo including a linear target velocity v and an
angular target velocity w, to smoothly divert the robot
manipulator to a subsequent frame F,, the target frame being
associated with a target transition time To and the subse-
quent frame being associated with a subsequent transition
time TI, by determining a global transition velocity v,
necessary to move the manipulator from the target frame F,
to the subsequent frame F, within the subsequent transition
time T,, the global transition velocity including a linear
transition velocity v1 and an angular transition velocity w,,
defining a blend time interval 27, within which the global
velocity of the robot manipulator is to be changed from the
global target velocity vo to the global transition velocity v1
and dividing the blend time interval 2~~ into discrete time
segments 6t. During each one of the discrete time segments
6t of the blend interval 270, the following is performed: (a)
compute a blended global velocity v of the manipulator as a
blend of the global target velocity vo and global subsequent
velocity v,, the blended global velocity v being at least
approximately equal to the target global velocity v, at the
beginning of the blend time interval and at least approxi-
mately equal to the global transition velocity v1 at the end of
the blend time interval, the blended global velocity includ-
ing a blended angular velocity w and a blended linear
velocity v, and then, (b) rotate the manipulator by an
incremental rotation corresponding to an integration of the

R [w A t l = R[k$l= (7) blended angular velocity w-over one discrete time segment
35 6t.

kxkxvQ + CQ k,k,Vg - k& k,k,Vq + kyS+

k,k,Vg + k& kykyvQ + CQ kykzvQ - kJ$

kxkzvp - kyS+ kykZV0 4 k& kzkzvp + CQ

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are graphs showing the blend speed for
a spectrum of angles (0, 45, 90, 135 and 180 degrees)
between the initial and final velocities, for the case in which

using linear velocity blending (FIG. 1A) and third order
the magnitudes of the initial and final velocities are equal

FIGS. 2A and 2B are graphs comparing linear, third order
polynomial and cycloidal velocity blends of two orthogonal
velocities of equal magnitude (FIG. 2A) and two parallel
velocities of unequal magnitude (FIG. 2B).

FIGS. 3A and 3B are graphs showing the spatial paths
(FIG. 3A) and temporal paths (FIG. 3B) for a transition
between two orthogonal velocities of equal magnitudes for
a maximum acceleration magnitude of 1 Om/s2.

FIG. 4 is a graphical depiction of the velocity blending

I 4 0 [
with S@=sin+, C ~ O S ~ , and V@=l-cos,,,.

If the magnitude of Equation (5) is zero, the direction of
k is indeterminant. If Equation (6) equals +1, then the
orientations of the successive frames are identical, and
w,-[O, 0, 01. Otherwise, Equation (6) equals -1, and k must 45 polynomial
be determined from the columns of the homogeneous trans-
form R="R~-~-' From the first column of Equation (7)
we have:

(FIG. lB).

kx = 4-
k Y = x

k z = X process of Equation 36.

(') 50

(9) R2 i

R31 (10) 55

If k,=O, another column must be used, and a similar set of
solutions calculated.

Finally, Equations (3) and (4) may be incorporated into a
global definition of frame velocity: 60

-[v,w, VI (11)

where the scalar velocity is also calculated as in Equation
(3). 65

It is the object of the present invention to provide a
velocity blending robot control process which requires fewer

FIGS. SA and 5B are diagrams depicting the spatial
transition of the target frame (FIG. SA) and the angular
velocity vector (FIG. 5B) during an orientation blend using
the process of Equation 36 with linear blending.

FIGS. 6A, 6B and 6C are graphs illustrating the compo-
nent values of the unit vectors of the frames shown in FIG.
5A for the n, o and c1 components, respectively.

FIG. 7 is a graph depicting the incremental blending of the
process of Equation 47.

FIG. 8 is a graph depicting the blending of the process of
Equation 57 in accordance with the present invention.

5,602,968
5 6

FIGS. 9A and 9B are diagrams depicting the spatial
transition of the target framc (FIG. 9A) and the angular
velocity vector (FIG. 9B) during an orientation blend using
the process of Equation 57 with linear blending.

FIGS. 10A, 10B and 1OC are graphs illustrating the 5
component values of the unit vectors of the frames shown in
FIG. 9A for the n, o and a components, respectively.

FIG. 11 is a simplified schematic block diagram of a robot

There are several simple choices available for blend
functions. These are provided below, along with the result-
ant form of the velocity, acceleration, and blend time.
Linear Velocity Blending [131

(21)

(22)

f (s) = J-

V b - v a
a=-

2.r

(23)
control system employed in carrying out the invention.

FIG. 12 is a block flow diagram illustrating the blending
process of the present invention in accordance with a
preferred embodiment.

10 IVb - Val
2T=------- lal-

Third Order Polynomial Velocity Blending [9, 51

f(s) = -2$ + 3 2 DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS 15

(Vb - v o)
a=- (-6s’ + 6s) 3 Angular Velocity Blending 2T

velocities of the segments must be blended together. To
To move smoothly from one segment to another, the IVb- Val 3

2TZ----- -
la/- 2

achieve this, many strategies employing linear velocity v 20
have been suggested [9,13,5,14,6,7]. These techniques are Cyc1oida1 171
discussed below within the framework of the present inven-
tion. 2 f (s) = s i n 2 K s

The present invention introduces the concept of blending
angular velocity by blending a global velocity vector v that 25
includes both an angular velocity vector w and the linear
velocity vector v. The following discussion utilizes the
global velocity v of Equation 11 which includes angular
velocity w with the following convention:

v, = v, (12) 30
vb = v8+I (13)

(14) f - (fL - T)

(Vb - Val (28)
a=- 2.r - sinm

IVb- Val (2%

The cycloid has a functional form very close to that of the
O(3) polynomial, but does not have a discontinuous jerk (the
derivative of the acceleration). In turn, the O(3) polynomial
is superior to the linear form since the latter has discontinu-

22=- -
lal- 2

-..- ,.-,.,.l---+:,.- (..-A : -G-:e , . :,.J-\ T1-r- ,+,,,,ti, ,C+h, l:----

5,602,968

(32)

where p, is the initial position as the blend is entered. The
form of the integral of the blend function determines the
spatial form trace by the path. For the three blend functions
considered, we have:

"R, OR,="R. "R,

="R, "R, Iw,TI"R,

(33) ="R, "R. I-oL,TI"R,
(34)

(35)
10 we have:

"Ra

Equation (33) provides a second order polynomial, and
the blend is parabolic. Equation (34) provides a fourth order
polynomial, and the blend that is steeper. (Higher order even
polynomial functions will be increasingly steeper.) The
cycloidal blend path remains sinusoidal, but has the addition
of a linear term.

The graphs of FIG. 3 show the spatial and temporal paths
for a transition between v, and vb. such that v,Ivb, Iv,I=lvbl,
with lal,,=10 d s 2 . It is apparent from FIG. 3A that tighter
cornering can be accomplished with polynomial and cyc-
loidal bleeding. However, this requires longer blend times
(or larger acceleration, and therefore greater joint torques
from the actuators). FIG. 3B shows the positions as a
function of time, which are essentially the integrals of the
velocities shown in FIG. 3B. The form of these curves also
represents the functional form of the position blend func-
tions, Equations (33)-(35).
5 Blending the Orientation

Blending of the orientation is more complicated than
position, since the angular velocities are nonholonomic.
However, this section shows that a close approximation to
analytic orientation blending can be obtained. This requires
numeric integration of the rotations obtained from the
instantaneous value of the blended angular velocity.
5.1 Rotation Matrix Blending for Orientation

In reference [131 Taylor proposed a method of blending
orientation based on rotation matrices. A generalization of
this method will be presented here. In this method, the
amount of rotation contributed by each rotation matrix is
scaled with the previously presented blend functions:

The graph of FIG. 4 provides a graphical depiction of this
blending method. Prior to the blend there is motion away
from the orientation of the previous frame, F,,, and toward
the intermediate orientation, a=F,. The constant angular
velocity before the blend is o,, and the blend begins at
orientation 0. In this method, for each interval after o a
rotation is construction and applied according to the rotation
matrix blending described by Equation (36) or (37). After
the normalized blend time s has become unity, the com-
manded angular velocity will be ob, and the commanded
orientation is b. After this time, the trajectory continues
toward the next target frame, Fi+,, at the constant angular
velocity of o b . To avoid faceted motion through the blend,
the normalized time must be incremented in infinitesimal
intervals.

In reference [13], the formulation of this blending scheme
is presented with respect to frame a, not 0. This alternate
representation can be seen by starting with Equation (36),
and utilizing the identity.

8

3o This is the form of the rotation blend presented in [13].
The diagrams of FIG. 5 provide a graphical depiction of

change in the target frame (FIG. SA) and the direction of the
angular velocity vector (FIG. SB). (A constant spatial veloc-
ity has also be used, to spread out the vectors for pictorial

35 clarity.) The graphs of FIG. 6 show the change in the target
frame basis vector components under this transformation.
5.2 Incremental Rotation Blend Components

It is informative to look at the rotations that represent the
individual incremental rotation between successive time
increments when utilizing Equation (36). Consider the dif-
ference between successive frames depicted in FIG. 7.

The incremental rotation between successive orientations
is:

40

(53)

(54)

5,602,968
9 10

=PR[w(sp)drl (56)

where E is the infinitesimal rotation operator 141. This
result indicates each incremental rotation of Taylor's scheme

instantaneous angular velocity. This implies that it is pos-
sible to blend the angular velocities utilizing Equation (17),

instantaneous angular velocity.
5.3 Angular Velocity Blending for Orientation

As was discussed in the last section, the incremental
rotations of an orientation blend may be approximated by
utilizing the instantaneous angular velocity provided by
Equation (17). Thus, the orientation of the target frame can
be computed by utilizing Equations (l), (4), (7), (I l) , and 15
(17):

ing the order of some of the rotations at the center of this
chain. For instance, utilizing the infinitesimal rotation
approximation [4]:

is equal, to first order, to the rotation provided by the oRb=oR', . . . O R N - ' , (I+"E,~)(~+"E~') "RZb , , . "RNb
(60)

and obtain the incremental rotations from the value of the =OR', . . . "RN-', (l+"~ , ') (l t "~ ,~) "RZb . . . "RNb (61)

io This commutation of the infinitesimal rotations may be
continued until the proper sequence is attained. However,
second order errors arise from the initial approximation Of
R=(l+E) and from the disregard of the commutator (the
difference between the sequence of the rotations):

[l+EA, 1+EB]=2EAEB-2EBEA (6 2

The lack of these second order terms explains the small error
introduced by angular velocity based orientation blending.

The change in position of OR,' and "R; operators in
the sequence is reminiscent of diffusion.. As the

'diffuse' farther to the right, and the u ~ ; 'diffuse'
where N is the total number of steps for the complete blend. farther to the left, the changed in orientation becomes more
FIG. 8 provides a graphical depiction of this blending blended. Since the infinitesimal rotations Can be represented
method. Before the blend, there is motion away from the 25 by their angular velocity equivalents, the diffusion profile is
orientation of the previous frame, F,,, and toward the equivalent to the velocity blend Profile. For ifIstafIce, the

more diffusion than the linear one. Further smaller values of
lalmar also imply more diffusion, since they spread out these

fore, linear blends and high acceleration blends result in less
residual error for a given value of lalmar. However, linear
blends will result in more error if the blend time is fixed
instead of the acceleration. This can be understood by

35 lessening the slope of the linear blend line in FIG. 2B, thus
introducing more diffusion.

To provide some quantitative description to this discus-
sion, the following table shows the magnitude of the orien-

m

n = O

(57)
" R (S ~ = O R o " R [W (S n) d r [

20
s,, = n/N, As = 1iN

intermediate orientation, C(=F,. The Constant angular veloc- shape Of the profile in FIG. 2B indicates
ity before the blend is w,. The blend begins at orientation o.
For each interval after 0, a rotation is constructed and

by Equation (17). After the normalized blend time has
become unity, the commanded angular velocity will be w,,
Ideally, the blend will be complete at the desired orientation,
o, where the trajectoly continues the next target
frame, F,,,.

In practice, velocity-based blending can provide equiva-
lent blends to the rotation matrix method described previ-
ously. The graphs of FIG. depict the change in the target

vector (FIG. 9B) for third order polynomial angular velocity 40
blending, with lal,a=10 d s 2 . A constant linear velocity is
also utilized to spread out the origins of the frames for
clarity. The graphs of FIG. 10 show the change in the target
frame basis vector components under this transformation.
Comparing FIGS. 9 and 10 with FIGS. 5 and 6, it is seen that 45

applied according to the angular velocity blending provided 30 Curves. More diffusion introduces second order enof. There-

frame (FIG, 9A) and the direction of the angular velocity tation for the PrevioUs1Y 'Onsidered.

blend type

&~palgnomid
cycloidal

Idma = 10 m/s2 iaImax = 5 m/sz

0.29" 1.16"
0.39" 1.56"
0.41" 1.62"

there is little difference between blending schemes, even
when using different blending profiles.
5.4 Compensation for Second Order Error from Angular
Velocity Blending

Looking closely at FIG. 10, it can be seen that there is
some small residual error in the components of the basis
vectors. This error results from the second order error
introduced by the infinitesimal rotation approximation in
Section 5.2. This can be understood by considering how the
angular velocity blending effects the rotation blending. Con-
sider first the case of total completion of rotation by w,,
before rotation by ob begins. In this case, the resulting
rotation is exact:

6o mentalrotation from the resultant frame to the desired frame
(58) at the end of the orientation blend:

It is apparent that these errors are small and may be
corrected (as described below). Substantially larger errors
are not possible since they would require much smaller
accelerations which require longer blend times. Too large of
a blend time multiplied by w, or W, would indicate a rotation
greater than 180" in the initial or final legs. Such large
rotations have been precluded by Equation (5).

While this small error introduced by one blend does not
necessarily require compensation, the summation of this
error over successive blends may become significant. To
compensate for the residual error, we propose the use of a
correction term which is calculated at the end of every
velocity based blend of orientation. This term is the incre-

where the rotations and a R, have been divided into N
parts. Blending the angular velocities is equivalent to chang-

In practice, k,,, and can be easily calculated by
Equations (5) and (6). A correction velocity may then be

5,602,
11

calculated and applied to the leg of the trajectory being
entered, for the time specified to the next via frame:

~CO,=k , , , coA~;+,-;) (64)

This correction term is modified by a gain, K,,, and added
to the angular velocity ab. (Since it is very small in
magnitude, concerns about changing the value of a, have
been ignored.) The gain is needed to maintain stability in
what is effectively a low bandwidth feedback controller. If 10
Equations (57) and (63) were linear, this discreet time
controller would be trajectory stable for 04Kc0,S1. How-
ever, for the nonlinear orientation blending, we have empiri-
cally found stability for gains of OSK,,,S0.3.
6 Implementation Considerations 15

Three main implementational considerations have been
accommodated in our scheme: maximum acceleration, mini-
mum blend time, and velocity summation.
6.1 Maximum Acceleration

manipulators, the commanded acceleration must be limited
to what is achievable. Further, the achievable task space
acceleration of the arm depends on the configuration of the
robot arm. In different parts of the workspace, different task
space accelerations are possible. Therefore, two possibilities 25
exist: 1.) limit all task space accelerations to the worst case
acceleration of the arm, or 2.) create a complete map of the
achievable task space accelerations, and limit the trajectory
blending accordingly. However, creating and accessing such
a map is anticipated to be very cumbersome. Therefore, we 30
have currently chosen to work with the first, and simpler, of
these two options.

Another consequence of limited acceleration is that it
erodes the straight line leg segments of the trajectory
between via frames. For a small enough acceleration, one 35
blend will end as another begins. For accelerations smaller
than this, one blend would have to begin before another
ends. We do not permit this to occur. In this case, the
acceleration is increased level of acceleration is not achiev-
able by the arm, then the via frames are not reasonably 40
selected and unavoidable position errors will occur.
6.2 Minimum Blend Time

Due to the discrete nature of the computer implementation
of these algorithms, it is necessary to specify a minimum
number of iterations over which an acceleration is specified. 45
From Equation (b 20) this quantity is the minimum allowed
value of 27. If a minimum is not specified, the calculated
blend time may become comparable to the algorithm cycle
time. Thus, the calculated velocity and position will be
discontinuous, providing poor input to the arm controller. 50
We have empirically determined and utilized a minimum
value of twenty iterations per blend. A direct consequence of
this specification of 2~,,,~,, is that the maximum allowed
acceleration is also limited. If more acceleration is desired,
and the manipulator is capable of it, then 2~,~,, should be 55
reduced. However, to keep the same number of iterations per
blend with a reduced 22,,, the algorithm rate must be
increased proportionally.
6.3 Velocity Summation

control inputs, the commanded variable must be a velocity
(a generalized flow variable), not a position [ll]. FIG. 11
shows a system for implementing one embodiment of the
invention. Although not shown in the drawing, the trajectory
generator optionally may be subject to modification by the 65
input of a joystick or a proximity sensor monitor process. In
FIG. 11, a trajectory generator 10 performs the velocity

Since the calculated trajectories are to be executed by real 20

To be able to modify commanded trajectories with other 60

,968
12

blending process described above to produce a desired
sequence of desired end effector frames or positions. These
are output to a manipulator control system Cartesian con-
troller 20. The controller 20 computes and outputs a com-
mand angle 8, to a robot arm controller 30 (in this case, the
arm controller for the Robotics Research K-1207 Arm). The
arm controller 30 converts the command angle to motor
currents and outputs the motor currents to servoes in a robot
arm 40 (in this case, a Robotics Research K-1207 Arm). The
robot arm 40 returns servo encoder counts to the arm
controller 30, which computes therefrom and outputs cor-
responding angle measurements 8, to a forward kinematics
processor 50. The forward kinematics processor 50 com-
putes and outputs a corresponding measured frame F,,,,=x,
to the trajectory generator 10 and computes and outputs a
Jacobian transformation matrix J to the manipulator con-
troller 20. The Cartesian controller 20 and the forward
kinematics processor 50 perform the foregoing operations
and computations using conventional techniques well
known in the art. The arm controller 30 and the robotics arm
40 are commercially available devices.

Utilizing the velocity blending scheme described in this
specification with reference to Equation 57, velocity output
is obtained directly. Alternatively, if analytic integration of
position is used (as in Equation (32)), or if rotation matrix
orientation blending is used (as in Equation (36)), then the
velocity must be obtained by differencing the reference
frames. As will be seen in the next section, this requires extra
computation not needed with a purely velocity based
scheme.
7 Computational Costs

Table I provides an outline of the computational steps and
costs for both position-based and velocity-based blending.
The equations involved in each step are also summarized.
Finally, an estimate of the computational complexity is
given by stating the number of additions, subtractions,
multiplies, and divides required, as well as the trigonometric
(and square root) operations needed.

Under the operations column, the values are the number
of standard math operations (t*/) and the number of
trigonometric and other math operations (e.g., sin, cos, sqrt,
and so forth). The top section of the table reviews some
common steps needed for both schemes. Of these, the frame
differencing and frame incrementing are very costly. The
calculation of f(s) or f’(s) is variable since it depends on the
blend functions chosen.

The second and third sections of the table show the
algorithmic differences between the positiodorientation
blending and the velocity blending methods. The most
striking difference between the two formulations is the
reduced computational cost of the velocity blending method.
During a blend it requires only 12 operations, while the
position/orientation method requires 263 operations plus
eight costly trig or square root calls. The situation is much
the same during the straight line leg segments of the trajec-
tory, where the velocity based scheme requires zero opera-
tions, while a completely position based scheme requires
160 plus 5. The efficiency of the velocity based scheme is
paid for by the overhead necessary during the transition
from blend to leg segments. At this juncture, the velocity
scheme must make 207 plus 6 operations, while the position/
orientation scheme requires only 69 plus 2. However, this
overhead occurs only once for each via frame, compared to
the hundred or thousands of iterations that occur for the
blend or leg segment

5,602,968
13

TABLE I

Algorithm Step Esns OPS

Common

vAt = frmedif(Fi,Fz) =DO
F2 = frameinc(F,,vAt) = I()
calc f(s) or f(s)

1-6, 11
14,7-11
17, 32, 36
11
20

vz = vecscale(v,,func) = S()
a < Idmm, T > T~~
PositiodOrientation Blending Method

blend

talc f(s)
vu = S(V,,S - f(s))

-

vp = s(vb,f(s))
F, = I(F,,vuAt)
Fb = l(Fa,vpAt
v = D(Fo,Fb)/Atob
leg -

F(t) = I(Fi,Ip(t),ke(t),W(t)})
v = D(F(t),F(t - At))/At
transition

vb = D(FiFi+i)mi+i
a < Ialmm, T > T~~
Velocity Blending Method

blend -
talc f(s)
v = S(V,,l - f(s))
v + = S(V,,f(S))
leg

nothing, constant v = v,
transition

-

Vb = D(FixFl+~~mi+i
F b = l(Fi,vbTi)
vb + = D(Fb,Fb)mi+l - T~)
a < lalma, T > T~~

33, 35, 34
36
36
36
36
1 4 1 1

1 4 , 7-11
1-6, 11

1-611
20

21, 27, 24
17
17

1 4 , l l
63, 64
63, 64
20

69, 2
91, 3
variable
7, 0
variable

variable
6
6
91, 3
91, 3
69, 2

91, 3
69, 2

69, 2
variable

variable
6
6

0, 0

69, 2
69, 2
69, 2
variable

computations. Obviously, velocity blending introduces a
significant computational savings.

It is important to note that some of the computational
advantage of velocity blending is introduced by the assump-
tion that the output of a trajectory generator must be a
velocity. The positiodorientation scheme must utilize a
velocity calculation step during the blend and leg segments
which costs 69 plus 2 operations. However, even without
this step the velocity blending method is significantly faster.
Further, it was shown in the last section why velocity output
is more useful.

One other computational burden is introduced to the
positiodorientation method by the assumption that position,
[p,k@,yr]. is specified as a function of time during the leg
segment. Alternatively, the leg segment velocity could be
precomputed and utilized directly as in the velocity blend
method. Since k is constant during the leg segment, no errors
would be introduced. Also, the leg velocity must be com-
puted anyway if the maximum acceleration checks are to be
performed (as is assumed).
8 Implementation

We have implemented this algorithm on an SGI Iris
workstation for simulation, and on a VME based 68020
microprocessor for control of 7 DOF Robotics Research
K-1207 Arm. The end-effector of the robot arm carries an
array of sensors: two CCD cameras, two proximity sensors,
an optical pyrometer, a gas sensor, and a force sensor. The
addition of eddy-current and contact acoustic sensors are
planned. While our frame to frame motions are designed to

14
aid inspection by these devices, the presented technique is
obviously extensible to motion required for purposes other
than inspection.
8.1 Experimentation

The blending algorithm has also been implemented for
real-time control on a 12.5 MHz Heurikon 68020 processor.
For the tests, a trajectory similar to the simulation trajectory
has been executed. However, since the robot base position is
fixed, the size of the inspection area is restricted. A total of

IO twelve via frames are used to scan a rectangular shape about
half as large as that in the simulation. Linear blending was
arbitrarily chosen for these tests. During experiments the
minimum time between frames is 3 seconds. The real-time
process runs at 44 Hz, or ~ 2 2 . 7 ms, giving approximately

15 132 iterations for each frame to frame motion. (The control
rate is governed by other control software, not the process-
ing requirements of the trajectory blending algorithm, which
we have shown to be quite minimal.) The position gain was
Kp=20, and the trajectory correction gain was K,,,=0.3. The

20 minimum blend time was 2~,,,=20 iterations, or about a half
second. The maximum acceleration was lal,a=10 d s 2 .
9 Angular Velocity Blending Processing Description

The angular velocity blending method described above is
now described in greater detail with reference to the steps

The process begins by initializing key parameters (block
100 of FIG. 12), by setting the index n to one, setting the
current global velocity v an the initial velocity v, to zero,
while setting the current frame F to the measured frame of

30 reference F,,,, and setting the current time t to the minimum
blend time T,,,. The previous frame corresponds to Fz-, of
the graph of FIG. 8.

Typically, the user specifies the next target frame F,
corresponding to F, or point a of FIG. 8, thc subsequent

35 frame F, corresponding to F,+l of FIG. 8. As a slight
departure from the notation employed in FIG. 8, the process
illustrated in FIG. 12 employs the index n to keep track of
the successive frames, and the next target frame F, is set to
F,, while the subsequent frame F, is set to F,.

The description of this process will now skip to a point at
which blending has been completed for a current frame, so
that the index n is to be incremented by one: n=n+l. This
incrementing of the index n is performed as part of an
increment step of block 85, which begins a new iteration of

45 the cyclic process. In the increment step of block 85, the
current time is shifted by T,, the current target frame F, is
updated to the subsequent frame F, of the previous iteration
and the current target frame F, is set to the next frame F,
specified by the user. The global velocity v includes both the

50 linear velocity v and the angular velocity w, in accordance
with Equation 11. In the increment step of block 85, the
initial block velocity v, is corrected by an error correction
global velocity v, computed in an other part of the process
in accordance with Equation 65 in a manner described below

55 herein. As will be described, the purpose of this correction
is to compensate for a residual error at point b of FIG. 8
corresponding to a blend exit frame F',, specifically the
residual error discussed with reference to Equation 63.

Next, a differentiation step of block 90 is performed using
60 a computation described below called framedif to compute

a global velocity v1 necessary to move from frame F, to
frame F, within a time T, specified by the user. The step of
block 90 then computes from the two global velocities v,
and v,, and from a maximum acceleration specified by the

65 user, a blend interval time T, in accordance with Equation
23, 26 or 29 using a process calctau described later in this
specification.

5

25 depicted in FIG. 12.

40

5,602,968
15

At a decision block 120, a determination is made whether
the blend time t=To-To has been reached. If not (YES branch
of block 120), then the current global velocity v is kept
constant at vo (block 125) and the time t is incremented by
adding to it a time differential St (block 130).

A frame incrementing step 135 is performed using the
current angular velocity w of the current global velocity v.
This frame incrementing step 135 is a rotation of the
manipulator though an incremental angle equal to oxst. The
frame incrementing step of block 135 updates the current
frame F. The process then cycles back to the determination
step of block 120 and continues in a cycle constituting the
steps of blocks 120,125,130 and 135. This cycle is repeated
until the time t reaches the blend time t=T,-T, (NO branch
of block 120).

Once the blend time has been reached, a determination is
made at a decision block 140 whether the current time t falls
within the blend time window T o - ~ o < t ~ o ~ o . If so (YES
branch of block 140), then the blend function f'(t.s) is
computed (block 145) according to Equation 33, 34 or 35
and this function is used to update the current blended global
velocity v using Equation 16. The current time is incre-
mented in the step of block 150 as in the step of block 130.
The frame incrementing step of block 135 is performed, but
this time using the current angular velocity w of the global
velocity v blended between v, and v1 in accordance with
Equation 16 by the step of block 145. The process cycles
back to the determination step of block 140. A cycle con-
stituting blocks 140, 145, 150 and 135 is repeated until the
time t exceeds the blend period (NO branch of block 140).
Each iteration of this cycle produces an incremental rotation
of the frame using an angular velocity vector w updated each
iteration.

Upon completion of this cycle (Le., when UT,+.r,), a
sequence of incremental rotations has been performed as
depicted in FIG. 8 to blend the manipulator motion from the
initial frame F, to the blend exit frame F,. With each
iteration of the process after each time increment St, the
frame increment step of block 135 computes an updated
frame F, which is output by the trajectory generator 10 of
FIG. 11 to the manipulator control system Cartesian control-
ler 20 of FIG. 11 to produce a command 8, to the robot
servos to rotate and/or translate the robot manipulator to the
updated frame.

Taking the NO branch of block 140, the current frame F
is compared to the desired blend exit frame F, (correspond-
ing to point b of FIG. 8) obtained from a frame incrementing
step 105. The frame incrementing step is an incremental
rotation through an angle obtained by multiplying the initial
angular velocity w, by half the blend time, T,, obtained from
the step of block 90. (Both frame incrementing steps 105 and
135 employ a process called frameinc which is described
later in this specification.)

Then, a differentiation step 110 computes a velocity error
correction v, by dividing the difference between the current
frame F and the desired blend exit frame F', by the time
remaining to the next frame, TOqw The incrementing step
of block 85 is repeated, and the entire process begins the
next iteration with a new target frame FnCz The adding step
vo=vove of block 85 compensates for the residual error of the
previous blend cycle and implements the correction of
Equation 65. (The differentiation steps of both blocks 90 and
110 employ a process called framedif defined later in this
specification.)

The foregoing process is now set forth in greater detail as
a series of program language statements, each statement
being accompanied by an explanatory remark in italics. In

16
the following, there is a main program, called main body
which calls for four different sub-routines named, respec-
tively, frameinc, framedif, calctau and calcfprime.

5 9.1 Main Body

BEGIN:
n = 0 initialize counter
F = F,,,

v = 0
v, = 0
v, = 0
t = T~~ initialize time

initialize desired to current frame
10 Fo = I R o , ~ o . ~ o , T o ~ next target frame

start at rest
initial velocity is zero
initial error correction velocity is zero

NEXT
15 vo = vo + v, modify target velocity

n = n + 1 increment counter
F, = F, = { R,,pn,yrn,T,}
set to Fn-,)
V, = framedif (Fo,F,)R,
needed between frames
T, = calctau(v, - v,)

t = t + St
LEG:
if(t < To - T,) v = v,
BLEND:
if(T, - T, < t < To + T,){
f = calcfprime((t - To + T,)/~T,)
value
v = v,(l - f) + v , f
}
F = frameinc(F,vSt)
}
if(t 2 To + T,){
F, = frameinc(F,,v,T,)
for blend exit
v, = framedif(F,F',)/(T, - 7,)
needed
t = t - To

v, = v1
goto NEXT: repeat the process
}

subsequent frame (if unavailable

determine average velocity

calculate and shift blend time
20 while(t < To + T,){

increment time

constant velocity in leg

25 get blend function

calculate blended velocity

increment the desired frame

30
determine correct frame position

determine additional velocity

shift time
35 F,=F, shift frames

shift velocity value

9.2 Frame Differencing Subroutine
40

framedif(F,,F,) frame differencing subroutine
I

v = (pl - p,)

b in@ =T (m x nl + oo x 01 + a ~ x al)

 cos@=^ (no. nl f o g . 01 +%. a1 - 1)

linear velocity assuming unit time

45 1

1

50 if(lk sinel = 0) { ambiguous result
if(cosg = 1) @ = 0
if(cos@ = -1) {

no difference in frames
greatest difference in frames

@ = n

55
kx = (nx + 1)/2

if k&) = 0, substitute ox,oy,oz

}
if(lk sin@l # 0) @ = tan-'(sin@, cos@) minimum angle 60

between frames
ksine

(J)=-
lbingl @

angular velocity assuming unit time

65 v = - vo) scalar velocity assuming unit time

5,602,968
17

-continued

return([v, w, V I) r e m frame difference
I

5
9.3 Frame Incrementing Subroutine

frameinc(F,,v,t,) frame incrementing subroutine
{

Q = Iw& rotation angle
k = uotdg rotation axis
S, = sing
c, = cos$
v, = 1 - cos@

kxkIva + Co kxkyVo - kzSb k,k,Va + kySp

R = k&Vp + kzS+ kykyvo + C, kykzvo - k 3 p

k,kLVb - kyS+ kykzve + k 3 p kzkzV0 + Cp 1
rotation mamx

R1 = R Ro
p1 = po + vob
yfl = v0 + yfor,
return(F, = { Rl,pl,yfl,To + b})

increment orientation
increment position

increment scalar
return the new

frame
1

10

1 l5

20

7c L J

9.4 Calculation of Blend Time Subroutine

calctau(Av)
I 30

if(L1NEAR) return(Av/2lal,) linear blending
if(O3POLY) return (3Av/41alm,) third order

if(CYCL0ID) return(zAv/4lal,,,) cycloidal
polynomial blending

blending
I 3s

18
9.5 Calculation of Blend Profile Subroutine

calcfprime(s) s is normalized time
{

if(LINEAR) return(s) linear blending
if(O3POLY) return(-2s3 + 3s') third ordcr

polynomial blending

1

10 Conclusion
This specification has presented a new formulation of

trajectory generated based on velocity blending. First, a new
formulation for trajectory blending was provided, allowing
for the direct comparison and utilization of numerous blend
functions. Then, a generalized version of the previously
proposed orientation matrix blending formulation was
reviewed. It was shown how a first order approximation of
this scheme leads directly to angular velocity blending for
orientation change. Further, the residual error incurred was
explained, quantized, and compensated. Also explained
were implementational considerations such as acceleration
limits, velocity summation requirements, algorithm compu-
tation rates and complexity. Finally, the results of imple-
mentation of this scheme in both simulation and real-time
experimentation were graphically presented. Both the analy-
sis and implementation has shown that the speed and sim-
plicity of the velocity-blending formulation enable its ease
of use for real-time manipulator trajectory generation.

Appendix A contains a listing of a C-language computer
code employed in carrying out the invention. Each of the key
statements in the listing is accompanied by an explanatory
remark in italics.

5,602,968
19 20

- - -
-36-

' 11 APPENDIX A: C-Code Listings * -.

11.1 Viax

vias0cket.c: trajectory generator reading points for122
socket
queue *

10

#iiiclu d e< st dio.11 >
#include< sigiia2.h >
i d u d e< 122.3 th .h >

#iiic1 ude< strings.11 >
#include< macros. h>
#include " via. h "

Frame-t Via/ = {

15 #include< cii2u.h>

20

{
{ 1.0) 0.0) O.O},

{ 0.0) 0.0) L O })

30 { 0.0, 1.0, 0.0))
{ - L O , 0.0) 0.0}>
{ 0.0, 0.0, I d } ,

{ 0.0, 0.0,-1.0},

25 { 0.0, 1.0, o.o},

{ - 1 . O) 1.0, l .0} , -HL4LFPI, HALFPI, l . O }

,{

{ 0.0, 0.0, 0.0}, -HALFPI, HALFPI, l .O}
35 ,{

5,602,968
21 22

-37-

{ - L O , 0.0, 0.0>,
{ 0.0, 1.0, 0.0},
{ 1.0; 1.0, 1.0): -HALFPI: HALFPI? 1.0}

>;

#define VIAPTS (i12t) (sizeof(Via)/sizeof(Fraine-t,))

lo ch i - servei-_hostiiai~re[80] = "101-eii ";

izit Tz-aj-Ru12ning = 1; 15

/*signal handler*/
encltraJ () 20

i
Traj -Running = 0;

/***************************************I
main()

{ 30
char buf[8O];
char prompt [SO];

iiit done = 0:
int, child:
irit s-iamun = 0:

char am [SO] :

35

5,602,968
23 24

-38-

get.str("Hostname of s e rve r : ' I , serverhostnanie~
5 server host name) :

/*parent*/
if(! (child=forl~())) {

10 socl<e t server-init (SOC:I<PORT) :
wliile(st.rncmp(g;et,st,r("send v i a f rimes?" ~

" y " ,buf), Ilyll, 1)==0){
1-iaiiuiii = 0:
while(via,iiuiii < 'C'IAPTS) { 15

P ERR0 R.(soclwt; -write(k(Via.[vianurn++]) ~

sizeof (Fr am-t))) ; 1
priiitf("done sending v i a frames. . . "):

1 20

kill(cliiltl, SIGUSR2):
esit(0):

/*child*/
else{

25 }

sigiial(SI GUS R2 .eiidt raj) :
sleep(2):

30

/*open files for data logging*/
pfp = fopen("p. da t " , "w");
vfp = fopen("v. dat" , "w");
mfp = fopell("m. dat". "w");

35

5,602,968
25 26

-39-

tfi-, = fopen(" t .da t" . "w"):
ffp = fopeii("f .da t" , "w");
priiitf("pf p = Ox%x vf p = Ox%x mf p = Ox%x tf p =

so diet -clientp-ini t (server l ios t iiaiiie , S 0 C I\: P 0 RT) :
socliet Ilol)lock():
traj gel1 () ;

/*close data files*/

5 Ox%x, f f p = Os%ls\nlf, pfp , vfp mfp t f p f f p) ;

10

{iiit. i:

static- iiit profile = C''I.%LOID.-lL:

5,602,968
27 28

-40-

static irit, vfn, vfa, vfli;
static iiit inlcg = FALSE;
stvatic iiit atstart = TRITE:

5 StAtiC double t, = 0.0:
static; double ta. = 0.0:
st-atic double t,b = 0.0;
st at i c double t8 a.11~ two t a.ii ;

lo static Yel-t va = ZEROVEL-T;
static Vel-t, v-b = ZER.OVEL-T;
static Vcl-t vbminusxa = ZEROVEL-T;
static Vel-tj sw-roi- = ZEROVELA';

l5 static Vel-t vold = ZEROVEL.-T;
regist.er double cs: ss:
registor double temp;
rcgister clouble s;

20 Vel-t. vtomp;

iiit i:
iiit .j = 0:

25

static double basctiiicx = 0.0;
/* needed only for printing nice graphs*/

/* * * * * * * * ** */

/* * * * * * * * * **/
/*main loop*/

while(Traj _Running) {

35

5,602,968
29 30

-41-

/*needed only for data logging*/
fliriiitf(pfp, I ' %f %f %f \n" . ~ia.[O]. p[O] . via[0] .p [11 .

\ T i a [0] . p 121) : 15

socketiiormal(): /*cause read to block 012 empty queue*/
atstart = TRUE:

fiaiiie,
tau*/

2o goto STA%RT; ~ ~ v l i e n starting traj, need t o get next

25

/* * * * * * ** * * *** * * ** * *** * * * * */
/* trajectory gei2erati.ng time loop

/** * * ** * * * * * ** * * ** ** *** * * * * */

*I
,k (start t obtained fiom tau, at bottom) */

for(: t 5 t,b+tau; t, += TISC){

30

35
s = (t - (ta - t,au)) / twot,au:

I*** * * * * * * ** * * * */

5,602,968
31 32

-42-

/* if in blend */
/* ** * * * * * * *** * * */
if(slO.0 kk ssl 0 kk \-fri>O){

5 inlee, = FALSE;
switch(profile) {

case CYCLOIDAL:
ss = sin(HALFPI*s);
1 'E LS CA4L E (vbiiiiiiusva,ss* ss , vtciiip) :
1 'EL.4D D (\.a .I t enip .v) :

LO

/* * * * * * * * * ** * */
/+ if in leg */
*t * * * * * * * * **/

25
else{

30

35

/************************/

/* * * ** * * * * * * ** * * *** * * * * **/
/* if first step of leg */

if(!inleg-){

/* * * * * * ** * * * * * * * * ** * * ** * * ** * * * * * * * * * * ** * */

/* * *** *** * * * * * ** * *** * * ** * * * * * ** * ** ** *** * */
/* add in iiitegratioii error correction tei-m */

5,602,968
33 34

-43-

5

10

15

20

25

30

35

\'ELSCXLE(\TI>,t -TIKC- ta.vtciilp):
/*not exactly tau, but close*/

FRAi'vI E1 N C (via [vfa] . i F t eiii p .fiicw) .
FRLAMEDIF (fiicw,f.\-teiiip) :
1 -ELSC.%LE(vtemp, 1 O/vk [vfli] .t,vcn oi);
1YZERO(verror.\-);

/*trans. integration works well*/

/*******************I

/**************~****/
/* inchworm values */

START: inleg = TRUE:
T'a = 1-13:

t d = th;
\,fa = \Til,:

/* * * * * * ** * * * ********I * *** * * * * ** */
/* is there another via poiiit? */

if(socl<etLread(kvia[(vfii+l) & 11, sizeof(Fraiiie-t)) <
/* * ** *** * * * * * * ** * *** * * *** * * * * * * */

}
VELZ~ERO(V~)~

else{

so cl~~t,_riol.)loc:k() ;
/*fi-a122e has been read fro121 socket*/

/*cause read 1 2 0 t to block on empty queue*/
vfl3 = (++Vfil) l!L I;

FRAYIEDIF(via[s311] ~ via.[t.fa] ~ vteinp):
~rE,LSC:~~LE(vt,enil> ~ 1 .O/via[vfl)] . t.. vt emp) :

5,602,968
35 36

-44-

5

10

15

/* * * * ** * * * * ** * * ** * ** ** ****/

/* * ** * * * * * * * * *** * * * * * ** * **/
/* get tau; check bozrnds */

VE,L D I F (srb ~\:a. ~ 1) mi iiusva.)
VEL M AXM AG (vbiiii iii~sva, t emp) ;
switcli(profile){

case CYCLOIDAL:
tmo tau = H AL,F P I * t eiiip / A M AS ; br e al; ;

case LINEAR.:
t8wo t au = t eiiip/AMAX; brcali;

1
20

25

/************************/

.
/* check min/max of tau */

if(twot au < TWOT.4UMIN)
else if(twotau > via[vfa].t){

twotau = TI4~'OTAL3IIN;

two t. au = vi a [vfa] . t :
priiit,f("TauA > 0 . 5 tA: W i l l attempt to exceed

twotau = via[vfb] .ti
printf("TauB > 0 . 5 t B : W i l l attemptto exceed

30 J4M'4X.\rl~~) ; > else if(twotau > via[vfb].t.){

-A3lAX. \ d I) ; 1 tau = 0.5*twota~i;
35 if (at s t, a t,) {

ZI t s t x t = FAA L,S E :

5,602,968
37 38

-45-

lxwtinie += t.+tau; /*needed only for data

t. = -l.O*tau:
logging*/

/*set effective starttiizie of

loop*/ }

} /*end if(!inleg)*/

10

15

20

/* * * * * ** * * * * * * ** * ** * * * * * * * * * * * * * */

/* ** * * * * * * * * * * * * * *** ** * **** ** * ** */
,/+ get next pos; trapezoid rule */

'G'EL.I1DD(\.,~old .fdcl) :
VEL S C .4L E (fdel . 0.5 *TI 3 C . fdel) :
FRAhlEIh c'(f.ftlcl,fiien-):
f11cw.t = t,;
f = fnew:
vold =

25

/* * * * * * * * * * *** * * * ** * * * * * * * * * * * * * ** ** */

35

/*print 120a fi-aine vectors to file*/

5,602,968
39 40

-46-

fprintf(ffp, "%f %f %f %f
f .ri [O] , f .II [11 ,f.ii [2]) :

fix-iiitf(ffp. "%f %f %f %f

fpriiitf(ffp. !'%f %f %f %f

f. 1) [a] ~

f.p[2].

f.p[2].

f.o[01 . f. 0 [11 : f. 0 [3]) ;

f . a[01 . f. a 111 f. 421) :

25

30

35

5,602,968
41 42

-47-

11.2 Via.h

/* via.11: trajectory generator include file
*
*/

#define TIIiC 0.01
lo #define TINCIN'I' 100

#define l!'INC 10
#define .4r\.fAS 10.0
#define TBVF (100.0*TIKC)
#define TWOTAV M I Ii
#define M AXVI AF RAM ES 1 0

(2 0 . b TI K C) 15

#clefin(. CYCLOIDXL 0
#clefino LINEAR 1

25
tmypedef st-ruct<(

tlouble \:[:SI :
double IT$];
doi.ible psidot.;
double chiclot.;

30

} Vel-t;

35 typeclef Stl.llCt{

doul1lc 4:
<louhle 0[3] ;

5,602,968
43 44

-48-

doul,le 431:
donlslc 11[3]:
doublc psi; /*arm angle*/

doublc t,;
} Fraziie-t;

5 doiible chi; /*elbow angle*/

lo #define ZEROI’EL-T {{O..O..O.},{O.,O.,O.}.O..O.}

#define VE,LDIF(,AA.-BB,-CC){\
VDIF ((AX) .IT, (-B B) , \r, (- C C) .v) ; \
VDIF((-.AA).w, (-BB).w, (-CC).w):\
(-CC).psidot. = (-AA).psidot. - (-BB).psidot;\
(-GC).c:liidot = (-Ad4).cliiclot, - (-BB).c:hidot;\

25

1
30

#define I 4 L S C!A L E (-AA4,-BB, -C C) { \
register clouble -DD;\
-DD = -BB;\
VSCAL.AR((AA) .v, -DD, (XC) .v) ;\
VSCALAR((i l A) . w , -DD, (-CC).w);\
(_CC).psidot, = (&A) .psidot, * -DD;\

35

5,602,968
45 46

-49-

5,602,968
47 48

-50-

RPRINT((-4.4) .psidot,) : \
RPR.INT((AA).chitlot.);\

1
5

/* * * * * * * ** * * *** * * * * * * * * ** * * * * * * * * * ** ** * *\
* *

lo * k*siii(phi) = -(lid x n i- od x o + ad x a) / 2.0
*

*
cos(p1ii) = ((lid . 11 + od . o + ad . a) / 2.0) - 0.5 *

* *
* A A is filial (desired) fia122e-t k

l5 * -BB is initial (iiieasured) Frame-t *
* -CC is the velocity vector Vel-t

.

*
* *

#define FR.\MEDIF(A\, -BB, -CK'){\
register doulilc -DD[3], -E,E[3], -FF[3]:\
register doii\dc -SPHI, -CPHI, -lLAC+:\
register double -GG, -HH, AI;\
VDIF((-AA).p. (-BB).p, (-CC).v);\
(-C:C).psidot, = (-AA).psi - (-BB).psi;\
(-CK!).chidot = (-,LA).clii - (-BB).clii;\
VCROSS((-AA).n, (-BB).n? -DD);\
VCROSS((-AA).o, (-BB).o, -EE);\
VCROSS((-AA).s: (-BB).a., -FF)I\
VADD3(-DD, -EE, -FF, (-CC).w);\
VSCALXR.((-CC).w. -0.5, (...CC!) .w);\
VMAG((-CC).w, -SPHI);\
if(fa.bs(S P H I) > EPSILON){ \

20

25

30

35

5,602,968
49 50

-51-

l5 #defiiie FR,UdEINC(- A A l _BB. -C'C){\
registel cloi11)lc -RR(3][3]. -1<1<[3]:\
register cloublc P H I . 3 P H I . -CPHI. -\'PHI.\
]/,ADD((-AA).p. (-BB).v. (-C'C').p):\
(-CC).psi (-BB).psidot + (-&lA).psi:\
(-CC).chi = (-BB).cliidot + (-.LA).cIii;\
IrM4G((-BB).w, -PHI):\
if(fabs(-PHI) > EPSILON) (l;SC'.ALE((-BB).n-. l.O/-PHI,

20

25 -Id<):}\
clsc {17ZERO(-IiIi):}\

S P H I = sin(-PHI);\
-C'PHI = tos(-PHI);\
-\'PHI = 1.0 - -C'PHI;\
-RR[O][O] = -I\Ii[O] * -I<I<[O] * -\'PHI + -C'PHI;\
-RR[l][l] = -I<I<[l] * -I<I<[l] * -1'PHI + -CPHI;\
-RRl2][2] = -I<I<[2] + -IiIi[2] * -]'PHI + -CPHI;\
-RR[l][O] = -I<I<[O] T -I<I<[l] * -1-PHI + -1<1<[2] * -SPHI;\
-RR[O][1] = -I<I<[O] * -I<I<[1] * -1T'HI - -1<1<12] * -SPHI:\

30

35

5,602,968
51 52

-52-

-RR[2][0] = -IiIi[2] * _IiI<[O] * -\:PHI - -IiI<[l] * -SPHI:\
-RR[0][2] = -IiI<[2] * -IiI<[O] * -1'PHI + -IiIi[l] * -SPHI:\
-RR[2][1] = -ICI<[1] * 1iIi[2] * -1T'HI + -IiI<[O] * -SPHI:\
-RR[1][2] = - IX[l] * -IiIi[2] * -1T'HI - -I<I<[O] * -SPHI:\
l'-ROT((-k4).ii. -RR. (-CC).ii);\
\'ROT([-%A).o, -RR, (-UC).o);\
I'ROT((AA) .a , -RR, (-CC).a);\

5

1

#dehiie FR.A?ilEPRINT(-.%A){ \
]'PRINT((-kl).ii):\

l'PRI?TT((--A-A).o) \
\;PRINT((-.LA).&):\
L-PRIST((-.ALA) . 11) : \
RPRIliT((,AA).psi);\
RPRIKT((-AA).clii):\
RPRIIXT((-?l.l).t):\

20

}
25

30

35

5,602,968
53 54

-53-

11.3 Macr0s.h

/*s0122e useful macros*/

/+some useful defines*/
#ifiiclcf PI
#define PI 3.141592G.535897931
#endif

lo #clefin(. INVPI 0.3183098%

#ifiidef KALFPI
#define HALFPI 1.570796326’7948965
#endif
#ifiidef TWOPI
#define TI4i-O P I G .2 8 3 18 53 0 T 1 795862
#cndif

15

20

#define EPSILOK 1 . ~ 5
#define LARGERE.AL 1.~10

25
#ifiickf‘ TRUE
#define TRUE 1
#endif
#ifiidef FALSE
#define FALSE, 0
#endif

30

#dcfilie . ~ B S (X) (((s) > 0) ‘I (s) : (-(x))) 35
#clefiiie SGN(s) (((s) == 0) ‘ I 0 : (s) / .-1BS(s))

5,602,968
55 56

-54-

#define DPRINT(message) { \

\
printf(' I (file %s , line %d) ' I , --FILE--, --LINE--); \
printf(II : %s\n'l. message);

5 1

\ #define PERROR(routiiie-call) {
if((routine-call) < 0) {

} \

\
lo perror("ERROR: I routine-call I \n"): \

exit(-l): \

}
15

#define 13ERROR(routine-call){ \
if((routiiie-call) < 0){ \

1 \

printf("ERROR: ' routine-call \n");
exit(- 1):

\
\ 20

1
25 /* * * ** * * * * * * * * * ** * * ** * * * * * ** * * ** * * * */

typetlef doublc 1kc3-t [3] :

30
/*vector operations*/

#define VCROSS(-4,B ,-c) { \
-C[O] = -,4[1]*-B[2] - -4[3]*-B[l]; \

35
-C[1] -,4[2]*-B[O] - -4[O]*-B[2]; \
-C[2] = -.A[O]*-B[I] - -4[l]*-B[O]; \

5,602,968
57 58

-55-

#define I-ZERO(-.A)(\
15 A[O] = o.o;\

A[1] = o.o:\
-.4[2] = o.o:\

}
20

#clcfine 1 'DIF (-.A. -13, _C) { \
30

_C[O] = -.A[O] - -B[O]:\
-C[l] = _.4[1] - -B[1]:\
-C[r)] = -4[2] - -B[2]:\

35 1

5,602,968
59

-56-

#define V14DD3(-A,-B.-C,-D){ \
-D[O] = -40] + -B[O] + -C:[O]:\
-D[1] = -,A[1] + -B[1] + -C[1]:\
-D[2] = --.1[2] + -B[2] + -C[2]:\

lo

1

l5 #define VSCALAR(-LB,-C){\
-C[O] = -401 * -B:\
-C'[1] = --'1[1] * -B:\

#define l'SC.lLE(-.4,4.-BB.-CC'){ \
iegister doublc -DD;\
-DD = -BB;\
I;SC,ALAR (-.AA4,-DD .-CC') :\

25

1

60

5,602,968
61 62

-57-

10

#define c LI P (-M, -ii . -s) { \

1

20 if (-S > -hi) -S = -M:\
else if(-S < -K) -S = -Y:\

25 * * * * * * ** * * * * ** * * * * * * * ** * h * * * * * * * * */

5,602,968
63 64

-58-

#define VITR AX S -HT(-LY, -HH , -kY) { \
i-egist er Vcc3 - t -2 ZZ ; \
VDI F (,Xit -H H . 11. -2ZZ) : \
vDOT(-ZZZ:-HH.n.-~Y[O])r\
[;DOT(-ZZZ,-HH.o.-YY[l]);\
VDOT(-ZZZ,-HH.a,-~’Y[2]);\

30

} 1-1:
35

5,602,968
65 66

What is claimed is: said target frame F, by a displacement corresponding to an
1. A method of controlling a robot manipulator moving integration of said linear target velocity v over at least a

toward a target frame F, with a target velocity v, comprising portion of said blend time interval 27,.
a linear target velocity v with an angular target velocity w, 8. The method of claim 1 wherein the step of computing
to smoothly and continuously divert said robot manipulator 5 a blended global velocity comprises computing a sum of
to a subsequent frame F,, said target frame being associated vo(l-f)+vl(f), wherein f changes with each time increment
with a target transition time To and said subsequent frame 6t.
being associated with a subsequent transition time T,, said 9. The method of claim 8 wherein f is a function which
method comprising the steps of: is approximately zero at the beginning of said blend time

determining a global transition velocity v, necessary to interval and is approximately one at the end of said blend
move said manipulator from said target frame F, to said time interval to provide linear blending.
subsequent frame F, within said subsequent transition 10. The method of claim 8 whercin f is a function which
time TI , Said global tmmition velocity comprising a provides one of: (a) third order polynomial velocity blend-
linear transition velocity VI and an angular transition ing, (b) cycloidal velocity blending.
velocity w,; 11. The method of claim 1 further comprising translating

defining a blend time interval 27, within which the global said manipulator by an incremental translation correspond-
velocity of said robot manipulator is to be changed ing to an integration of said blended linear velocity v over
from a global target velocity v, to said global transition one discrete time segment 6t during each of said discrete
velocity v, and dividing said blend time interval 27, time segments.
into discrete time segments 6t; 12. The method of claim 1 wherein during a preceding

during each one of said discrete time segments 6t of said time interval immediately prior to said blend time interval
blend interval 27,; said manipulator is maintained at an approximately constant

lator as a blend of said global target velocity v, and said performing the
global transition velocity vl, said blended global veloc- 25
ity v being at least approximately equal to said target
global velocity v, at the beginning of said blend time
interval and at least approximately equal to said global
transition velocity v, at the end of said blend time
interval, said blended global velocity v comprising a 30
blended angular velocity w and a blended linear veloc-
ity v, and

(b) rotating said manipulator by an incremental rotation
corresponding to an integration of said blended angular
velocity w over one discrete time segment 61.

2. The method of claim 1 wherein the step of defining a
blend time interval comprises computing said blend time
interval 27, from said global target and transition velocities
v, and v1 and from a predetermined maximum acceleration
to which motion of said manipulator is to be limited.

3. The method of claim 2 wherein the step of computing
said blend time interval comprises dividing a difference
between said global target and transition velocities v, and v1
by said predetermined maximum acceleration.

15

20

(a) computing a blended global velocity v of said manipu- global to said target global vOi

steps:
dividing said preceding time ixGxvd into discrete time

segments 6t;
during each one of said discrete time segments of said

preceding time interval, rotating said manipulator by an
incremental rotation corresponding to an integration of
said target angular velocity wo over one discrete time
segment 6t.

13. The method of claim 12 further comprising translating
Said manipulator by an ir~cremental displacement COrre-
sponding to an integration Of said target linear Velocity Vo

35 over one discrete time segment 6t.
14. The method of claim 1 further comprising specifying

a sequence Of Successive target frames F, associated with
respective transition times Ti for i between 1 and n wherein
n is an integer, and wherein after the end of each blend time

40 interval said target frame is set to said subsequent frame and
said subsequent frame is Set to a next one Of said successive
f m m ~

15. A method of controlling a robot manipulator moving
toward a target frame F, with a target velocity v, comprising

4. The method of claim 2 further comprising a velocity 45 a linear target Velocity V with an angular target Velocity (0,
to Smoothly and COntinUOUSly divert said robot manipulator
to a subsequent frame F,, said target frame being associated
with a target transition time To and said subsequent frame

determining a desired blend exit frame Fo, said step of 5o being associated with a subsequent transition time TI , said
method comprising the steps Of:

dete-ning a global transition velocity VI necessary to
move said manipulator from said target frame F, to said
subsequent frame F, within said subsequent transition
time T,, said global transition velocity comprising a
linear transition velocity v, and an angular transition
velocity w,;

defining a blend time interval 27, within which the global
velocity of said robot manipulator is to be changed
from a global target velocity v, to said global transition
velocity v, and dividing said blend time interval 27,
into discrete time segments 6t;

during each one of said discrete time segments 6t of said
blend interval 2 ~ ~ ;

(a) computing a blended global velocity v of said manipu-
lator as a blend of said global target velocity vo and said
global transition velocity v,, said blended global veloc-

error correction step carried Out about the beginning of said
blend time interval, said velocity error correction compris-
ing the steps of:

determining comprising rotating said target frame F,
through a rotation corresponding to an integration of
said angular target velocity w over at least a portion of
said blend time interval 2 ~ ~ ;

required to move from said target frame F, to said
desired blend exit frame F, within a correction time
interval related to said blend time interval; and

correcting said target velocity by adding to it said error
correction velocity.

5. The method of claim 4 wherein said portion of said
blend time interval is about half said blend time interval.

6. The method of claim 4 wherein said correction time
interval is a difference between said target transition time
and half said blend time interval, T0-7,.
7. The method of claim 4 wherein the step of determining

a desired blend exit frame F, further comprises translating

determining an correction global velocity v, 55

6o

65

5,602,968
67 68

ity v being at least approximately equal to said target said angular target velocity w over at least a portion of
global velocity vo at the beginning of said blend time said blend time interval 27,;
interval and at least approximately equal to said global determining an error correction global velocity v,
transition velocity v1 at the end of said blend time required to move from said target frame Fo to said
interval, said blended global velocity v comprising a s desired blend exit frame F, within a correction time
blended angular velocity w and a blended linear veloc- interval related to said blend time interval; and
ity v, and correcting said target velocity by adding to it said error

(b) changing an actual global velocity of said manipulator correction velocity.
in accordance with said blended angular velocity o. 19. The method of claim 18 wherein said portion of said

16. ne method of claim 15 wherein the step of defining io blend time interval is about half said blend time interval.
20. The method of claim 18 wherein said correction time

interval is a difference between said target transition time
and half said

21. The method of claim 15 wherein the step of computing
a blended global velocity comprises computing a sum of
vo(l-f)+v,(f), wherein f changes with each time increment
6t.

22. The method of claim 21 wherein f is a function which
is approximately zero at the beginning of said blend time
interval and is approximately one at the end of said blend

23. The method of claim 21 wherein f is a function which
provides one of: (a) third order polynomial velocity blend-
ing, (b) cycloidal velocity blending.

a blend time interval comprises computing said blend time
interval 2.r0 from said global target and transition velocities
v, and v1 and from a predetermined maximum acceleration
to which motion of said manipulator is to be limited.

said blend time interval comprises dividing a difference
between said global target and transition velocities v, and v1
by said predetermined maximum acceleration.

18. The method of claim l6 further comprising a velocity
error correction step carried out about the beginning of said 2o time interval to provide linear blending.
blend time interval, said velocity error correction compris-
ing the steps of:

determining a desired blend exit frame F',, said step of
determining comprising rotating said target frame F,

time intervali

17. The method of claim 16 wherein the step of computing 15

through a rotation corresponding to an integration of * * * * *

