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[571 ABSTRACT 

A robot manipulator controller for a flexible manipulator 
arm having plural bodies connected at respective movable 
hinges and flexible in plural deformation modes correspond- 
ing to respective modal spatial influence vectors relating 
deformations of plural spaced nodes of respective bodies to 
the plural deformation modes, operates by computing articu- 
lated body quantities for each of the bodies from respective 
modal spatial influence vectors, obtaining specified body 
forces for each of the bodies, and computing modal defor- 
mation accelerations of the nodes and hinge accelerations of 
the hinges from the specified body forces, from the articu- 
lated body quantities and from the modal spatial influence 
vectors. In one embodiment of the invention, the controller 
further operates by comparing the accelerations thus com- 
puted to desired manipulator motion to determine a motion 
discrepancy, and correcting the specified body forces so as 
to reduce the motion discrepancy. The manipulator bodies 
and hinges are characterized by respective vectors of defor- 
mation and hinge configuration variables, and computing 
modal deformation accelerations and hinge accelerations is 
carried out for each one of the bodies beginning with the 
outermost body by computing a residual body force from a 
residual body force of a previous body and from the vector 
of deformation and hinge configuration variables, comput- 
ing a resultant hinge acceleration from the body force, the 
residual body force and the articulated hinge inertia, and 
revising the residual body force modal body acceleration. 

45 Claims, 7 Drawing Sheets 
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CONTROLLING FLEXIBLE ROBOT ARMS 
USING HIGH SPEED DYNAMICS PROCESS 

ORIGIN OF THE INVENTION 
5 

Thc invention described herein was made in the perfor- 
mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-517 (35 USC 202) in which the 
contractor has elected not to retain title. 

10 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The invention rclates to robot manipulators and more 

particularly to a method and apparatus for controlling robot 15 
arms having flexible links using a high speed recursive 
dynamics algorithm to solve for the accelerations of link 
dcformation and hinge rotations from specified body forces 
applicd to the links. 

2. Background Art 20 

Controlling robot manipulator arms is a well-known prob- 
lem and has been described in a number of publications. The 
invention herein will be described with reference to the 
following publications by referring to each publication by 
number, such as Ref. [l], Ref. [2], or simply [l] or [2], for 25 
example. 

References 

[ l ]  Rodriguez, G., Krcutz, K., and Jain, A., “A Spatial 30 
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Vol. 10, NO. 4, August 1991, pp. 371-381. 

2 
[lo] Jain, A. and Rodriguez, G., “Recursive Dynamics for 

Flexible Multibody Systems using Spatial Operators,” 
JPL Publication 90-26, Jet Propulsion Laboratory, 
Pasadena, Calif., December 1990. 

[ l l ]  Rodriguez, G., Jain, A., and Kreutz, K., “Spatial 
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Journal of the Astronautical Sciences, Vol. 40, No. 1, 

21 Walker, M. W. and Orin, D. E., “Efficient Dynamic 
Computer Simulation of Robotic Mechanisms,” ASME 
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31 Luh, J. Y. S., Walker, M. W., and Paul, R. P. C., 
“On-line Computational Scheme for Mechanical 
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Measurement, and Control, Vol. 102, No. 2, June 1980, 
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71 Kane, T. R., Ryan, R. R., and Banerjee, A. K., 
“Dynamics of a Cantilevered Beam attached to a Mov- 
ing Base,” Journal of Guidance, Control and Dynam- 
ics, Vol. 10, No. 2, March-April 1987, pp. 139-151. 

The invention uses spatial operators to -develop new 

.. 

[2] Jain, A., “Unified Formulation of Dynamics for Serial 
Rigid Multibody Systems,” Journal of Guidance, Con- 35 
troland Dynamics, Vol. 14, No. 3, May-June 1991, pp. 
531-542. spatially recursive dynamics algirithms for flexible-multi- 

s. s. and H ~ ~ ~ ,  E. J., “A ~~~~~~i~~ Fornulation body systems. The operator description of the dynamics is 
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Systems,” Computer Methods in Applied Mechanics 40 models are used for the deformation of each individual body. 
and Engineering, Vol. 71, No. 3, 1988, pp. 293-314. The algorithms are based on two spatial operator factoriza- 

141 Changizi, K. and Shabana, A. A., -A Recursive tions of the system mass matrix. The first (Newton-Euler) 
Formulation for the Dynamic Analysis of Open LOOP factorization of the mass matrix leads to recursive dgo- 
&formable Multibody Systems,” ASME Jl. of Applied rithms for the inverse dynamics, mass matrix evaluation, and 
Mechanics, Vol. 55, No. 3, September 1988, pp. 45 composite-body forward dynamics for the system. The sec- 
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[5] &at, J, E., “Multibody System Order n Dynamics an Operator expression for the mass matrix inverse and to a 
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H. p. “A Digital Computer Program for the Dynamic ics algorithm is much more efficient than the composite- 
Interaction Simulation of Controls and Structure (DIS- body algorithm for most flexible multibody systems. 
COS),” NASA Technical Paper 1219, NASA, May 1. Nomenclature 
1978. We use coordinate-free spatial notation ([l, 21) in this 

[7] Singh, R. P., VanderVoort, R. J., and Likins, P. W., specification. A spatial velocity of a frame is a 6-dimensional 
“Dynamics of Flexible Bodies in Tree Topology-A quantity whose upper 3 elements are the angular velocity 
Computer-Oriented Approach,” Journal of Guidance, and whose lower 3 elements are the linear velocity. A spatial 
Control and Dynamics, Vol. 8, No. 5,  September 1985, force is a 6-dimensional quantity whose upper 3 elements 
pp. 584-590. 60 are a moment vector and whose lower 3 elements are a force 

[8] Rodriguez, G., “Kalman Filtering, Smoothing and vector. 
Recursive Robot Arm Forward and Inverse Dynamics,” A variety of indices are used to identify different spatial 
IEEE Journal of Robotics and Automation, Vol. 3, No. quantities. Some examples are: V,(j,) is the spatial velocity 
6, Deccmber 1987, pp. 624-639. of the j f h  node on the kfh body; V,(k)=col{V,(j,)} is the 

[9] Likins, P. W., “Modal Method for Analysis of Free 65 composite vector of spatial velocities of all the nodes on the 
Rotations of Spacecraft,” A I M  Journal, Vol. 5, July kth body; V,=col{V,(k)} is the vector of spatial velocities of 
1967, pp. 1304-1308. all the nodes for all the bodies in the serial chain. The index 
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k will be used to refer to both the k'" body as well as the k'" 
body reference frame 3 k ,  with the usage being apparent 
from the context. Some key quantities are defined below in 
accordance with FIGS. l a  and lb .  
General Quantities 

:=[XIx E %3X3-the skew-symmetric cross-product 
matrix associated with the 3-dimensional vector x 

' d x  
dt 

x=- - 

the time derivative of x with respect to an inertial frame 
&-the time derivative of x with respect to the body-fixed 

(rotating) frame 
diag{x(k)}-a block diagonal matrix whose k'" diagonal 

element is x(k) 
col{x(k)}-a column vector whose k'" element is x(k) 
l(x,y) E %3-the vector from point/frame x to point/frame 

Y 

the spatial transformation operator which transforms 
spatial velocities and forces between pointdframes x 
and Y 

Individual Body Nodal Data 
n,(k)-number of nodes on the k'" body 
+,-body reference frame with respect to which the 

deformation field for the k'" body is measured. The 
motion of this frame characterizes the motion of the k'" 
body as a rigid body. 

jk-j'" node on the k'" body 
l,(kjJ E %,-vector from 3, to the location (before 

deformation) of the j'" node reference frame on the k'" 
body 

8+jk) E %3-translational deformation of the j'" node on 
the k'" body 

l(k,jk)=l,(k,jk)+8,(jk) E x3-vector from Fk to the loca- 
tion (after deformation) of the j'" node reference frame 
on the k'" body 

&,(id E %3-deformation angular velocity of the j'" node 
on the k'" body with respect to the body frame 3, 

8Jjk) E %3--deformation linear velocity of the j'" node 
on the k'" body with respect to the body frame 3, 

utik) E x6-the spatial displacement of node j,. The 
translational component of u(ik) is 8,(jk). while its time 
derivative with respect to the body frame Fk is 

.7(jk) E %3X3-inertia tensor about the nodal reference 
frame for the j'" node on the k'" body 

pGk) E  vector from the nodal reference frame to the 
node center of mass for the j'" node on the k'" body 

m(j,)-mass of the j'" node of the k'" body 

spatial inertia about the nodal reference frame for the j'" 
node on the k'" body 

MJk) diag{M,(iJ} E ~ 6 n s ( k ) x 6 n s ( k ) - ~ ~ ~ t u r a l  mass 
matrix for the k'" body 

4 
K,(k) E ~6ns'k)x6ns'k)-strUctural stiffness matrix for the 

k'" body 
Individual Body Modal Data 

n,(k)-number of assumed modes for the k'" body 
X(k)=nm(k)+6-number of deformation plus rigid-body 

degrees of freedom for the k'" body 
q(k) E %nm(k)-vector of modal deformation variables for 

the k'" body 
II,!(k) E E6-modal spatial displacement vector for the 

r'" mode at the jk" nodal reference frame 
IIj(k)=[II{(k), . . . , IInmCk<($)]e %6xnm(k)-modal spatial 

influence vector for the jk node. The spatial deforma- 
tion of node j, is given by u(j,)=IIj(k)q(k). 

II(k)=col{II'(k)}E %6ns(k)xnm(k)-the modal matrix for the 
k'" body. The r'" column of II(k) is denoted II,(k) E 

%6ns(k) and is the mode shape function for the r'" 
assumed mode for the k'" body. The deformation field 
for the k'" body is given by u(k)=II(k)q(k), while 

10 

l5 

20 
a (k)=II(k)q (k) . 

M,(k) E 3 X(k)xX'(k)-modal mass matrix for the 

K,(k) E 3 X(k)xX(k)-modal stiffness matrix for the 
k'" body. 

25 k'" body. 
Multibody Data 

30 

35 

40 

45 

50 

55 

60 

65 

N-number of bodies in the serial flexible multibody 
system 

N X =  C m ( k ) .  
k=l 

overall degrees of freedom in the serial chain obtain by 
disregarding the hinge constraints 

n,.(k)-number of degrees of freedom for the k'" hinge 
N(k)=n,(k)+n,(k)-number of deformation plus hinge 

degrees of freedom for the k'" body 

N N =  C N ( k ) .  
k=l 

overall deformation plus hinge degrees of freedom for 
the serial chain. 

d,-node on the k'" body to which the k'" hinge is 
attached 

tk-node on the k'" body to which the (k-1)'" hinge is 
attached 

O,-reference frame for the k'" hinge on the k'" body. 
This frame is fixed to node d,. 

Ok+-reference frame for the k'" hinge on the (k+l)'" 
body. This frame is fixed to node tk+l. 

8(k) E %nr(k)-vector of configuration variables for the k'" 
hinge 

P(k) E %nr(k)-vector of generalized velocities for the k'" 
hinge 

relative spatial velocity for the k'" hinge defined as the 
spatial velocity of frame O, with respect to frame o,+ 

H*(k) E 36x*(k)-joint map matrix for the k'" hinge, 
whose columns comprise the unit vectors of the hinge. 
We have that AJk)=H*(k)P(k). 
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O [nV  + 1)1*9(tk+ik) 
0 $(k+ 1,k) 

E 3 m(k+l)x ) vector of (dcformation plus hinge) generalized configu- 5 

ration variables for the k‘” body 
the interbody transformation operator which relates 
modal spatial forces and velocities between the kth and 
(k+l)Ih bodies 

10 

vector of (deformation plus hinge) generalized veloci- 
ties for the k‘” body lo1 
spatial velocity of the k‘” body reference frame F,, I O 1  
with w(k) and v(k) denoting the angular and linear 
velocities respectively of frame 3, 20 B(k)=[4@,1,), $(k,2,), . . . , W,ns(k))1 E w ~ ~ ~ ~ ~ ( ~ ) -  

relates the spatial velocity of frame 3, to the spatial 
velocities of all the nodes on the k‘” body when the V(O,) E w6-spatial velocity of frame 0, 

v( 0;) E W6-spatial velocity of frame o,+ 
V,(i,) E W6-spatial velocity of the j‘” node on the krh 

a&) E w6-spatial acceleration of the j‘” node on the k‘” 

body is regarded as being rigid 
M E 3 NxN-the multibody system mass matrix 
c E 3 N-the vector of Coriolis, centrifugal and elastic body. 

body. 

25 

forces for the multibody system 
2. Introduction 

The invention uses spatial operators ([ 1, 21) to formulate 
the dynamics and develop efficient recursive algorithms for 

30 flexible multibody systems. Flexible spacecraft, limber 
space manipulators, and vehicles are important examples of 
flexible multibody systems. Key features of these systems 
are the large number of degrees of freedom and the com- 
plexity of their dynamics models. 

Some of the goals of the invention are: (1) providing a 
high-level architectural understanding of the structure of the 
mass matrix and its inverse; (2) showing that the high-level 
expressions can be easily implemented within the very well 
understood Kalman filtering and smoothing architecture; (3) 

g(k)-modal gyroscopic forces for the k‘*- 40 developing very efficient inverse and forward dynamics 
recursive algorithms; and (4) analyzing the computational 
cost of the new algorithms. Accomplishing these goals adds 
to the rapidly developing body of research in the recursive 
dynamics of flexible multibody systems (see [3, 4, 51). 

It is assumed that the bodies undergo small deformations 
so that a linear model for elasticity can be used. However, 
large articulation at the hinges is allowed. No special 
assumptions are made regarding the geometry of the com- 
ponent bodies. To maximize applicability, the algorithms 

50 developed here use finite-element and/or assumed-mode 
models for body flexibility. For notational simplicity, and 
without any loss in generality, the main focus of this 
specification is on flexible multibody serial chains. Exten- 
sions to tree and closed-chain topologies are discussed. 

In Section 3 we derive the equations of motion and 
recursive relationships for the modal velocities, modal 
accelerations, and modal forces. This section also contains a 
derivation of the Newton-Euler Operator Factorization of 
the system mass matrix. A recursive Newton-Euler inverse 

60 dynamics algorithm to compute the vector of generalized 
forces corresponding to a given state and vector of gener- 
alized accelerations is described in Section 4. 

In Section 5, the Newton-Euler factorization of the mass 
matrix is used to develop a partly recursive composite-body 

65 forward dynamics algorithm for computing the generalized 

puting the multibody system mass matrix. This forward 

V,(k) = ( ;;;; ) E g 

modal spatial velocity of the k‘” body 

the k‘“ body 

erations for the kfh body 

a,,(k)=V,(k) E % ;iJ(k)-modal spatial acceleration of 35 

a,:(k) E % W(k)-modal 

b,(k) E 

f,,(k) E w m(k)-modd Spatial force of interaction 

f&) E R6-spatial force at node j, 
f(k) E w6-cffective spatial force at frame 3, 

T(k) E 3 N(k)-generalized force for the kih body 
H F(k)=H(k)$( 0,, k) E Wn,w~6-joint map 

and centrifugal 

body 

between the k‘” and (k+l)‘” bodies 
45 

referred to frame 3, for the kih hinge 

I -[7cd(k)l* E W N ( k ) x m ( L ) -  
(k)= ( 0 Hf(k) ) 

55 

(deformation plus hinge) modal joint map matrix for 
thc k‘” body 

d(k) = ( ) E W g ( k ) x a  
$(ktk) 

rclates spatial forces and velocities between node t, and 
frame 3, 

forces and velocities between node t,, and frame 3, 

B(k+lqk)=[o, (P(tk+l> k)l E %6x T(k)-relates accelerations of the system. The recursive part is for corn- 
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dynamics algorithm is in the vein of well-established 
approaches ([6, 71) which require the explicit computation 
and inversion of the system mass matrix. However, the new 
algorithm is more efficient because the mass matrix is 
computed recursively and because the detailed recursive 5 
computations follow the high-level architecture (i.e. road- 
map) provided by the Newton-Euler factorization. 

In Section 6 we derive new operator factorization and 
inversion results for the mass matrix that lead to the recur- 
sive articulated-body forward dynamics algorithm. A new 10 
mass matrix operator factorization, referred to as the Inno- 
vations factorization, is developed. The individual factors in 
the innovations factorization are square and invertible opera- 
tors. This is in contrast to the Newton-Euler factorization in 
which the factors are not square and therefore not invertible. 15 
The Innovations factorization leads to an operator expres- 
sion for the inverse of the mass matrix. Based on this 
expression, in Section 7 we develop the recursive articulated 
body forward dynamics algorithm for the multibody system. 
This algorithm is an alternative to the composite-body 20 
forward dynamics algorithm and requires neither the explicit 
formation of the system mass matrix nor its inversion. The 
structure of this recursive algorithm closely resembles those 
found in the domain of Kalman filtering and smoothing 

In Section 8 we compare the computational costs for the 
two forward dynamics algorithms. It is shown that the 
articulated body forward dynamics algorithm is much more 
efficient than the composite body forward dynamics algo- 
rithm for typical flexible multibody systems. In Section 9 we 30 
discuss the extensions of the formulation and algorithms in 
this specification to tree and closed-chain topology multi- 
body systems. 

([SI). 25 

SUMMARY OF THE INVENTION 35 

A robot manipulator controller for a flexible manipulator 
arm having plural bodies connected at respective movable 
hinges and flexible in plural deformation modes correspond- 
ing to respective modal spatial influence vectors relating 4o 
deformations of plural spaced nodes of respective bodies to 
the plural deformation modes, operates by computing articu- 
lated body quantities for each of the bodies from respective 
modal spatial influence vectors, obtaining specified body 
forces for each of the bodies, and computing modal defor- 45 
mation accelerations of the nodes and hinge accelerations of 
the hinges from the specified body forces, from the articu- 
lated body quantities and from the modal spatial influence 
vectors. In one embodiment of the invention, the controller 
further operates by comparing the accelerations thus com- 5o 
puted to desired manipulator motion to determine a motion 
discrepancy, and correcting the specified body forces so as 
to reduce the motion discrepancy. 

Computing the articulated body quantities is carried out 
for each body beginning at the outermost body by comput- 55 
ing a modal mass matrix, computing an articulated body 
inertia from the articulated body inertia of a previous body 
and from the modal mass matrix, computing an articulated 
hinge inertia from the articulated body inertia, computing an 
articulated body to hinge force operator from the articulated 60 
hinge inertia, computing a null force operator from the 
articulated body to hinge force Operator. This is followed by 
revising the articulated body inertia by transforming it by the 
null force operator. 

respective vectors of deformation and hinge configuration 
variables, and computing modal deformation accelerations 

The manipulator bodies and hinges are characterized by 65 

508 
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and hinge accelerations is carried out for each one of the 
bodies beginning with the outermost body by computing a 
residual body force from a residual body force of a previous 
body and from the vector of deformation and hinge con- 
figuration variables, computing a resultant hinge accelera- 
tion from the body force, the residual body force and the 
articulated hinge inertia, and then, for each one of the bodies 
beginning with the innermost body, by computing a modal 
body acceleration from a modal body acceleration of a 
previous body, computing a modal deformation acceleration 
and hinge acceleration from the resulting hinge acceleration 
and from the modal body acceleration transformed by the 
body to hinge force operator. 

Computing a resultant hinge force is followed by revising 
the residual body force by the resultant hinge force trans- 
formed by the body to hinge force operator, and computing 
a modal deformation acceleration and hinge acceleration is 
followed by revising the modal body acceleration based 
upon the deformation and hinge acceleration. The comput- 
ing is performed cyclically in a succession of time steps, and 
the vector of deformation and hinge configuration variables 
is computed from the modal deformations and hinge accel- 
erations of a previous time step, or is derived by reading 
robot joint sensors in real time. 

In a preferred embodiment, the articulated body inertia, 
the articulated hinge inertia, the body to hinge force opera- 
tor, the null force operator, the body force, the residual body 
force, the resultant hinge acceleration and the resultant hinge 
force are each partitioned into free and rigid versions. This 
embodiment operates by computing the flexible version of 
the resultant hinge force from the applied body force, and 
computing the flexible version of the residual body force and 
from the rigid version of the residual body force transformed 
by the modal spatial influence vector. The articulated body 
inertia is decomposed into rigid-free and rigid-rigid coupling 
components, and the rigid version of the residual body force 
is revised based upon a function of the rigid-rigid and 
rigid-free coupling components of the articulated body iner- 
tia and a flexible version of the articulated body inertia. This 
embodiment decomposes the manipulator’s modal mass 
matrix into rigid-free and rigid-rigid coupling components 
and computes the rigid-rigid and rigid-free coupling com- 
ponents of the articulated body inertia from respective ones 
of the rigid-rigid and rigid-free coupling components of the 
modal mass matrix. 

In this embodiment, free and rigid versions of a defor- 
mation and hinge modal joint map matrix are computed for 
each body so that the flexible version of the articulated hinge 
inertia is computed from the articulated body inertia trans- 
formed by the flexible version of the corresponding defor- 
mation and hinge modal joint map matrix, the rigid version 
of the articulated body inertia is computed from a function 
of the rigid-rigid and rigid-free coupling components of the 
articulated body inertia transformed by the flexible version 
of the corresponding deformation and hinge modal joint map 
matrix, the rigid version of the articulated hinge inertia is 
computed from the rigid version of the articulated body 
inertia, and the rigid version of the body to hinge force 
operator is computed from the rigid versions of the articu- 
lated body inertia and the articulated hinge inertia. The free 
and rigid versions of the deformation and hinge modal joint 
map matrix are formed by computing a joint map matrix 
corresponding to unit vectors of the hinges and computing 
the deformation and hinge modal joint map matrix from the 
joint map matrix and from the modal spatial influence 
vector. 

In this embodiment, the flexible version of the resulting 
hinge acceleration is computed from the flexible versions of 
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the articulatcd hinge inertia and resulting hinge force, and 
the rigid version of the resulting hinge acceleration is 
computed from the rigid versions of the articulated hinge 
inertia and rcsulling hinge force. The residual body force is 
revised in this embodiment by adding to the residual body 5 
force a product of the rigid versions of the resultant hinge 
force and the body to hinge force operator. 

BRIEF DESCRIPT1oN OF THE 

body is attached on the inboard side to the (k+l)Ih body via 
the k'h hinge, and on the outboard side to the (k-l)'h body 
via the (k-l)'h hinge. On the krh body, the node to which the 
outboard hinge (the hinge) is attached is referred to 
as node t,, while the node to which the inboard hinge (the kfh 
hinge) is attached is denoted node dk ' 'IlUS the kfh hinge 
couples together nodes d, and t,+l. Attached to each of these 
pair of adjoining nodes are the kth hinge reference frames 
denoted ok and 051, respectively. The number of degrees 
of freedom for the k hinge is denoted n,(k). The vector of 

FIG. la is a simplified diagram of a portion of a robot configuration variables for the kfh hinge is denoted B(k) 
E %nr(k), while its vector of generalized speeds is denoted manipulator having flexible links, and illustrating the coor- p(k) E %nr(k). In general, when there are nonholonomic hinge dinate system employed in one embodiment of the inven- constraints, the dimensionality of p(k) may be less than that tion. of B(k). For notational convenience, and without any loss 

FIG. l b  is a simplified diagram illustrating the finite l5 generality, it is assumed here that the dimensions of the 
element analysis employed in the invention, in which the vectors e@) and p(k) are equal, In situations, p(k) is 

flexible link follows a well-recognized pattern for each quasi-coordinates simplifies the dynamic& equations of 
2o motion and an alternative choice for p(k) may be preferable. mode of flexibility. 

FIG. 2 is a block diagram illustrating how the articulated The relative spatial velocity A,(k) across the hinge is given 
body quantities arc produced in one embodiment of the by H*(k)P(k), where H*@) denotes the joint map matrix for 
invention. the k'" hinge. 

FIG. 3 is a block diagram illustrating an articulated body Assumed modes are typically used to represent the defor- 
forward dynamics algorithm for flexible link manipulators in 25 mation of flexible bodies, and there is a large body of 
accordance with the present invention. literature dealing with their proper selection. There is how- 

FIG. 4 is a block diagram illustrating the process of the ever a close relationship between the choice of a body 
invention for controlling a robot manipulator having flexible reference frame and the type of assumed modes. The corn- 
links. plete motion of the flexible body is contained in the knowl- 

FIGS. 5u and 5b constitute a block diagram illustrating a 30 edge Of the motion Of the body reference frame and the deformation of the body as seen from this body frame. In the preferred embodiment of the articulate body forward multibody context, it is often convenient to choose the dynamics algorithm employed in the process of FIG. 4. 
location of the k'" body reference frame 3, as a material FIG. 6 is a simplified schematic block diagram of appa- point on the body and fixed to node d, at the inboard hinge. ratus embodying the present invention. 

35 For this choice, the assumed modes are cantilever modes and 
node d, exhibits zero deformation (u(dk)=O). Free-free 

DETAILED DESCRIPTION OF THE INVENTION modes are also used for representing body deformation and 
3. Equations of Motion for Flexible Serial Chains are often preferred for control analysis and design. For these 

In this section, we develop the equations of motion for a modes, the reference frame 3, is not fixed to any node, but 
serial flexible multibody system with N flexible bodies. 40 is rather assumed to be fixed to the undeformed body, and as 
Each flexible body is assumed to have a lumped mass model a result all nodes exhibit nonzero deformation. The dynam- 
consisting of a collection of nodal rigid bodies. Such models ics modeling and algorithms developed here handle both 
arc typically developed using standard finite element struc- types of modes, with some additional computational sim- 
turd analysis software. The number of nodes on the k" body plifications arising from Eq. (1) when cantilever modes are 
is denoted n,(k). The j f h  node on the kfh body is referred to 45 used. For a related discussion regarding the choice of 
as thc j;" node. Each body has associated with it a body reference frame and modal representations for a flexible 
rcfcrence frame, denote 3, for the k'" body. The deforma- body see 1'1. 
tions of the nodes on the body are described with respect to here that a set Of nm(k) assumed modes has 
this body rcference frame, while the rigid body motion ofthe been chosen for the kfh body. Let II:(k) E w6 denote the 

50 modal spatial displacement vector at the jkh node for the rfh 
mode. The modal spatial displacement influence vector IIJ(k) k'" body is characterized by the motion of frame 3k 

E %6xnm(k) for the j," node and the modal matrix JI(k) Thc 6-dimensional spatial deformation (slope plus trans- 
lational) of node j, (with respect to frame F ~ )  is denoted E %6nS(k)xnm(k) for the k'j1 body are defined as follows: 
u(j,) E 8'. The overall deformation field for the krh body is 

from frame Fk to the reference frame on node j, is denoted 
@j,) E w3. 

Of plural spaced nodes along the length Of a simply 8. However there are many cases where the use of 

we 

defined as the vector u(k)=col{u(j,)} E %6ns(k). The vector 55 II'(k)=[=II/Q. . . IInmOk{(k)] and II(k)=col{IY(k)} 

The r'h column of II(k) is denoted II,(k) and defines the 

that for 
with M,(k,) E %6x6 denoting the inertia of the mode shape for the fl'' assumed mode for the kth body. Note 

j f h  node, the structural mass matrix for the klh body M,(k) 
is thc block diagonal matrix diag{M,(j,)} E %6ns(k)x6n8(k) . 60 
The structural stiffness matrix is denoted K,(k) E x6n3(k)x 
6 d k ) .  Both M,(k) and are typically generated using 
finite element analysis. 

numbered in increasing order from tip to base. We use the 65 given by 
terminology inboard (outboard) to denote the direction along 

modes we have 

II:'(kj=O for r=l . . . n,(k) (1) 

With q(k) E %nm(k) denoting the vector of modal deformation 
variables for the kfh body, the spatial deformation of node j, 

AS shown in FIG. la, the bodies in the Serial chain are and the deformation field u(k) for the kth body are 

the serial chain towards (away from) the base body. The krh uWIY(k)MW and u(k)=II&)q(k) (2) 
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The vector of generalized configuration variables v(k) and V( O,)=V( O,+)+H*(k)P(k) 
generalized speeds X(k) for the kfh body are defined as 

The spatial velocity V(k) of the kfh body reference frame is 
(3) given by 

5 
B(k) A ( ::i; ) E wNW and ~ ( k )  A ( ) E i~tN(ai 

V(k) = $*( fLk)V( Ok) - (4 (9) where N(k) mm(k)+nr(k). The overall vectors of general- 

the serial multibody system are given by 
ized configuration variables v and generalized speeds X for = $*( %w( % - n W l ( k )  

Putting together Eq. (S), Eq. (7), Eq. (8) and Eq. (3.1), it 
v&col{v(k)} e 3 Nand XLcol{X(k)} €8  N (4) follows that 

where 
v(k)=$*(k+l,k)v(k+l)+@*(kk+l, k)V(k+l)q(k+l)+@*( o,, 

k)H*(k)PO-ll"Oll(k) (10) 

15 Thus, with X(k)am(k)+6, and using Eq. (lo), the modal 
spatial velocity V,(k) E X(k) for the kfh body is given by 

(11) 

where the interbody transformation operator @ ( Y )  and the 
mxb.1 joint map matrix %(k) are defined as 

denotes the overall number of degrees of freedom for the 
multibody system. The state of the multibody system is 
defined by the pair of vectors {v,X}. For a given system state 2o 
{v,X}, the equations of motion define the relationship 
between the vector of generalized accelerations X and the 
vector of generalized forces T E 8 N for the system. The 
inverse dynamics problem consists of computing the vector 
of generalized forces T for a prescribed set of generalized 25 

accelerations X. The forward dynamics problem is the 
converse one and consists of computing the set of general- 
ized accelerations X resulting from a set of generalized 
forces T. The equations of motion for the system are 

v,(k) A ( :;: ) =@*(k+  l,k)v,,,(k+ 1) + %*(k)X(k)E 3X(k) 

0 lrr'(k+l)l*wk+l,k) (12) 

(13) 

@ ( k +  1,k)A 
$(k + 1,k) 

1 -[@Q)l* E w N (!4x X (4 
H ( k ) 4  ( 0 H f ( k )  ) 

where 
developed in the remained of this section. 

3.1 Recursive Propagation of Velocities 
Let V(k) E g6 denote the spatial velocity of the k'h body 

node t,, (on the inboard of the kfh hinge) is related to the 
spatial velocity V(k+l) of the (k+l)'* body reference frame 
3k+l, and the modal deformation variable rates q(k+l) as 

30 H 3 ( k )  AH(k)@( O,,k) E g"dk)x6 

Note that 
reference frame F~ The spatial velocity V,(t,,) E g6 of @(k+l,k)= d ( k + l )  B(k+l,k) 

35 
where 

and = @*(k + l,rk+,)V(k + 1) + ~ ' ( k  + l)q(k + 1 )  

B ( k  + I,k)P[O, $(fk+,.k)lE W 6 X m W  
The spatial transformation operator $(x,y) E w6x6 above is 
defined to be 

Also, the modal joint map matrix N(k) can be partitioned as 

(16) 
(6) 45 

X ( k )  = tz E 3 g ( k N  g ( k )  0 @(x,y) = ( $17) ) 
where l(x,y) E 3' denotes the vector between the points x 
and y. Note that the following important (group) property where 
holds: 

cn 
%~k)LII,-[IId(k)]*] E gnm(r)x XCk) and N,(k) C. IO, H(k)@( 0, 

JU 
k)]e %n'(x)x 

$ ( X , Y ) @ ( Y 3 Z ) = m , 4  

With 
for arbitrary points x, y and z. As in Eq. (S),  and throughout 
this specification, the index k will be used to refer to both the 
kfh body as well as to the kfh body reference frame 3k with 55 

N 

k l  
= Z "0, 

the specific usage being evident from the context. Thus for 
instance, V(k) and $(k,tk) are the same as V( F ~ ) ,  and $( 3k, we define the spatial operator eo as 
tn) respectively. 

side of the k'" hinge) is related to V,(t,,) via 
The spatial velocity V( ok+) of frame ok+ (on the inboard 6o 

P 
V( 0,+)=4*(t,+1* o,)vs(r,+l) (7) 

Since the relative spatial velocity A,(k) across the kfh hinge 65 

is given by H*(k)p(k), the spalial velocity V( ok) of frame 
ok on the outboard side of the kfh hinge is 

0 0 0 0  
@(2,1) 0 . .  . o  
0 @(3,2) . . . 0 

. .  
. .  

0 0 . . . @ ( N , N - l )  
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Using the fact that &a is nilpotent (Le. E@~=O),  we define 
the spatial operator CD as 

Q A  [ I -  8*14 = 

in this case n,(k)=O (and II(k) is null). 
Since the vector l(kj,) from 3, to node j, depends on 

the deformation of the node, the operator B(k) is also 
deformation dependent. From Eq. (23) it follows that while 
the block Mmf(k) is deformation independent, both the 

(19) 

5 I + & *  + . . . + E $ - '  = 

Q(N,1) Q(N,2) . . . I 

where 

Q(i,j)t!Q(i,i-l) . . . Q(i+lj) for i>j 

blocks M,,J'(k) and M,"(k) are deformation dependent. The 
detailed expression for the modal mass matrix can be 
defined using modal integrals which are computed as a part 
of the finite-element structural analysis of the flexible bod- 
ies. These expressions for the modal integrals and the modal 
mass matrix of the k'" body can be found in [lo]. Often the 
deformation dependent parts of the modal mass matrix are 
ignored, and free-free eigen-modes are used for the assumed 

15 modes II(k). When this is the case, M,/'(k) is zero and 
M/&) is block diagonal. 

: B X X R  

3.3 Recursive Propagation of Accelerations 
Differentiating the velocity recursive equation, Eq. (1 l), 

we obtain the following recursive expression for the modal Also dcfine the spatial operator 1-1 t! diag { ?t(k)} E 8 N x  X .  

E 8 X ,  from Eq. (11) it follows that the spatial operator 
Using these Operators, and defining Vm. cO1{vm(k)} 20 acceleration a&) E X(k)for the k'h body: 

cxpression for V,,, is given by (24) 

v,,=Q* w x  (20) 

25 Q*(k + l,k)c&(k + 1) + N*(k)X(k) + %(k) 

3.2 Modal Mass Matrix for a Single Body 
With V,O,) E s6 denoting the spatial velocity of node j,, 

and V,(k) Acol{V,(j,)} E w ~ ~ ~ ( ~ )  the vector of all nodal spatial 

where a(k)=V&), and the Coriolis and centrifugal accelera- 
tion term a,(k) E % T(k)is given by 

velocities for the k'" body, it follows (see Eq. (5))  that d%*(k)  X ( k )  (25) + 1,k) V& + 1) +- a m & ) =  dt dr 
30 

V,(k)=B*(k)V(k)+ ri (k)=[ll(k), B*(k)lV,(k) (21) 
The detailed expressions for a,(k) can be found in [lo]. 
Defining a,=col(a,(k)} E 8 Xand am,=col(a,(k)} E 3 X ,  
and using spatial operators we can rexpress Eq. (24) in the 

(26) 

The vector of spatial accelerations of all the nodes for the kfh 
(23) 40 body, a,(k)acol{a,(iJ} E %6ns(k), is obtained by differenti- 

ating Eq. (21): 

where 

B(k)A[+(k,lJ, $(k,&), . . $(k,n,(k))l E %6X6ndk) (22) 35 form 
Since M,(k) is the structural mass matrix of the k'" body, and 
using Eq. (21), the kinetic energy of the klh body can be 
written in the form 

a,=Q*( 'H*X+a,) 

%V,*(k)M,(k)V,(k) = %V,*(k)M,(k)V,(k) 

where 

M&) 5% ( "B;k:' ) Ms(k)[n(k) ,  B*Wl = 

a,(k)=Vs(k)=[Wk), B*(k)la,(k)+a(k) (27) 

where 
45 

(28) 
a(k) B col{ a(ik)} = d[n(k)' B*(k)' v,(k) E % W k )  dt 

3.4 Recursive Propagation of Forces 
Let f(k-I) E w6 denote the effective spatial force of 

interaction, referred to frame 3,-], between the k'" and 
(k-l)'h bodies across the &-l)lh hinge. Recall that the 
(k-1)'" hinge is between node t, on the kZh body and node 

Corresponding to thc generalized speeds vector X(k), M,(k) &-I on the body. With f&)E W6 denoting the Spatial 
as defined above is the modal mass matrix of the kfh body. 55 force at a node j,, the force balance equation for node t, is 
In the block partitioning in Eq. (23), the superscripts f and given by 

5o 

1 n*(k)M,(k)n(k) rI*(k)M,(k)B*(k) 

B(k)Mdk)n(k)  B ( k ) M s ( W * ( k )  

ww h a k )  

( 
= ( ) E  %Xmk)xX(r) 

M$k) 

r denote the- flexible i d  rigid blocks respectively. Thus 
MmB(k) represents the fledflex coupling block, white 
M/(k) thc fledrigid coupling block of M,(k). We will use 
this notational convention through this specification. This 60 
partitioning is rcadily carried out by simply recognizing that 
the Mmf(k) block is a square matrix of dimensionality equal 
to the number of deformation modes while the M,"(k) 
block is a square 6-by-6 matrix. Note that M,"(k) is 
prccisely the rigid body spatial inertia of the kfh body. 65 
Indeed, M,,(k) reduces to the rigid body spatial inertia when 
the body flexibility is ignored, i.e., no modes are used, since 

f,(t,)+(t,k-l )Ak-1 )+M, (ba , (~ , ) tb (b+~~r , )  (29) 

For all nodes other than node't, on the krh body, the force 
balance equation is of the form 

~s(i,)=~s(i,)a,(i,)+b (iX)+fK(iX) (30) 

In the above f&k)=K,(k)u(k) E %6ns(k) denotes the vector of 
spatial elastic strain forces for the nodes on the k'" body, 
while bQ,) E %6 denotes the spatial gyroscopic force for the 
node j, and is given by 
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However the common practice (also followed here) of using 
a constant, deformation-independent structural stiffness 
matrix leads to the anomalous situation wherein Eq. (39) 
does not hold exactly. we ignore these fictitious extra terms 
on the left-hand side of Eq. (39). 

The velocity-dependent bias term b,(k) is formed using 

( 3 1 )  

the angular velocity of node j,. 

) E 3 6  
bGk) = ( ; O k ) T G k ) N i k )  

mu&Gk)GGk)pGk) 

where E %3 

Collecting together the above equations and defining 5 

C(k,k - 1) A 

and 

0 

k -  1) 

0 

(32)  modal integrals generated by standard finite-element pro- 
grams, and a detailed expression for it is given in [lo]. From 
Eq. (36), the operator expression for the modal spatial forces 

10 f, r?col{f,(k)} E 3 W for all the bodies in the chain is given E %6nS(k)x6 

by 

f,=Q(M,a,+b,+K,v) (40) 

15 where 
M,L'diag{M,(k)} E W W x  r, K,Pdiag{K,(k)} E W X  W ,  

and b, L'col{b,(k)} E 8 m 
it follows from Eq. (29) and Eq. (30) that 

From the principle of virtual work, the generalized forces 
(33)  2o vector T E 8 N for the multibody system is given by the f,(k)=C(k,k-l)f(k-l )+M,(k)a~(k)+b(k>(k)~(k)  

where f,(k) r?col{f,(jJ) E x6"s(k). Noting that 
expression 

T= Hf, 

f(kkB(k)f,(k) ( 3 4 )  3.5 Operator Expression for the System Mass Matrix 
25 Collecting together the operator expressions in Eq. (20), 

Eq. (26), Eq. (40) and Eq. (41) we have: and using the principle of virtual work, it follows from Eq. 
(21) that the modal spatial forces f,(K) E W(k)for the 
klh body are given by (42) 

and using Eq. (23), Eq. (27), and Eq. (35) leads to the where 
following recursive relationship for the modal spatial forces: M P 'HQM,@* H* E % Nx Nand CP 'HcD(M,Q*~+b,+ 

and the modal stiffness matrix 

(36)  40 
K,V) EW N (43)  

Here M is the system mass matrix for the serial chain and 
the expression %@M,@* H* is referred to as the Newton- 
Euler Operator Factorization of the mass matrix. c is the 

45 vector of Coriolis, centrifugal, and elastic forces for the 
system. 

It is noteworthy that the operator expressions for M and 
c are identical in form to those for rigid multibody systems 
(see [l, 111). Indeed, the similarity is more than superficial, 

50 and the key properties of the spatial operators that are used 
in the analysis and algorithm development for rigid multi- 
body systems also hold for the spatial operators defined here. 
As a consequence, a large part of the analysis and algorithms 
for rigid multibody systems can be easily carried over and 

55 applied to flexible multibody systems. This is the approach 
adopted here. 

( 3 7 )  

(38)  4. Inverse Dynamics Algorithm 
This section describes a recursive Newton-Euler inverse 

dynamics algorithm for computing the generalized forces T, 
The expression for K,(k) in Eq. (38) uses the fact that the 60 for a given set of generalized accelerations X and system 
columns of B*(k) are indeed the deformation dependent state {v, X}. The inverse dynamics algorithm also forms a 
rigid body modes for the kth body and hence they do not part of forward dynamics algorithms such as those based 
contribute to its elastic strain energy. Indeed, when a defor- upon composite body inertias or the conjugate gradient 
mation dependent structural stiffness matrix K s Q  is used, method ([121). 
we have thal Collecting together the recursive equations in Eq. ( l l ) ,  

Eq. (24), Eq. (36) and Eq. (41) we obtain the following 
65 

K,(k)B*(kM ( 3 9 )  recursive Newton-Euler inverse dynamics algorithm: 
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The structure of this algorithm closely resembles the recur- 
sive Ncwton-Euler inverse dynamics algorithm for rigid 
multibody systems (see [13, 11). All external forces on the 

the generalized forces vector T(k) corresponding to the 
hinge actuator forces T'(k) can be set, white the remaining 
generalized forces Tf(k) are zero. in COntrast With rigid 

k'h body are handled by absorbing them into the gyroscopic 2o multibody systems, flexible multibody systems are under- 
force term b,,(k). Bast mobility is handled by attaching an actuated systems ([141), since the number of available 
additional 6 degrees of freedom hinge between the mobile actuators is less than the number Of motion degrees Of 

freedom in the system. For such under-actuated systems, the 
inverse dynamics computations for the generalized force T 

erations X form a consistent data set. For a consistent set of 
generalized accelerations, the inverse dynamics computa- 
tions will lead to a generalized force vector T such that 
T/c.)=o, 
5. Composite Body Forward Dynamics Algorithm 

The forward dynamics problem for a multibody system 
requires computing the generalized accelerations X for a 
given vector of generalized forces T and state of the system 
{v,X}. The composite body forward dynamics algorithm 
described below consists of the followings steps: (a) com- 

35 puting the system mass matrix M ,  (b) computing the bias 
vector C, and (c) numerically solving the following linear 
matrix equation for X: 

base and an inertial frame. 

and in (12) and 
recUrsions in (4) can be furtller simplified. Using block 
partitioning and the superscripts and as before to denote 
the flexible and rigid components or versions of the various 
quantities, we have that 

By taking advantage Of the special structure Of a(k+l,k) are meaningful only when the prescribed generalized accel- 
(13), the Newton-Eu1er 25 

30 

fm(k) = ("@) ) , and T(k) = ( ) fm'(k) 

It is easy to verify that Eq. (45) below is a simplified 
version of the inverse dynamics algorithm in Eq. (44). 

\ endloop 

(46) In the foregoing algorithm, q(k) and q(k) are the modal M&T- C 
deformation velocities and accelerations, respectively, com- 
putcd from the results obtained for a previous time step by 
a forward dynamics algorithm of the type described below 65 Later in Section 6 we describe the recursive articulated body 
herein. Flcxible multibody systems have actuators typically forward dynamics algorithm that does not require the 
only at the hinges. Thus for the k"' body, only the subset of explicit computation of either M or C. 
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It is evident from Eq. (46) that the components of the 
vector c are the generalized forces for the System when the 

computed using the inverse dynamics algorithm in Eq. (45). 
We describe next an efficient composite-body-based recur- 5 

sive algorithm for the computation of the mass matrix M .  
This algorithm is b i ~ ~ d  upon the following lemma which 
contains a decomposition of the mass matrix into block 
diagonal, block upper triangular and block lower triangular 
components. to incorporate. 
Lemma 5.1 

element is computed, a new recursion to compute the 
off-diagonal elements is spawned. The structure of this 

generalized x are zero' Thus can be algorithm closely resembles the composite rigid body alga- 

rithm for computing the mass matrix of rigid multibody 
systems ([12, 81). Like the latter, it is also highly efficient. 
Additional computational simplifications of the algorithm 

arising from the sparsity of both n,(k) and n,(k) are easy 

6. Factorization and Inversion of the Mass Matrix 
Define the body R(k) LR T(k)x An operator factorization of the system mass matrix M ,  

T(k)recursively for the bodies in the as 15 denoted the Innovations Operator Factorization, is derived 
follows: 

in this section. This factorization is an alternative to the 
Newton-Euler factorization in Eq. (43) and, in contrast with 
the latter, the factors in the Innovations factorizations are 

20 square and invertible. Operator expressions for the inverse 

of these factors are developed and these immediately lead to 
an operator expression for the inverse of the mass matrix. 

(47) R(0) = 0 
f o r k =  1 . .  . N 

end loop 

R(k) = @(kk - 1)R(k - l)@*(k,k - 1 )  + Mm(k) 

define Rediag(R(k)) E 3 mx T .  Then we have the The operator factorization and inversion results here closely 
resemble the corresponding results for rigid multibody sys- 

following spatial operator decomposition 25 

OM,,,@ c = R + ~ R + R ~  * 

where @&@-I: 
Proof: See Amendix A. 

tems (see [l]). 
Given below is a recursive algorithm illustrated in FIG. 2 

which defines some required articulated body quantities. In 
the following algorithm, P(k) is the articulated body inertia 

(48) 

3o 

_ _  
Physically, R(k) is the modal mass matrix ofthe Compos- 

ite body formed from all the bodies outboard of the k'* hinge 
by freezing all their (deformation plus hinge) degrees of 
freedom. It f o ~ ~ o w s  from Eq, (43) and Lemma 5.1 that 

of body k, D(k) is the articulated hinge inertia of hinge k, 
G(k) is a body to hinge force operator of body and hinge k, 

35 and ?(k) is a null force operator for hinge k which accounts 
for the component of applied force resulting in no hinge 
acceleration. M= XQM,,,@* n C= n R  n*+ n R 6 R  n *+ X R ~ *  n* (49) 

40 
Note that the three terms on the right of Eq. (49) are block 
diagonal, block lower triangular and block upper triangular 
respectively. The following algorithm for computing the 
mass matrix M computes the elements of these terms 
recursively. 

R(0) = 0 
f o r k =  1 . . . N 

R(k)  = @(kk- 1)R(k- l ) @ * ( k k -  l ) + M m ( k )  

= d(k)$(ik,k - l)Rrr(k - l)$*(tk,k - 1)  + Mm(k) 

X(k) = R(k) H*(k )  

Ms(kk) = %X(k) 

\ endloop 

The main recursive proceeds from tip to base, and computes 
the blocks along the diagonal of M .  As each such diagonal 
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The operator P E w llrx;ir is defined as a block diagonal Lemma 6.2 
matrix with the kth diagonal element being Pa).  The quan- 
titics defined in Eq. (51) form the component elements of the 2o 
following spatial operators: 

25 

&vA&o? E I x x m  (52) 

The only nonzero block elements of K and E,,, are the 3o 
elements' K(k+l,k)'s and y(k+l,k)'s respectively along the 
first sub-diagonal. 

As in the case for c0, E,,, is nilpotent, so we can define 
the operator y~ as follows. 

35 
(53) 

" ' O I  . . .  0 
0 

where 
y(i,j) B y(i,i - 1) . . y(j + 151 for Ili > j 

Thc structure of the operators E,,, and y is identical to that 45 
of the operators and d, respectively except that the 
component elements are now yJ(i,j) rather than d,(i,j). Also, 
the elements of y~ have the same semigroup properties as the 
elements of the operator d,, and as a consequence, high-level 
operator expressions involving them can be directly mapped 50 
into recursive algorithms, and the explicit computation of 
the elements of the operator y is not required. 

The Innovations Operator Factorization of the mass 
matrix is defined in the following lemma. 
Lemma 6.1 55 

M=[I+ 'H@K]D[I+ H@K]* (54) 

60 Proof: See Appendix A. 
Note that the factor [I+ H@K] E 8 N x N  is square, 

block lower triangular and nonsingular, while D is a block 
diagonal matrix. This factorization provides a closed-form 
expression for the block LDL* decomposition of M .  The 65 
following lemma gives the closed form operator expression 
for the inverse of the factor [I+ w@K]. 

Proof: See Appendix A. 
It follows from Lemma 6.1 and 6.2 that the operator expres- 
sion for the inverse of the mass matrix is given by: 
Lemma 6.3 

Once again, note that the factor [I- wyK] is square, block 
lower triangular and nonsingular and so Lemma 6.3 pro- 
vides a closed-form expression for the block LDL* decom- 
position of M-'. 
7. Articulated Body Forward Dynamics Algorithm 

We first use the operator expression for the mass matrix 
inverse developed in Section 6 to obtain an operator expres- 
sion for the generalized accelerations X. This expression 
directly leads to a recursive algorithm for the forward 
dynamics of the systems. The structure of this algorithm is 
completely identical in form to the articulated body algo- 
rithm for serial rigid multibody systems. The computational 
cost of this algorithm is further reduced by separately 
processing the flexible and hinge degrees of freedom at each 
step in the recursion, and this leads to the articulated body 
forward dynamics algorithm for serial flexible multibody 
systems. This algorithm is an alternative to the composite- 
body forward dynamics algorithm developed earlier. 

The following lemma describes the operator expression 
for the generalized accelerations X in terms of the general- 
ized forces T. 
Lemma 7.1 

X=[Z- XyKJ *D-'[T- HyI{KTiPam+bm+K,,,v}]-K*y*am (57) 

Proof: 
See Appendix A. 
As in the case of rigid multibody systems ([1, 2]), the 

direct recursive implementation of Eq. (57) leads to the 
following recursive forward dynamics algorithm illustrated 
in FIG. 3. In the following algorithm, z(k) is a residual body 
force on body k, E(k) is the resultant hinge force on hinge k, 
v(k) is the resultant hinge acceleration of hinge k and z+(k) 
is the revised residual body force on body k 
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ever each sweep in the algorithm now contains twice as 
many steps as the original algorithm. But since each step 
now processes only a smaller number of degrees of freedom, 
this leads to a reduction in the overall cost. In the following 
algorithm, the subscript r denotes the rigid component or 
version of the subscripted quantity while the subscript f 
denotes the flexible component or version of the subscripted 
quantity. Thus, xkk)  is a matrix including the correspond- 

10 ing modal spatial influence vector, while zH,(k) is a matrix 
including the corresponding transformed joint map matrix. 
The new algorithm (replacing Eq. (51) for computing the 
articulated body quantities is as follows: 

(58) 

The structure of this algorithm is closely related to the 
structure of the well known Kalman filtering and smoothing 
algorithms ([SI). All the degrees of freedom for each body 
(as characterized by its joint map matrix H*(.)) are pro- 25 
cessed together at each recursion step in this algorithm. 
However, by taking advantage of the sparsity and special 
structure of the joint map matrix, additional reduction in 
computational cost is obtained by processing the flexible 
degrees of freedom and the hinge degrees of freedom 
separately. These simplifications are described in the fol- 3O 
lowing sections. 

7.1 Simplified Algorithm for the Articulated Body Quan- 
tities 

Instead of a detailed derivation, we describe here the 
conceptual basis for the separation of the modal and hinge 35 
degrees of freedom for each body. First we recall the 
velocity recursion equation in Eq. (1 1) 

V,(k)=@*(k+l ,k)V,(k+l)+ H *(k)X(k) (59) 

and the partitioned form of x(k)  in Eq. (13) 40 

Introducing a dummy variable k‘, we can rewrite Eq. (59) as 

V,(k)=Q*(k:k)V,(k>+ H *,(k)P(k) (61)  

V,(k?=@,*(k+l,k?V,(k+l)+ H*/(k)q(k)  45 

where 

@(k+l,k‘)  i Q ( k + l , k )  and O(k’,k) AI 
50 

Conceptually, each flexible body is now associated with two 
new bodies. The first one has the same kinematical and 
masshertia properties as the real body and is associated 55 
with the flexible degrees of freedom. The second body is a 
fictitious body and is massless and has zero extent. It is 
associated with the hinge degrees of freedom. The serial 
chain now contains twice the number of bodies as the 
original one, with half the new bodies being fictitious ones. 6o 

The new H* operator now has the same number of columns 
but twice the number of rows as the original H* operator. 
The new CD operator has twice as many rows and columns as 
the original one. Repeating the analysis described in the 
previous sections, we once again obtain the same operator 65 
expression as Eq. (57). This expression also leads to a 
recursive forward dynamics algorithm as in Eq. (58). How- 

now use the sparsity of B(k+l,k), ‘H/(k) and x,(k) to 
further simplify the above algorithm. Using the symbol “x” 
to indicate “don’t care” blocks, the structure in block par- 
titioned form of some of the quantities in Eq. (62) is given 
below. In the following algorithm, the subscripts f and r have 
the same significance as that discussed previously herein, 
the subscript R denotes another rigid version of the sub- 
scripted quantity (defined below), while P@(k) and P“(k) 
denote the blocks of the articulated body inertia P(k) parti- 
tioned in the same manner as that discussed previously 
herein with reference to the partitioning of the modal mass 
matrix in Equation (23): 

T(k) = $( fk ,  k - l)PR+(k - l )$*( fk ,  k - l ) ,  

(PR+(k) is defined below) 
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-continued 

PR+(O) = 0 
10 for computing the modal spatial velocities V,(k) and the 

Coriolis and gyroscopic terms a,(k) and b,(k) for all the 
bodies; (b) computation of the articulated body quantities 
using Eq. (78) and Eq. (63); and (c) a tip-to-base recursion 

l 5  followed by a base-to-tip recursion for the joint accelera- 

tions X as described below and illustrated in FIGS. 5a and 

f o r k =  1 . . . N 

T(k)  = @(!A, k -  1)PR+(k- I)$*(&, k -  1)  

P(k) = ' ( k ) r ( k )  ' * ( k )  +M,"(k) 

DAk) = xAk)P(k) 'H/ l (W 

Pfk) = [P'/(k), P ' W l  'H/c(k) 

5,546,508 
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7.2 Simplified Articulated Body Forward Dynamics Algo- 

P*(k) = ( 1 p i ( k )  ) , where P R + ( ~ )  = iR(k)PR(k) E~~~~ 
rithm 

The complete recursive articulated body forward dynam- 
5 ics algorithm for a serial flexible multibody system follows 

directly from the recursive implementation of the expression 
in Eq. (57). The algorithm consists of the following steps as 

Using the structure described above the simplified algorithm 
for computing the articulated body quantities is as follows: 

f o r k  

z(k) 

f 

25 

\ endloop 
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The recursion in Eq. (64) is obtained by simplifying the 
recursions in Eq. (58) in the same manner as described in the 
previous section for the articulated body quantities. The 
rigid Coriolis and centrifugal acceleration aM(k) is given in 
Appendix C below herein. 

In contrast with the composite body forward dynamics 
algorithm described in Section 5, the articulated body for- 
ward dynamics algorithm does not require the explicit 
computation of either M or C. The structure of this articu- 
lated body algorithm closely resembles the recursive articu- 
lated body forward dynamics algorithm for rigid multibody 
systems described in references ([15, 11). 

The articulated body forward dynamics algorithm has 
been used to develop a dynamics simulation software pack- 
age (called DARTS) for thc high-speed, real-time, hardware- 
in-the-loop simulation capability for planetary spacecraft. 
Validation of the DARTS software was carried out by 
comparing simulation results with those from a standard 
flexible multibody simulation package ([6]). The results 
from the two independent simulations have shown complete 
agreement. 

A System Embodying the Invention 
Referring to FIG. 6 ,  a robot manipulator 100 having 

flexible links (bodies), such as the manipulator illustrated in 
FIGS. la  and lb, includes joint servos 110 controlling 
respective articulating hinges of the manipulator. A robot 
control computer 120 includes a processor 125 which com- 
putes the articulated body quantities of the manipulator 100 
from the current state of the manipulator 100 using the 
process of FIG. 2. The current state of the manipulator 100 
is also used by a processor 130 to compute the Coriolis and 
centrifugal accelerations and gyroscopic forces of the 
manipulator links using the algorithm of Equation (44). A set 
of link (body) forces is specified to a processor 135. The 
processor 135 uses the specified body forces, the articulated 
body quantities computed by the processor 125 and the 
gyroscopic and Coriolis terms computed by the processor 
130 to compute the deformation acceleration of the finite 
element nodes of each link (body) and the acceleration of 
each hinge by executing the algorithm of FIGS. 5a and 5b. 

In one embodiment of the invention described above with 
reference to FIG. 4, the processor 135 repeats its operation 
over successive time steps, and the configuration vectors of 
the manipulator 100 required by the processors 125 and 130 
are computed by a processor 140 from the accelerations 
computed by the processor 135 for the previous time step. In 
an alternative embodiment of the invention, the hinge con- 
figuration vectors are derived by the processors 125 and 130 
directly from joint sensors 142 on the hinges of the manipu- 
lator 100. 

As one example of the application of the results computed 
by the processor 135, a desired robot motion is defined by 
a set of user-specified node deformations and hinge accel- 
erations for a succession of time steps. The node deforma- 
tions and hinge accelerations computed during each time 
step by the processor 135 are compared by a processor 144 
with a desired user-specified node deformations and hinge 
accelerations for the corresponding time step to determine 
an error and to correct the specified body forces to reduce the 
error using well-known €eedback control techniques. Such 
feedback control techniques are well-understood in the art 
and need not be described here. The corrected body forces 
are then stored for later (or immediate) conversion by a 
processor 146 to joint servo commands for transmittal to the 
joint servos 110. 
8. Computational Cost 

This section discusses the computational cost of the 
composite body and the articulated body forward dynamics 

28 
algorithms. For low-spin multibody systems, it has been 
suggested in [16] that using ruthlessly linearized models for 
each flexible body can lead to significant computational 
reduction without sacrificing fidelity. These linearized mod- 

5 els are considerably less complex and do not require much 
of the modal integral data for the individual flexible bodies. 
All computational costs given below are based on the use of 
ruthlessly linearized models and the computationally sim- 
plified steps described in Appendix B. 

Flexible multibody systems typically involve both rigid 
and flexible bodies and, in addition, different sets of modes 
are used to model the flexibility of each body. As a conse- 
quence, where possible, we described the contribution of a 
typical (non-extremal) flexible body, denoted the krh body, to 
the overall computational cost. Note that the computational 
cost for extremal bodies as well as for rigid bodies is lower 
than that for a non-extremal flexible body. Summing up this 
cost for all the bodies in the system gives a figure close to 
the true computational cost for the algorithm. Without any 

2o loss in generality, we have assumed here that all the hinges 
are single degree of freedom rotary joints and that free-free 
assumed modes are being used. The computational costs are 
given in the form of polynomial expressions for the number 
of floating point operations with the symbol M denoting 
multiplications and A denoting additions. 

8.1 Computational Cost of the Composite Body Forward 
Dynamics Algorithm 

The composite body forward dynamics algorithm 
described in Section 5 is based on solving the linear matrix 

10 

15 

25 

3o equation. 
M X=T- C 

The computational cost of this forward dynamics algorithm 
is given below: 

1. Cost of computing R(k) for the krh body using the 35 
algorithm in Eq. (50) is 

[48n,(k) + 901M + [n,’(k) + 97/zn,(k) + 116lA. 

2. Contribution of the krh body to the cost of computing 
M (excluding cost of R(k)’s) using the algorithm in 
Eq. (50) is {k[12nm2(k)+34n,(k)+13]}M+{k 
[ 1 lnm2(k)+24n,(k)+13]} A. 

3. Setting the generalized accelerations X=O, the vector 
c can be obtained by using the inverse dynamics 
algorithm described in Eq. (45) for computing the 
generalized forces T. The contribution of the kfh body 
to the computational cost for c(k) is {2nm2(k)+ 
54nm(k)+206} M+{ 2nm2(k)+50nm(k)+143} A. 

40 

45 

50 4. The cost of computing T-c is { N }  A. 
5. The cost of solving the linear equation in Eq. (46) for 

the accelerations X is 

{ % N 3  + % N 2  - % N } M  + { % N 3  + N Z  -7 /6N}A.  
55 

The overall complexity of the composite body forward 
dynamics algorithm is O( N 3 ) .  

8.2 Computational Cost of the Articulated Body Forward 
Dynamics Algorithm 

The articulated body forward dynamics algorithm is based 
on the recursions described in Eq. (78), Eq. (63) and Eq. 
(64). Since the computations in Eq. (78) can be carried out 
prior to the dynamics simulation, the cost of this recursion 
is not included in the cost of the overall forward dynamics 

1. The algorithm for the computation of the articulated 
body quantities is given in Eq. (63). The step involving 

60 

65 algorithm described below: 
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the computation of D-’(k) can be carried out either by 
an explicit inversion D(k) with O(nm3(k)) cost, or by 
thc indirect proccdure described in Eq. (63) with 
O(nm2(k)) cost. The first method is more efficient than 
the second onc for nm(k)S7. 
Cost of Eq. (63) for the k‘” body based on the explicit 

inversion of D(k) (used when n,(k)S7) is 

{5/6nm3(k) + %n,,,’(k) + 7M/3n,,,(k) + 180)M i 

{%nm3(k) + *‘/znmz(k) + 548/3n,,,(k) + 164) 

Cost of Eq. (63) for the k‘” body based on the indirect 
computation of D-’(k) (used when n,(k)28) is 
{ 12nm2(k)+255nm(k)+572) M+{ l3nm2(k)+182n,(k) 

2. The cost for the tip-to-base recursion sweep in Eq. (64) 
for the k‘“ body is (nm2(k)+25n,(k)+49} M+{nm2(k)+ 
24nm(k)+50} A. 

3. The cost for the base-to-tip recursion sweep in Eq. (64) 
for the k‘” body is { 18n,,(k)+52{ 19nm(k)+42( A. 

The ovcrall complexity of this algorithm is 0(Nnm2), where 
nm is an upper bound on the number of modes per body in 
thc system. 

From a comparison of the computational costs, it is clear 
that thc articulated body algorithm is more efficient than the 
composite body algorithm as the number modes and bodies 
in the multibody system increases. The articulated body 
algorithm is faster by over a factor of 3 for 5 modes per body, 
and by over a factor of 7 for the case of 10 modes per body. 
Thc divergence between the costs for the two algorithms 
bccomes even more rapid as the number o€ bodies is 
increased. 
9. Extensions to General Topology Flexible Multibody Sys- 
tems 

For rigid multibody systems, [ 111 describes the extensions 
to the dynamics formulation and algorithms that are required 
as thc topology of the system goes from a serial chain 
topology, to a tree topology and finally to a closed-chain 
topology system. The key to this progression is the invari- 
ance of the operator description of the system dynamics to 
increases in the topological complexity of the system. 
Indeed, as seen hcre, the operator description of the dynam- 
ics remains the same even when the multibody system 
contains flexible rather than rigid component bodies. Thus, 
using the approach in [ 111 for rigid multibody systems, the 
dynamics formulation and algorithms for flexible multibody 
systems with serial topology can be extended in a straight- 
forward manner to systems with tree or closed-chain topol- 
ogy. Based on thcse observations, extending the serial chain 
dynamics algorithms described in this specification to tree 
topology flexible multibody systems requires the follow 
steps: 

1 .  For cach outward sweep involving a base to tip(s) 
recursion, at each body, the outward recursion must be 
continued along cach outgoing branch emanating from 
thc current body. 

2. For each inward sweep involving a tip(s) to base 
rccursion, at each body, the recursion must be contin- 
ucd inwards only after summing up contributions from 
each of the other incoming branches for the body. 

A closed-chain topology flexible multibody system can be 
regarded as a tree topology system with additional closure 
constraints. As described in [ 111, the dynamics algorithm €or 
closcd-chain systems consists of recursions involving the 
dynamics of the tree topology system, and in addition the 
computation of the closure constraint forces. The computa- 

30 
The algorithm for closed-chain flexible multibody systems 
for computing these inertias is identical in form to the 
recursive algorithm described in [ 111. 
10. Conclusions 

This invention uses spatial operator methods to develop a 
new dynamics formulation for flexible multibody systems. A 
key feature of the formulation is that the operator description 
of the flexible system dynamics is identical in form to the 

10 corresponding operator description of the dynamics of rigid 
multibody systems. A significant advantage of this unifying 
approach is that it allows ideas and techniques for rigid 
multibody systems to be easily applied to flexible multibody 

15 systems. The Newton-Euler Operator Factorization of the 
mass matrix forms the basis for recursive algorithms such as 
those for the inverse dynamics, the computation of the mass 
matrix, and the composite body forward dynamics algorithm 
for the flexible multibody system. Subsequently, we develop 

2o the articulated body forward dynamics algorithm, which, in 
contrast to the composite body forward dynamics algorithm, 
does not require the explicit computations of the mass 
matrix. While the computational cost of the algorithms 

25 depends on factors such as the topology and the amount of 
flexibility in the multibody system, in general, the articu- 
lated body forward dynamics algorithm is by far the more 
efficient algorithm for flexible multibody systems containing 
even a small number of flexible bodies. All of the algorithms 
are closely related to those encountered in the domain of 
Kalman filtering and smoothing. While the major focus in 
this specification is on flexible multibody systems with serial 
chain topology, the extensions to tree and closed chain 

35 topologies are straightforward and are described as well. 
While the invention has been described in detail by 

specific reference to preferred embodiments thereof, it is 
understood that variations and modifications may be made 
without departure from the true spirit of the invention. 

40 Appendix A: Proofs of the Lemmas 
At the operator level, the proofs of the lemmas in this 

publication are completely analogous to those for rigid 
multibody systems ([l, 21). 

45 Proof of Lemma 5.1: Using operators, we can rewrite Eq. 
(47) in the form 

5 

30 

50 From Eq. (19) it follows that cPc0 =&,@=@-I=@. Multi- 
plying Eq. (65) from the left and right by @ and cP* 
respectively leads to 

55 OM,,,V=ORQ *-o eo R E * , = ( ~ ~ ) R ( ~ ~ * - o R & , R + ~ R + R ~ *  

Proof of Lemma 6.1: It is easy to verify that ?P?*=?P. As a 
consequence, the recursion for P(.) in Eq. (51) can be 
rewritten in the form 

60 
M,,,=P-&, P&*FP-&~P&*~=P-&O P&*a +KDK* (66) 

Pre- and post-multiplying the above by 6, and rP* respec- 
65 tively then leads to 

tion o f  the constraint forces requires the effective inertia of 
the tree topology system reflected to the points of closure. @M,,,O+P+&P+P& *+OKDK*O * 
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Hence, model fidelity when the deformation and deformation rate 
dependent terms are dropped altogether from the dynamical =. = %M,,@* w* = % [ P + ~ P + P Q *  + Q K D K * ~ * ]  H* I equations of motion ([16]). Such models have been dubbed 
the ruthlessly linearized models. These linearized models 

5 are considerably less complex, and do not require most of 
the modal integrals data for each individual flexible body. In 

are as follows: 

= D + %KD + DK*O* 1-1* + %KDK*Q* u* = 
[ I +  H@K]DII+ %K]* 

Proof Of Lemma 6.2: a standard matrix identify we this model, the approximations to M,(k), a,(k), and b,(k) have that 

[I+ 'HOK]-'=Z- 'HO[II-K 'HO]-' K (67) (75) 
Mm(k) z Mmo(k), d k )  = [ u;:k) and brn(k) z brno(k) 

X= M-'(T-C)=[I- HvK]*D-'[l- HvK][T-  'H@[M,,,#*a,,,+b,,,+ 
K,vIl (69) ' From Eq. (68) we have that 30 

[Z- 'HvKl 'HO= 'Hv[v-- ' -K 'HI* Hv (70) 

Note that 

W ' = I -  E,&- Eo)+ EOG H = W ' + K  H 

A(k) = [ 'HI(k)Mm(k) HF(k) ] - l  E~~~~ 

c(k)  = Hj(k)  €3 N x 6  

Y(k) = l\(k)c(k) 6 ~ ~ x 6  

Q(k) = [*(k)Y(k) EW6* 

end loop 

\ 1 
With this approximation, M,(k) is constant in the body 
frame, while a,(k) and b,(k) are independent of q(k) and 
q(k). With this being the case, the formation of D-' in Eq. 

15 (51) can be simplified. Using the matrix identity. 
(68) 

~ - ' Q = l + K  no 
Using this with Eq. (67) it follows that 

which holds for general matrices, A, B and C, it is easy to 
verify that 

20 

D,-'(k)=A(k)-Y(k)[r'(k)+~(k)l-'(k)Y*(k) (77) 

Thus, Eq. (69) can be written as 
\ 

Using Eq. (77) reduces the computational cost for comput- 
35 ing the articulated body inertias to a quadratic rather than a 

cubic function of the number of mocks. 
Appendix C: Expressions for M,(k), a,(k) and b,@) 

node j&as the structure: 

X=[I- HvK] *D-' [T- 'Hv[ KT+MmQ*a,,,+b,,,+K,,,vll (71) 
The modal spatial displacement influence vector IIJ(k) for 

From Eq. (66) it follows that 
40 

(79) (72) 
nj(k) = ( yi: ) ~36mrnR) 

M,,,=P- E,P E*~+~M,,,V=I+IP+P~* 

and so Eq. (71) simplifies to 
The components of the vectors hi(k) E w ~ ~ ~ ~ ( ~ )  and f(k) E 

83xnm(k) are the modal slope displacement inff uence vector 
(73) 45 and the modal translational displacement influence vector 

respectively for node j,. They define the contribution of the 
various modes to the slope (or differential change in orien- 
tation) and translational deformation for the jkh node on the 
kZh body. Define 

X=V- NvK] *D-'[T- Hv[KT+Pa,,,+b,+K,,,vl- ~ P 6 * a m l  

From Eq. (68) we have that 

50 
[I-  HvK]*D-' 'HP6,*=[I- HvK]*K*@+KV*[v-*-K ?-i]*@+, 

K*v* (74) &,&)e~'(k)ll@) E W3, UiJAr' (kk0r)  E W3, and 
M.L)er'(k)~(k) E W 3  (80) 

Using this in Eq. (73) leads to the result. 
Appendix B: Ruthless Linearization of Flexible Body 55 Note that 
Dynamics 

It has been pointed out in recent literature ([17, 161) that KkjJ=b(id+&(iJ 

the use of modes for modeling body flexibility leads to 
"premature linearization" of the dynamics, in the sense that 
while the dynamics model contains deformation dependent 60 
terms, the geometric stiffening terms are missing. These 

where denotes the undeformed vector from frame 
y k  to node j,. Note that M&) denotes the spatial inertia of 
the j Z h  node on the kZh body and is given by 

T W  m(i&(ik) EW6x6 (81) 1 -m(i&%ik) m(ik)l 

missing geometric stiffening terms are the domin& terms 
among the first-order (deformation) dependent terms. In 
general, it is necessary to take additional steps to recover the 
missing geometric stiffness terms to obtain a "consistently" 65 C. 1 Modal Integrals for the Individual Bodies 
linearized model with the proper degree of fidelity. However Defined below are a set of modal integrals for the kZh body 
for systems with low spin rate, there is typically little loss is which simplify the computation of the modal mass matrix 

Ms(ik) = 
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M,(k) and thc bias vector b,(k). These modal integrals can 
bc computed as a part of the finite-element structural analy- 
sis of the individual bodies. 

34 
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-continued 
36 

20 

25 

30 

(2.2 Modal Mass Matrix 

kth body is given by 
We have from Eq. (23) that the modal mass matrix of the 

50 Define the matrices: 

p,: A [p lk ( l ) ,  . . . plk(n,,,(k))l 
F,, 4 [F/(l), . . . Fok(n,(k))l ~ 3 ~ ~ ~ ~ ( ~ )  
Fc i [Fc(1), . . . F'(n,(k))] ~ 3 ~ ~ ~ m @ )  

Ek i [P( l ) ,  . . . Ek(n,(k))l c33xnm(k) 

Also define the matrix Gk E w ~ ~ ( ~ ) ~ ' ~ ~ ( ~ )  so that its (r,s)fh 
element is given by the modal integral Gk(r,s). 

Using these matrices, and Eq. (84), it is easy to establish 
that 

(85) 

55 

60 

0 

FI'Y 

0 

-continued 

t 

65 
The superscript i=0,1,2 in M,'(k) denotes the order of 
dependency of the terms on the deformation variables. 
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(2.3 Expression for a,,,(k) 

Coriolis and centrifugal acceleration term a,(k). Since 

to the angular accelerations and the term at the bottom to the 
linear acceleration of the body. ~l~~ In this section we derive explicit expressions for the 

it follows from Eq. (12) and Eq. (79) that 

5 

Recalling thal the spatial velocity of frame Fk is 20 

where w(k) and v(k) denote the angular and linear velocity 25 

rcspcctively of +k we have that 

and 
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-continued 

From Eq. (25) and the above expressions it follows that 

40 

In the above amRo(k) denotes the deformation independent 
part of the Coriolis acceleration, while a,'(k), amR2(k) and 

mation is up to first, second and third order respectively. 
C.4 Expression for b,(k) 

Since, 

amR3(k) denote the parts whose dependency on the defor- i(kik)=0(k)i(kik)+6.(j,) 

55 it follows that 
We have found Eq. (28) that 

& k h ( i k )  

&k)[&k)l(k,jk) + 2W.ik)l 
a(ik) = 

a(ik) = d[TY(k),'*(kik)l vm(k) = Ifli(k)i(k) + $*(k,jk)v(k) 60 dt 

65 
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From Eq. (37) we write -continued 
15 

We develop expressions for bqk(r), bmk and bVk in Eq. (93) 
below. From Eq. (92) and Eq. (93) we have that 

+ 6,(ik)* J ( i k ) k J ( k ) W ( k )  

n d k )  
Z [Tzk(s,r) + W&s) + Wzk(s,r)] i (s)  

s=l 

1 

2[97] + 99 + 101 = -o*(k) 

94 + 95 = -w*(k)P(r)o(k)  
96 = -w*(k)N'(r)w(k) 

nm(k) n d k )  
103 + 104= C C Tlk(q,r,s)i(q)i(s) 

q=l S=l 

100 + 105 = 106 

nm(k) 
C F&s.r)&)LJsing these, it follows that 

S=l 
98 + 100 + 105 + 106 = -2w*(k) 



where 

Once again from Eq. (92) and Eq. (93) we have that 

Once again, using modal integrals, the above terms can be 35 

reexpressed in the following manner: 

111= [::) 2 Z #(r) i ( r )  ] w(k)  

nm(k) 

F l  
112 + 113 + 114 + 118 + 119 = Z Kk(r)i(r)w(k) 

-continued 
nmW 

F l  s=l 
116 + 117 = Z Z Rk(r,s)i(r)i(s)  

This results in the following expression 
40 

(121) 
bok = &(k) T(k)w(k)  + Z [2#(r) + Kk(r)]i(r)w(k) + 

F1 

45 

Using Eq. (92) and Eq. (93) it also follows that 
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-continued 
Using thc model integrals we have that 

123 = m(k);(k);(k)p(k) 

11mW) nm(k) 

r=l s=l 
124 = m(k) Z Z L(r,s){(r)i(s) 

nm(k) 
122 + 125 + 126 + 127 = 2w(k) Z Ek(r) i ( r )  

r=l 

+ 

and thus 

hk = m(k);(k);(k)p(k) + 2 4 k )  Z @(r)ri(r) t 
?=1 

46 

15 Putting together Eq. (108), Eq. (121) and Eq. (129) we have 
that 

I 

t 
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-continued 

What is claimed is: 
1. A method for controlling a manipulator relative to a 

desired manipulator motion, said manipulator comprising 
plural bodies including an outermost body, and a relatively 
stationary innermost body, said plural bodies being sequen- 
tially connected together by movable hinges disposed 2o 
between each plural body so connected and servos control- 
ling said movable hinges in accordance with servo command 
signals corresponding to specified body forces of respective 
ones of said plural bodies, at least some of said plural bodies 
being flexible in plural deformation modes corresponding to 25 
respective modal spatial influence vectors relating deforma- 
tions of plural spaced nodes of respective plural bodies to 
said plural deformation modes, said method comprising the 
steps of 

l5 
4. The method of claim 2 wherein said plural bodies and 

movable hinges are characterized by respective vectors of 
deformation and hinge configuration variables, and wherein 
said computing modal deformation accelerations and hinge 
accelerations comprises: 

for each one of said plural bodies beginning with said 
outermost body: 
computing a residual body force from a residual body 

force of a previous body and from said vector of 
deformation and hinge configuration variables, 

computing a resultant hinge force from said specified 
body force and said residual body force, 

computing a resultant hinge acceleration from said 
resultant hinge force transformed by said articulated 
hinge inertia; 

innermost body: 
computing a current modal body acceleration of a 

current body from a modal body acceleration of a 
previous body, 

computing a modal deformation acceleration and hinge 
acceleration from said resultant hinge acceleration 
and from said current modal body acceleration trans- 
formed by said articulated body to hinge force opera- 
tor. 

computing articulated body quantities for each Of said 30 and, for each one of said plural bodies beginning with said plural bodies from respective modal spatial influence 
vectors; 

computing modal deformation accelerations of said plural 
spaced nodes of respective plural bodies and hinge 35 
accelerations of said movable hinges from said speci- 
fied body forces, from said articulated body quantities 
and from said modal spatial influence vectors; 

comprising said modal deformation and hinge accelera- 
tions with said desired manipulator motion to deter- 40 
mine an error, and correcting said specified body forces 
so as to reduce said error thereby producing corrected 
specified body forces; 

generating said servo command signals by converting in 
a processor means said corrected specified body forces 45 
to servo commands to correct manipulator motion to 
said desired manipulator motion, and transmitting said 
servo command signals to said servos. 

2. The method of claim 1 wherein said step of computing 
articulated body quantities comprises, for each body begin- 50 
ning at said outermost body: 

5. The method of claim 4 wherein: 
said step of computing a resultant hinge acceleration is 

followed by the step of revising said residual body 
force by said resultant hinge force transformed by said 
body to hinge force operator to produce a revised 
residual body force for use in said correcting of said 
specified body forces; and 
said step of computing a modal deformation accelera- 

tion and hinge acceleration is followed by the step of 
revising said current modal body acceleration based 
upon said modal deformation and hinge acceleration 
to produce a revised current modal body acceleration 
for use in said correcting of said specified body 
forces. 

6 .  The method of claim 5 wherein all said computing 
comprises a single cycle corresponding to one of a succes- 

subsequent time steps, wherein said vector of deformation 
and hinge configuration variables are computed from the 

60 modal deformations and hinge accelerations of a previous 
time step and wherein the revised articulated body inertia, 
revised residual body force and revised current modal body 
acceleration from the previous time step are used for com- 
puting in a current time step. 
7. The method of claim 4 wherein said manipulator 

comprises joint sensors at each of said movable hinges, and 
wherein a hinge configuration portion of said vector of 

computing a modal mass matrix; 
computing an articulated body inertia from the articulated 

body inertia of a previous body and from said modal 
mass matrix; 

lated body inertia; 

from said articulated hinge inertia; 

body to hinge force operator. 

55 

computing an hinge inertia from said articu- sion of time steps, all said computing being repeated for 

computing an articulated body to hinge force operator 

computing a null force operator from said articulated 

3. The method of claim 2 wherein said step of computing 
a null force operator is followed by revising said articulated 
body inertia by transforming said articulated body inertia by 65 
said null force operator to produce a revised articulated body 
inertia. 
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deformation and hinge configuration variables is derived 
from reading said joint sensors. 

8. The method of claim 4 wherein said articulated body 
inertia, said articulated hinge inertia, said body to hinge 
forcc operator, said null force operator, said specified body 
forcc, said residual body force, said resultant hinge accel- 
eration and said resultant hinge force each corresponds to a 
flexible and a rigid version thereof. 

9. The method of claim 8 wherein said step of computing 
a rcsultant hinge force comprises computing the flexible 
version of said resultant hinge force from said specified 
body force, said flexible version of said residual body force 
and from said rigid version of said residual body force 
transformed by said modal spatial influence vector. 

10. The mcthod of claim 8 wherein said articulated body 
incrtia comprises a rigid-flexible and rigid-rigid coupling 
components thereof, and wherein said method further com- 
prises the step of rcvising said rigid version of said residual 
body force based upon a function of said rigid-rigid and 
rigid-flexible coupling components of said articulated body 
incrtia and a flexible version of said articulated body inertia 
to produce a revised rigid version of said residual body force 
for use in said correcting of said specified body forces. 

11. The method of claim 10 wherein said computing said 
articulated body inertia step comprises decomposing said 
modal mass matrix into rigid-flexible and rigid-rigid cou- 
pling components and computing said rigid-rigid and rigid- 
flexible coupling components of said articulated body inertia 
from respective ones of said rigid-rigid and rigid-flexible 
coupling components of said modal mass matrix. 

12. The method of claim 11 wherein said computing said 
articulated body quantities step is preceded by the step of 
computing fiexiblc and rigid versions of a deformation and 
hinge modal joint map matrix for each plural body, and 
wherein: 

the flexible version of said articulated hinge incrtia is 
computed from said articulated body inertia trans- 
formed by the flexible version of the corresponding 
deformation and hinge modal joint map matrix; 

thc rigid version of said articulated body inertia is com- 
puted from a function of said rigid-rigid and rigid- 
flexible coupling components of said articulated body 
inertia transformed by said flexible version of said 
corresponding deformation and hinge modal joint map 
matrix; 

the rigid version of said articulated body inertia is com- 
puted from said rigid version of said articulated body 
inertia; 

the rigid version of said body to hinge force operator is 
computed from said rigid versions of said articulated 
body incrtia and said articulated hinge inertia. 

13. Thc method of claim 12 wherein said computing 
flexible and rigid versions of a deformation and hinge modal 
joint map matrix step comprises computing a joint map 
matrix corresponding to unit vectors of said movable hinges 
and computing said deformation and hinge modal joint 
matrix from said joint map matrix and from said modal 
spatial influencc vector. 

14. The method of claim 8 wherein the flexible version of 
said resultant hinge acceleration is computed from the 
flexible versions of said articulated hinge inertia and result- 
ant hingc force, and the rigid version of said resultant hinge 
acceleration is computed from the rigid versions of said 
articulated hinge inertia and resultant hinge force. 

50 
hinge force and said body to hinge force operator to produce 
a revised residual body force for use in said correcting of 
said specified body forces. 

16. Apparatus for controlling a manipulator relative to a 
5 desired manipulator motion based upon specified body 

forces, said manipulator comprising plural bodies including 
an outermost body, and a relatively stationary innermost 
body, said plural bodies being sequentially connected 
together by movable hinges disposed between each plural 
body so connected and servos controlling said movable 
hinges in accordance with servo command signals corre- 
sponding to specified body forces of respective ones of said 
plural bodies, at least some of said plural bodies being 
flexible in plural deformation modes corresponding to 
respective modal spatial influence vectors relating deforma- 

15 tions of plural spaced nodes of respective plural bodies to 
said plural deformation modes, said apparatus comprising: 

means for computing articulated body quantities for each 
of said plural bodies from respective modal spatial 
influence vectors; 

means for computing modal deformation accelerations of 
said plural spaced nodes of respective plural bodies and 
hinge accelerations of said movable hinges from said 
specified body forces, from said articulated body quan- 
tities and from said modal spatial influence vectors; 

means for comparing said modal deformation and hinge 
accelerations with said desired manipulator motion so 
as to determine a motion discrepancy, and correcting 
said specified body forces so as to reduce said motion 

means for generating said servo command signals by 
converting in a processor means said corrected speci- 
fied body forces to servo commands to correct manipu- 
lator motion to said desired manipulator motion, and 
transmitting said servo command signals to said servos. 

17. The apparatus of claim 16 wherein said means for 
computing articulated body quantities comprises a means, 
operative for each plural body, beginning at said outermost 
body for: 

2o 

25 

3o discrepancy; and 

35 

40 computing a modal mass matrix; 
computing an articulated body inertia from the articulated 

body inertia of a previous body and from said modal 
mass matrix; 

computing an articulated body to hinge force operator 
from said articulated hinge inertia; 

computing a null force operator from said articulated 
body to hinge force operator. 

18. The method of claim 17 further comprising means for 
50 revising said articulated body inertia by transforming said 

articulated body inertia by said null force operator to pro- 
duce a revised articulated body inertia. 

19. The apparatus of claim 17 wherein said plural bodies 
and movable hinges are characterized by respective vectors 

55 of deformation and hinge configuration variables, and 
wherein said means for computing modal deformation accel- 
erations and hinge accelerations comprise: 

means operative for each one of said plural bodies begin- 
ning with said outermost body, for: 
computing a residual body force from a residual body 

force of a previous body and from said vector of 
deformation and hinge configuration variables, 

computing a resultant hinge force from said specified 
body force and said residual body force, 

45 

60 

15. The metiod of claim 14 further comprising the step of 65 computing a resultant hinge acceleration from said 
resultant hinge force transformed by said articulated 
hinge inertia; 

revising said residual body force by adding to said residual 
body force a product of the rigid versions of said resultant 
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and, means operative for each one of said plural bodies 
beginning with said innermost body, for: 
computing a current modal body acceleration of a 

current body from a modal body acceleration of a 
previous body, 

computing a modal deformation acceleration and hinge 
acceleration from said resultant hinge acceleration 
and from said current modal body acceleration trans- 
formed by said articulated body to hinge force opera- 
tor. 

articulated body inertia from respective ones of said rigid- 
rigid and rigid-flexible coupling components of said modal 
mass matrix. 

27. The apparatus of claim 26 further comprising means 
for computing flexible and rigid versions of a deformation 
and hinge modal joint map matrix for each plural body, and 
further comprising: 

a means for computing the flexible version of said articu- 
lated hinge inertia, comprising means for computing 
the flexible version of said articulated hinge inertia 
from said articulated body inertia transformed by the 
flexible version of the corresponding deformation and 
hinge modal joint map matrix; 

a means for computing the rigid version of said articulated 
body inertia, comprising means for computing the rigid 
version of said articulated body inertia from a function 
of said rigid-rigid and rigid-flexible coupling compo- 
nents of said articulated body inertia transformed by 
said flexible version of said corresponding deformation 
and hinge modal joint map matrix; 

a means for computing the rigid version of said articulated 
hinge inertia, comprising means for computing the 
rigid version of said articulated hinge inertia from said 21. The apparatus of claim 20 wherein said means for 
rigid version of said articulated body inertia; computing modal deformation accelerations of said plural 

spaced nodes of respective plural bodies and hinge accel- a means for computing the rigid version of said body to erations of said movable hinges comprises means for com- 25 hinge force operator, comprising means for computing 
the rigid version of said body to hinge force operator puting said modal deformation accelerations and hinge 
from said rigid versions of said articulated body inertia accelerations once for each one of a succession of time steps, 

and wherein said means for computing modal deformation and said articulated hinge inertia. 
accelerations of said plural spaced nodes of respective plural for 
bodies and hinge accelerations of said movable hinges 30 computing flexible and rigid versions of a deformation and 
further comprises means for computing said vector of defor- hinge for com- 
mation and hinge configuration variables from the modal puting a joint map matrix corresponding to unit vectors of 
deformations and hinge accelerations Of a previous time Step said movable hinges and means for computing said &for- 
and wherein the revised articulated body inertia, revised mation and hinge modal joint map matrix from said joint 
residual body force and revised current modal body accel- 35 map matrix and from said modal spatial influence vector. 
eration from the previous time step are used for computing 
said modal deformation accelerations and hinge accelera- 
tions during a current time step. 

22. The apparatus of claim 19 further comprising means 
connected to joint sensors at each of said movable hinges for 40 
producing a hinge configuration portion of said vector of 
deformation and hinge configuration variables. 

23. The apparatus of claim 19 wherein said articulated 

hinge force operator, said null force operator, said specified 45 

acceleration and said resultant hinge force each comprises at 
least one of a flexible and rigid version thereof. 

computing a resultant hinge force comprises 

20. The apparatus of claim 19 further comprising: 
means for revising said residual body force by said 

resultant hinge force transformed by said body to hinge 
force operator to produce a revised residual body force 
for use in said correcting of said specified body forces; 15 
and 

means for revising said current modal body acceleration 
based upon said modal deformation and hinge accel- 
eration to produce a revised current modal body accel- 
eration for use in said correcting of said specified body 20 
forces. 

28. The apparatus of claim 27 wherein said 

joint map matrix comprises 

29. The apparatus of claim 23 further comprising 
a for computing the flexible version of said result- 

ant hinge acceleration from the flexible versions of said 
articulated hinge inertia and resultant hinge force, and 

a means for computing the rigid version of said resultant 
hinge acceleration from the rigid versions of said 
articulated hinge inertia and resultant hinge force. 

for revising said residual body force by adding to said 

resultant hinge force and said body to hinge force operator 
to create a revised residual body force for use in said 

31. A manipulator controller for a manipulator responsive 

body inertia, said articulated hinge inertia, said body to 30. The Of 29 further comprising 

body force, said residual body force, said resultant hinge residual body force a product Of the 'gid versions Of said 

24. The apparatus of claim 23 wherein said means for correcting Of said 'pecified body forces. 
for 5o 

computing the flexible version of said resultant hinge force to specified body forces, said comprising Plural 
from said specified body force, said flexible version of said bodies including an outermost body, and an innermost body, 
residual body force and from said rigid version of said 

ence vector. 

said plural bodies being sequentially connected together by 

55 connected and servos controlling said movable hinges in 
accordance with servo command signals corresponding to 

based upon a function of rigid-rigid and rigid-flexible cou- bodies, at least some of said plural bodies being flexible in 
piing components of said articulated body inertia and a plural deformation modes corresponding to respective 
flexible version of said articulated body inertia to produce a 6o modal spatial influence vectors relating deformations of 
revised rigid version of said residual body force for use in plural spaced nodes of respective plural bodies to said plural 

deformation modes, said manipulator controller comprising: said correcting of said specified body forces. 
means for computing articulated body quantities for each 

computing said articulated body inertia comprises means for of said plural bodies from respective modal spatial 
decomposing said modal mass matrix into rigid-flexible and 65 influence vectors; 
rigid-rigid coupling components and for computing said means for computing modal deformation accelerations of 
rigid-rigid and rigid-flexible coupling components of said said plural spaced nodes of respective plural bodies and 

residual body force transformed by said modal spatial influ- hinges, disposed between each plural body so 

25, The apparatus of claim 23 further comprising 
for revising said rigid version of said residual body force specified body forces Of respective Ones Of said plural 

26. The apparatus of claim 25 wherein said means for 
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hinge accelerations of said movable hinges from said 
specified body forces, from said articulated body quan- 
tities and from said modal spatial influence vectors; 

means for comparing said modal deformation and hinge 
accelerations with said desired manipulator motion so 
as to determine a motion discrepancy, and correcting 
said specified body forces so as to reduce said motion 
discrepancy; and 

means for generating said servo command signals by 
converting in a processor means said corrected speci- 
fied body forces to servo commands to correct manipu- 
lator motion to a desired manipulator motion, and 
transmitting said servo command signals to said servos. 

32. The apparatus of claim 31 wherein said means for 
computing articulated body quantities comprises a means, 
operative for each plural body, beginning at said outermost 
body for: 

computing a modal mass matrix; 
computing an articulated body inertia from the articulated 

body inertia of a previous body and from said modal 
mass matrix; 

computing an articulated hinge inertia from said articu- 
lated body inertia; 

computing an articulated body to hinge force operator 
from said articulated hinge inertia; 

computing a null force operator from said articulated 
body to hinge force operator. 

33. The method of claim 32 further comprising means for 
revising said articulated body inertia by transforming said 
articulated body inertia by said null force operator to pro- 
duce a revised articulated body inertia. 
34. The apparatus of claim 32 wherein said plural bodies 

and movable hinges are characterized by respective vectors 
of deformation and hinge configuration variables, and 
wherein said means for computing modal deformation accel- 
erations and hinge accelerations comprise: 

means operative for each one of said plural bodies begin- 
ning with said outermost body, for: 
computing a residual body force from a residual body 

force of a previous body and from said vector of 
deformation and hinge configuration variables, 

computing a resultant hinge force from said specified 
body force and said residual body force, 

computing a resultant hinge acceleration from said 
resultant hinge force transformed by said articulated 
hinge inertia; 

and, means operative for each one of said plural bodies 
beginning with said innermost body, for: 
computing a current modal body acceleration of a 

current body from a modal body acceleration of a 
previous body, 

computing a modal deformation acceleration and hinge 
acceleration from said resultant hinge acceleration 
and from said current modal body acceleration trans- 
formed by said articulated body to hinge force opera- 
tor. 

35. The apparatus of claim 34 further comprising: 
means for revising said residual body force by said 

resultant hinge force transformed by said body to hinge 
force operator to produce a revised residual body force 
for use in said correcting of said specified body forces; 
and 

means for revising said current modal body acceleration 
based upon said modal deformation and hinge accel- 
eration to produce a revised current modal body accel- 
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eration for use in said correcting of said specified body 
forces. 

36. The apparatus of claim 35 wherein said means for 
computing modal deformation accelerations of said plural 
spaced nodes of respective plural bodies and hinge accel- 
erations of said movable hinges comprises means for com- 
puting said modal deformation accelerations and hinge 
accelerations once for each one of a succession of time steps, 
and wherein said means for computing modal deformation 
accelerations of said plural spaced nodes of respective plural 
bodies and hinge accelerations of said movable hinges 
further comprises means for computing said vector of defor- 
mation and hinge configuration variables from the modal 
deformations and hinge accelerations of a previous time step 
and wherein the revised articulated body inertia, revised 
residual body force and revised current modal body aecel- 
eration from the previous time step are used for computing 
said modal deformation accelerations and hinge accelera- 
tions during a current time step. 

37. The apparatus of claim 34 further comprising means 
connected to joint sensors at each of said movable hinges for 
producing a hinge configuration portion of said vector of 
deformation and hinge configuration variables. 

38. The apparatus of claim 34 wherein said articulated 
body inertia, said articulated hinge inertia, said body to 
hinge force operator, said null force operator, said specified 
body force, said residual body force, said resultant hinge 
acceleration and said resultant hinge force each comprises at 
least one of a flexible and rigid version thereof. 

39. The apparatus of claim 38 wherein said means for 
computing a resultant hinge force comprises means for 
computing the flexible version of said resultant hinge force 
from said specified body force, said flexible version of said 
residual body force and from said rigid version of said 
residual body force transformed by said modal spatial influ- 
ence vector. 

40. The apparatus of claim 38 further comprising means 
for revising said rigid version of said residual body force 
based upon a function of rigid-rigid and rigid-flexible cou- 
pling components of said articulated body inertia and a 
flexible version of said articulated body inertia to produce a 
revised rigid version of said residual body force for use in 
said correcting of said specified body forces. 

41. The apparatus of claim 40 wherein said means for 
computing said articulated body inertia comprises means for 
decomposing said modal mass matrix into rigid-flexible and 
rigid-rigid coupling components and for computing said 
rigid-rigid and rigid-flexible coupling components of said 
articulated body inertia from respective ones of said rigid- 
rigid and rigid-flexible coupling components of said modal 
mass matrix. 

42. The apparatus of claim 41 further comprising means 
for computing flexible and rigid versions of a deformation 
and hinge modal joint map matrix for each plural body, and 
further comprising: 

a means for computing the flexible version of said articu- 
lated hinge inertia, comprising means for computing 
the flexible version of said articulated hinge inertia 
from said articulated body inertia transformed by the 
flexible version of the corresponding deformation and 
hinge modal joint map matrix; 

a means for computing the rigid version of said articulated 
body inertia, comprising means for computing the rigid 
version of said articulated body inertia from a function 
of said rigid-rigid and rigid-flexible coupling compo- 
nents of said articulated body inertia transformed by 
said flexible version of said corresponding deformation 
and hinge modal joint map matrix; 
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a means for computing the rigid version of said articulated 

rigid version of said articulated hinge inertia from said 
rigid version of said articulated body inertia; 

a means for computing the rigid version of said body to 5 

hinge force operator, comprising means for computing 
the rigid version of said body to hinge force operator 
from said rigid versions of said articulated body inertia 
and said articulated hinge inertia. 

44. The apparatus of claim 38 further comprising 
hinge inertia, comprising means for computing the a means for computing the flexible version of said result- 

ant hinge acceleration from the flexible versions of said 
articulated hinge inertia and resultant hinge force, and 

a means for computing the rigid version of said resultant 
hinge acceleration from the rigid versions of said 
articulated hinge inertia and resultant hinge force. 

45. The apparatus of claim 44 further comprising means 
for io for revising said residual body force by adding to said 43. me apparatus of claim 42 wherein said 

computing flexible and rigid versions of a deformation and 
hinge modal joint map matrix comprises means for corn- 
puting a joint map matrix corresponding to unit vectors of 
said movable hinges and means for computing said defor- 
mation and hinge modal joint map matrix from said joint 15 

residual body force a product Of the rigid versions of said 
resultant hinge force and said body to hinge force operator 
to create a revised residual body force for use in said 
correcting of said specified body forces. 

map matrix and from said modal spatial influence vector. * * * * *  


